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We study the two-dimensional antiferromagnetic Ising model with a purely imaginary magnetic field, which
can be thought of as a toy model for the usual θ physics. Our motivation is to have a benchmark calculation
in a system which suffers from a strong sign problem, so that our results can be used to test Monte Carlo
methods developed to tackle such problems. We analyze here this model by means of analytical techniques,
computing exactly the first eight cumulants of the expansion of the effective Hamiltonian in powers of the
inverse temperature, and calculating physical observables for a large number of degrees of freedom with the help
of standard multiprecision algorithms. We report accurate results for the free energy density, internal energy,
standard and staggered magnetization, and the position and nature of the critical line, which confirm the mean-field
qualitative picture, and which should be quantitatively reliable, at least in the high-temperature regime, including
the entire critical line.
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I. INTRODUCTION

One of the major challenges for high-energy and solid-state
theorists is the numerical simulation of systems with a severe
sign problem (SSP). If we denote the microscopic states of a
given physical system by s, and the thermodynamics of such
system is described by a partition function of the form Z =∑

s P (s), we say that the system in question presents a sign
problem if the “weights” P (s) are not real and positive: This
implies that we cannot interpret P (s) as a proper probability
distribution, and the standard, efficient Monte Carlo algorithms
cannot be applied. Not all sign problems are equally severe.
Let us restrict ourselves for simplicity to the case where
the P (s) are real but not positive definite.1 One can easily
devise a reweighting algorithm that uses the absolute value
|P (s)| as the weight of each state, and shifts the sign of P (s)
into the observables. Now a standard Monte Carlo method
is applicable, and in the limit of infinite statistics we should
obtain the correct result. With finite statistics, however, a key
quantity is the thermodynamic average of the sign of each
contribution to the partition function, that is, 〈sign[P (s)]〉.
If this quantity goes to zero exponentially with the volume,
〈sign〉 ∝ e−αV , then we would need an exponential amount (in
the volume of the system V ) of statistics to get correct results,
which is of course impossible in practice. In this case we say
that the sign problem is severe.

QCD at finite baryon density, QCD with a topological term
in the action, chains of quantum spins with antiferromagnetic
interactions, the two-dimensional O(3) nonlinear sigma model
with a topological term, and the Hubbard model are some of the
most popular examples of relevant physical systems where a
SSP is present. The existence of a SSP is the main reason
for the little progress made on the theoretical understand-
ing of these physical systems outside of phenomenological
models.

*Corresponding author: eduroyo@unizar.es
1The discussion for complex weights does not add any fundamental

difficulty.

In order to check novel Monte Carlo methods designed to
tackle such problems, it is highly desirable to have a set of
benchmark calculations as extensive as possible. For very few
systems an analytic solution is known, for example, the one-
dimensional antiferromagnetic Ising model with an imaginary
magnetic field, the two-dimensional compact U(1) model with
topological term, or the two-dimensional Ising model with an
imaginary magnetic field h = iπ/2. In a few other cases the
sign problem can be avoided by reformulating the physical
system with new degrees of freedom, taking advantage of the
fact that a good choice of these degrees of freedom provides an
equivalent physical system free from the sign problem, which
can therefore be simulated by standard methods.2

Our motivation for this paper is to provide a benchmark
calculation for a system for which we do not have an analytic
solution available, nor a reformulation that avoids the sign
problem. We study the two-dimensional antiferromagnetic
Ising model with a purely imaginary magnetic field, which can
be thought of as a toy model for the usual θ physics. Indeed
the Euclidean partition function for QCD with a nonvanishing
θ term can be written in the form

ZV (θ ) =
∑

n

pV (n)eiθn (1)

where n, the topological charge, is an integer, and pV (n) is, up
to a normalization, the probability of the topological sector n

at θ = 0. This has the same structure as the partition function
of the antiferromagnetic Ising model in an external purely
imaginary magnetic field, as we will see in detail later on, and
we expect that the SSP in both systems should also be similar.

This system was studied in [1] by locating the zeros of
the partition function in the complex temperature-magnetic
field plane, and they find, for purely imaginary magnetic field,
a rich phase structure with two phases characterized by a
vanishing (nonvanishing) staggered magnetization, separated

2Unfortunately this idea works only in a few cases which, until
now, are not the most interesting physical systems. Indeed none of
the examples previously mentioned have been solved with this idea.
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by a phase transition line. We study this system by an exact
cumulant expansion to eighth order, followed by the analytic
computation of the partition function and other physical
quantities for a large number of degrees of freedom with the
help of a standard multiprecision algorithm. This amounts
essentially to the computation of the effective Hamiltonian
up to order T −8, and therefore is expected to work well in
the high-temperature regime, and we provide strong evidence
that this is indeed the case. Our results are consistent with
[1], and extend the results of [2], obtained through the
application of algorithms developed in [3,4], and through a
mean-field analysis. We are able to obtain a more precise
quantitative determination of the transition line separating the
paramagnetic and antiferromagnetic phases of the model.

For some systems with a SSP, we know a priori that the
partition function will be positive, for example, systems in
thermal equilibrium with a (Hermitian) Hamiltonian descrip-
tion. Such is the case in a quantum field theory with a θ term.
In the toy model we study here, although we do not have a
rigorous proof in this case,3 we have evidence that, at least
in the region where the approximation we use is valid, the
partition function is indeed positive (it is trivially always real).

Such evidence is twofold. First, we can prove rigorously that
up to the fifth cumulant the partition function is indeed positive.
Unfortunately we have not been able to extend this proof to
higher cumulants, but in our multiprecision calculations with
up to eight cumulants, we have never seen an instance where
the partition function is negative or vanishes. This is highly
nontrivial: If instead of a constant imaginary magnetic field
we try, for example, to put a staggered imaginary field in
our lattice (this is of course equivalent to the ferromagnetic
model with a constant imaginary field), we immediately get a
fluctuating sign for the partition function.

Second, there have been studies locating the Lee-Yang zeros
of the two-dimensional antiferromagnetic Ising model up to
142 lattices [5], and in 12 × 13 lattices [1]. Up to that size
there is no sign of any zeros cutting the imaginary axis at any
temperature.

Whereas this by no means amounts to a rigorous proof,
we believe it provides a strong indication that, at least in the
region of interest for this paper, this model should have a
positive partition function.

This paper is organized as follows. Section II is devoted
to formulate the model and to recall the main ingredients
and results of the mean-field approximation developed in [2].
In Sec. III we introduce the cumulant expansion, report the
analytical results for the first eight cumulants in the two-
dimensional model, and write the analytical expressions for the
free energy and mean values of interesting physical quantities.
The results for the staggered magnetization, susceptibility, and
phase diagram of the model are reported in Sec. IV, where we
also compare our results at h = 0 and iπ/2 with the analytical
solutions of [6–8]. In Sec. V we report our conclusions. The
technical details of the analytical computation of the cumulant

3This would imply a nontrivial restriction on the position of the
Lee-Yang zeros for the antiferromagnetic Ising model. To the best of
our knowledge, very little is rigorously known about such zeros.

expansion can be found in Appendix A, and several tables with
numerical results can be found in Appendix B.

II. TWO-DIMENSIONAL ISING MODEL

The Ising model [1,6–11] has been studied for a long
time now, and it has known analytical solutions in the one-
dimensional case at any external magnetic field h [9], and in
two dimensions only for the case without magnetic field h

[6] and for h = iθ/2 = iπ/2 [7,8]. The model with a pure
imaginary magnetic field suffers from a SSP in any number
of dimensions. In addition to that, the expected phase diagram
for d � 2 is nontrivial [2], making the reconstruction of the
θ dependence of the observables even more challenging. All
this makes the model a good theoretical laboratory to test
new methods designed to deal with the SSP. It is therefore
worthwhile to carry out a detailed study of this model at purely
imaginary magnetic field, particularly because little progress
has been achieved on reconstructing the θ dependence of the
observables, apart from the analysis of [2] and the recent study
in [12].

The partition function of the model, following the conven-
tions of [2], is

Z =
∑
{si }

exp

(
F

∑
〈ij〉

sisj + iθ
1

2

∑
i

si

)
. (2)

The half magnetization

M

2
≡ 1

2

∑
i

si (3)

is an integer taking any value between −N/2 and N/2, where
N is an even number denoting the total number of spins in
the lattice. It is in this sense that we identify M/2 with a
topological charge and regard the imaginary magnetic field
term in the action as a θ term. It is important to mention that,
from now on, we will consider only the antiferromagnetic
case F < 0, since the model with imaginary field does not
define a unitary theory for arbitrary values of the ferromagnetic
coupling [7,13].

As we shall see in detail in the next section, by dividing
the rectangular lattice into two sublattices, introducing the
respective magnetizations M1 and M2, making a cumulant
expansion, and keeping only the first cumulant, we arrive at
the following approximation to the partition function (where
d denotes the dimensionality of the lattice):

Z1c(F,θ ) =
∑
{si }

exp

(
iθ

M1 + M2

2
+ 4

Fd

N
M1M2

)
. (4)

We recall now the mean-field analysis carried out in [2]. The
resulting partition function,

ZMF (F,θ ) =
∑
{si }

exp

(
iθ

M1 + M2

2
− Fd

N
(M1 − M2)2

)
,

(5)

is different from Eq. (4). However, it can be seen to give
the same qualitative results for the observables and the phase
diagram. In this regard, we will consider the first-cumulant
expansion Z1c as a mean-field approximation to Z , and the
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FIG. 1. Phase diagram of the mean-field approach of [2] to the
antiferromagnetic Ising model in the F -θ plane.

general expansion itself as an improvement of it, at least for
small F , where the expansion is expected to converge.

Applying standard saddle-point techniques to the mean-
field partition function [2], one obtains the F − θ phase
diagram shown in Fig. 1. A second order critical line,

dFc = 1

2
cos2 θc

2
, (6)

separates two different phases: a staggered one, with 〈ms〉 �= 0,
for θ � θc, and a paramagnetic one, with 〈ms〉 = 0, for θ < θc.

III. CUMULANT EXPANSION AND OBSERVABLES

Our interest is focused on the antiferromagnetic model,
where the staggered magnetization is a good order parameter.
From now on we will work with a rectangular two-dimensional
lattice, although the method is easily generalizable to any num-
ber of dimensions. We divide the lattice into two sublattices
�1 and �2 in a chessboard fashion. In the two-dimensional
lattice this means that if i and j index, respectively, the row and
the column of a given spin, this spin will be in the first (second)
sublattice if the sum i + j is even (odd). For simplicity we
will require that both lengths of the lattice be even. Denoting
by N the total number of points in the lattice, we define the
magnetization densities m1 and m2 as

mj ≡ Mj

N/2
≡

∑
i∈�j

si

N/2
, j = 1,2, (7)

and the density of staggered magnetization is

ms ≡ m1 − m2

2
. (8)

Let us denote by g(m1,m2) the number of microstates with
magnetization densities m1 and m2 in sublattices �1 and �2,
respectively, that is,

g(m1,m2) =
∑
{si }

δ

(∑
i∈�1

si − M1

)
δ

(∑
i∈�2

si − M2

)
. (9)

A trivial computation gives

g(m1,m2) =
(

N/2

N1+

)(
N/2

N2+

)
, (10)

with Nj+ ≡ N (1 + mj )/4 for j = 1,2. Defining now the
expected value at fixed m1,m2 as

〈O〉m1,m2
≡ 1

g(m1,m2)

∑
{si }

δ

(∑
i∈�1

si − M1

)

× δ

(∑
i∈�2

si − M2

)
O, (11)

we can rewrite the partition function (2) in the form

Z =
∑

m1,m2

g(m1,m2)

×
〈

exp

(
i
θ

2

∑
i

si + F
∑
〈ij〉

sisj

)〉
m1,m2

. (12)

The θ term in Eq. (12) is just iθ (m1 + m2)N/4, and therefore
constant under fixed m1 and m2; we can take it out of the
expected value, arriving at

Z =
∑

m1,m2

g(m1,m2)e
1
4 Niθ(m1+m2)

×
〈

exp

(
F

∑
〈ij〉

sisj

)〉
m1,m2

. (13)

We cannot evaluate exactly the expectation value in Eq. (13),
as that would be equivalent to solving exactly the model for
arbitrary values of the external field. Instead we perform a
cumulant expansion and truncate at a given order. Let us recall
the definition

〈
etX

〉 ≡ exp

( ∞∑
n=1

κn

tn

n!

)
, (14)

where the nth cumulant κn is an nth degree polynomial in
the first n noncentral moments of X, given by the following
recursion formula:

κn = μ′
n −

n−1∑
m=1

(
n − 1

m − 1

)
κmμ′

n−m, μ′
n ≡ 〈

Xn
〉
. (15)

By expanding in cumulants in our partition function, taking
t = F and X = ∑

sisj , we obtain

Z =
∑

m1,m2

g(m1,m2)

× exp

(
1

4
Niθ (m1 + m2) +

∞∑
n=1

κn(m1,m2)
Fn

n!

)
, (16)

where now the moments are given by

μ′
n =

〈( ∑
〈i,j〉

sisj

)n〉
m1,m2

. (17)

The computation of these quantities is somewhat involved,
and we relegate the details to Appendix A. We calculate the
cumulants using a numerical (but exact) method, up to n = 8.
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The results, at leading order in N ,4 for d = 2, are

κ1 = 2Nm1m2,

κ2 = 2N
(
m2

1 − 1
)(

m2
2 − 1

)
,

κ3 = 8Nm1m2
(
m2

1 − 1
)(

m2
2 − 1

)
,

κ4 = 4N
(
21m2

1m
2
2 − 9

[
m2

1 + m2
2

] + 5
)

× (
m2

1 − 1
)(

m2
2 − 1

)
,

κ5 = 32N
(
51m2

1m
2
2 − 39m2

1 − 39m2
2 + 31

)
×m1m2

(
m2

1 − 1
)(

m2
2 − 1

)
,

κ6 = 64N
(
675m4

1m
4
2 − 690

[
m4

1m
2
2 + m2

1m
4
2

]
+ 705m2

1m
2
2 + 75

[
m4

1 + m4
2 − m2

1 − m2
2

] + 8
)

× (
m2

1 − 1
)(

m2
2 − 1

)
,

κ7 = 128N
(
10 935m4

1m
4
2 − 13 950

[
m4

1m
2
2 + m2

1m
4
2

]
+ 3375

[
m4

1 + m4
2

] + 17 760m2
1m

2
2 − 4290

[
m2

1 + m2
2

]
+ 1051

)
m1m2

(
m2

1 − 1
)(

m2
2 − 1

)
,

κ8 = 32N
(
1 685 565m6

1m
6
2 − 2 604 735

[
m6

1m
4
2

+m4
1m

6
2

] + 994 455
[
m6

1m
2
2 + m2

1m
6
2

]
− 55 125

[
m6

1 + m6
2

] + 4 026 645m4
1m

4
2

− 1 541 085
[
m4

1m
2
2 + m2

1m
4
2

] + 85 575
[
m4

1 + m4
2

]
+ 595 077m2

1m
2
2 − 33 663

[
m2

1 + m2
2

] + 2125
)

× (
m2

1 − 1
)(

m2
2 − 1

)
. (18)

Now we can compute an approximation to the expected
value of any observable of the form O(m1,m2) as follows:

〈O〉 = 1

Z
∑

m1,m2

O(m1,m2)g(m1,m2)

× exp

{
iθ

M1 + M2

2
+

nmax∑
n=1

Fn

n!
κn(m1,m2)

}
, (19)

where 〈O〉 depends implicitly on the number of cumulants
included in the approximation, nmax, and on the number of
spins of the system N . Taking the limit of both nmax and N to
infinity, we should recover the exact result in the thermody-
namic limit. Using this technique, we have computed several
observables, such as the density of free energy φ, the density
of internal energy e, the specific heat cv , and both the usual
and the staggered magnetization 〈m〉 and 〈ms〉, respectively.

4We can calculate the subleading terms also, but they become
irrelevant as we approach the thermodynamic limit.
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FIG. 2. Free energy (−Fφ) at θ = 0,N = 2000 for the square-
lattice AF Ising model in the kth cumulant approximation.

The precise definitions of the computed observables are the
following:

φ ≡ − 1

NF
logZ, (20)

e ≡ − 1

2N

d logZ
dF

, cv ≡ −F 2 d

dF
e, (21)

〈m〉 ≡
〈
m1 + m2

2

〉
, 〈ms〉 ≡

〈
m1 − m2

2

〉
. (22)

It must be noted that at θ = π , where the model has an
analytical solution, the free energy has a singularity at F = 0
[7,8]. In the next section we will talk about its nonsingular part,
which is simply the result of subtracting the singular term from
the full expression:

φ ≡ φns − 1

2F
log (1 − e4F ). (23)

As we have mentioned before, the complex-valued expo-
nentials in Eq. (19) give rise to a severe sign problem. To
deal with it we use a multiprecision algorithm, which allows
us to keep as many digits as needed. In order to crosscheck
our calculations we have used several multiprecision libraries
(GMP, GNU MPFR, GNU MPC, GMPY2) to do the sum over m1 and
m2. The computational cost when computing the observables
grows on one hand with N2 due to the number of summands in
Eq. (19). In addition to that, the number of digits needed grows
linearly with N , increasing the cost of each multiprecision
operation.

IV. RESULTS

At θ = 0 and π we know the analytical solution for the
two-dimensional Ising model [6–8], and therefore we can
compare the exact results with the approximations obtained
from Eq. (19). We can see in Figs. 2 and 3 the density of
free energy as a function of the coupling |F |, for different
approximations. Concretely we show the approximations
obtained by keeping only the first, up to the fourth, and
up to the eighth cumulant. For clarity we show only the
results corresponding to the largest size N that we have
calculated, although we have carefully checked that the finite-
size effects are tiny at that value of N . We can see that the
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FIG. 3. Nonsingular part of the free energy (−Fφ) at θ = π,N =
2000.

agreement with the exact result, especially for the fourth and
eighth approximations, is excellent at small |F |, where we
can expect the cumulant expansion to be well behaved. At
|F | � 0.57 the approximations start to drift away from the
analytic result, especially the eighth, possibly indicating the
lack of convergence of the cumulant expansion at such larger
couplings.

The above results are consistent with those of the density
of internal energy, which we can see in Figs. 4–6. The same
can be said about the specific heat for θ = π , in Fig. 7. The
results of the specific heat for θ = 0, in Fig. 8, show also a
good agreement with the analytical solution, as long as we are
far from the critical point. In the neighborhood of the critical
point we can see that keeping a finite number of cumulants
has a strong impact. However, the results seem to converge
to the exact solution quickly when we increase the number
of cumulants, and indeed the peak when including all eight
cumulants is not far from the analytic result.

The agreement with the exact results both at θ = 0 and at
π suggests that the cumulant expansion can be trusted at all
values of θ , as long as |F | � 0.57.

We expect a nonvanishing value of 〈ms〉 to signal the
transition from the paramagnetic to the staggered phase.
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FIG. 4. Internal energy e(F ) computed for one, four, and eight
cumulants at θ = 0 and N = 2000.
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FIG. 5. Internal energy density e(F ) at θ = π,N = 2000 at
several cumulant expansions.

Because of translational symmetry, we cannot simply compute
this observable, since for a finite N system it is always zero
[permuting m1 and m2 leaves Eq. (19) invariant]. However, we
can compute 〈m2

s 〉, which also separates the weak and strong
coupling phases.

In Fig. 9 we show results for 〈m2
s 〉 at θ = 2. One can see

how, as we approach the thermodynamic limit, 〈m2
s 〉 becomes

a steeper function of |F |. To obtain the critical line for a
given cumulant approximation, we numerically calculate the
quantity d

dθ
〈m2

s 〉 (which should diverge in the thermodynamic
limit at the critical line), and find the maximum along lines of
constant θ . This gives us, for each size N and each value of
θ , Fc(θ ). We can see in Fig. 10 the behavior of such quantity
as a function of F and N , for the specific value θ = 2, in the
eight cumulant approximation. The height of the peak does
not scale as N , at least at the volumes we have been able to
calculate, therefore suggesting a continuous phase transition;
however, our data are not extensive enough to calculate the
critical exponents.

The phase diagram obtained in this way is shown in Fig. 11,
for several truncation orders of the cumulant expansion. The
transition lines that we obtain lie entirely below |F | = .45,
where we have good evidence that the cumulant expansion

0.5
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e|
ns
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FIG. 6. Nonsingular part of the internal energy at θ = π,N =
2000.

032114-5



AZCOITI, DI CARLO, FOLLANA, AND ROYO-AMONDARAIN PHYSICAL REVIEW E 96, 032114 (2017)

-0.25

-0.2

-0.15

-0.1

-0.05

0.1 0.2 0.3 0.4 0.5 0.6

c v
(F

)

|F |

k = 1
k = 4
k = 8

Analytic

FIG. 7. Specific heat at θ = π,N = 2000, plotted against the
analytical expression.

works well. The change from the line corresponding to k = 1
and 4 is very large, but the results seem to stabilize quickly
with the order of the expansion, and the lines corresponding to
k = 4 and 8 are quite close together. Therefore we expect the
phase diagram for k = 8 to be a quite accurate approximation
to the exact one. Further evidence of this is the agreement
with the few maximal values for Fc estimated in [1] from the
computation of the zeros of the partition function of the model
in the complex temperature-magnetic field plane. As can be
seen in the plot, they lie above but quite close to our k = 8
line.

As another crosscheck we show in Fig. 12 results for the
specific heat at θ = 2 in the eight cumulant approximation,
computed for several system sizes. The behavior is similar to
the one in Fig. 10: a peak of increasing height in the vicinity
of the critical point, and smooth behavior and small finite N
effects elsewhere.

V. CONCLUSIONS

We have analyzed the two-dimensional antiferromagnetic
Ising model with an imaginary magnetic field by analytical
techniques. We have calculated the first eight cumulants of
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FIG. 8. Specific heat at θ = 0, plotted against the analytical
solution. At θ = 0, Fc = log(1 + √

2)/2 ≈ 0.4407.
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FIG. 9. 〈m2
s 〉 curves at θ = 2,k = 8. Solid lines are just a guide

to the eye.

what is essentially the expansion of the effective Hamiltonian
in powers of the inverse temperature, and computed physical
quantities for a large number of degrees of freedom with the
help of multiprecision algorithms. The motivation for such a
calculation was to have an example of a physical system with
SSP and nontrivial phase structure, the dynamics of which is
well known, at least in the high-temperature region.

Our results confirm the qualitative picture described in [2],
and predict the existence of two phases in this model, which
can be characterized by the staggered magnetization as an
order parameter. The finite-size scaling suggests that the two
phases are separated by a continuous phase transition line. The
position of the critical point at θ = 0 is in very good agreement
with the exact result Fc = log(1 + √

2)/2 ≈ 0.4407, and the
free and internal energy densities at θ = π agree also well
with the analytical prediction, at least in the high-temperature
regime, thus giving reliability to our results in this region.
Therefore this model could be a good laboratory to check
proposals to simulate physical systems afflicted by a SSP.
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APPENDIX A: COMPUTATION OF THE CUMULANTS κn

In order to use expressions (16) and (19), we need to
compute the cumulants κn. The nth cumulant can be calculated
in terms of the first n noncentral moments μ′

n,

μ′
n ≡

〈( ∑
〈ij〉

sisj

)n〉
m1,m2

, (A1)

by means of the recursion relation (15). The summation over
〈ij 〉 runs over each couple of neighboring spins, or in other
words over each link. Two neighboring spins always belong to
different sublattices.

Before going further, let us comment on two intermediate
results. First, we consider a lattice of N spins, the magnetiza-
tion of which is the sum m = ∑

i si , and ask about the expected
value of the product of n of these spins at fixed m (or fixed
N+, the number of positive spins), that is, 〈s1s2 · · · sn〉m. One
can perform this calculation by means of the microcanonical
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FIG. 12. Specific heat cv with k = 8 and θ = 2. Solid lines are
just a guide to the eye.

formalism, arriving at

〈s1s2 · · · sn〉m = 1(
N

N+

) n∑
k=0

(−1)k
(

n

k

)(
N − n

N+ − n + k

)
. (A2)

In the above expression, k can be read as the number of negative
spins in the product s1s2 · · · sn. In this way, the first summand,
k = 0, counts the number of states with zero negative spins
in the product s1s2 · · · sn and multiplies it by the expected
value of the product in this case, (−1)0 = 1. The second one,
k = 1, does the same for one negative spin in s1 · · · sn, and
so on. Dividing the sum by the total number of configurations
with magnetization m = 2N+/N − 1, one obtains the previous
expected value at fixed m. Second, consider an observable
O(m1,m2) in our two sublattice system, with a dependence on
m1 and m2 such as we can write it as O1(m1)O2(m2). In this
case, from the definition (11) of the expected value at fixed m1

and m2, we have

〈O1(m1)O2(m2)〉m1,m2
= 〈O1(m1)〉m1

〈O2(m2)〉m2
. (A3)

This immediately applies to the spin product s1s2 · · · sn. We
can always divide it into two products sa · · · sb and sα · · · sβ ,
each one containing the spins of one of the sublattices, and
then

〈s1s2 · · · sn〉m1,m2 = 〈sa · · · sb〉m1〈sα · · · sβ〉m2 . (A4)

With the previous couple of results, we come back to Eq. (A1),
and apply the linearity of the expected value, arriving at

μ′
n =

∑
〈ij〉,〈kl〉,··· ,〈pq〉

〈sisj sksl · · · spsq〉m1,m2 , (A5)

which is the sum of the expected values of the product of n

links, running over all permutations with repetitions of these
links. Then, in every summand we have the product of 2n

spins, in some cases with some of them identical. Taking
into account that s2

i = 1 ∀i, each summand can be reduced
to the expected value of the product of n1 + n2 different
spins, n1 and n2 being the number of spins in each sublattice.
Since by means of Eq. (A2) we already have an expression
that computes 〈s1 · · · sn〉m, the problem is reduced to count
how many summands in Eq. (A5) have (n1,n2) spins. We
call these numbers geometrical factors, and denote them by
G(n1,n2). Following this convention, we can write the nth
central moment as

μ′
n =

∑
{n1,n2}

G(n1,n2)〈sa · · · sb︸ ︷︷ ︸
n1 spins

〉m1〈sα · · · sβ︸ ︷︷ ︸
n2 spins

〉m2 , (A6)

where the sum runs over the couples of integers (n1,n2) the
sum of which is even and less than or equal to n.

The computation of the geometrical factors G(n1,n2) can
be done by hand for the first few cumulants. As an example,
for the second noncentral moment μ′

2 we have to compute
four cases: the two links being the same (sharing both spins),
sharing only one spin belonging to the first or the second
sublattice, and finally not sharing any spin at all. That is, in
terms of the previous notation,

{(n1,n2)} = {(0,0),(2,0),(0,2),(2,2)}. (A7)

The factors G(n1,n2) can be computed easily in this case, even
for a hypercubic lattice of arbitrary dimension d, arriving at
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the following expression for the second moment:

μ′
2 = Nd〈1〉 + Nd(d − 1)(〈s1s2〉m1 + 〈s1s2〉m2 )

+Nd[Nd − 2(d − 1) − 1]〈s1s2〉m1〈s1s2〉m2 . (A8)

We can use this expression to calculate the second cumulant
κ2,

κ2 = μ′
2 − μ′2

1
N→∞−−−→ Nd

(
m2

1 − 1
)(

m2
2 − 1

)
, (A9)

where we have taken the thermodynamic limit, keeping only
the terms of order O(N ), which is the leading order for all
cumulants. Subleading orders can be preserved if needed,
but they are not relevant for our paper. The difficulty of the
previous computation escalates quickly with the order n of the
cumulant, and it is quite cumbersome for just n � 4. In order
to get beyond this limitation, we have developed a program
which computes the geometrical factors G(n1,n2) numerically
for a finite L × L bidimensional lattice. Since these factors
G(n1,n2) are polynomials in N of order � n (and with integer
coefficients), we can run the program for lattices of n + 1
different sizes, obtaining a set of (N,G(N )) points, which
we can use to recover the exact integer coefficients of each
geometrical factor, by means of the Lagrange interpolation
formula.

The basic idea of the program is very simple. We just
construct a periodic rectangular L × M lattice, with L,M > n,
n being the order of the cumulant we want to compute. With
this restriction we avoid products of links crossing the entire
lattice, that would not appear in the thermodynamic limit
for any finite cumulant. Once we have this, we start a loop
running over all the permutations with repetitions of n links,
and perform the following steps.

(1) We have a product of n links, or equivalently 2n spins,
s1 · · · s2n.

(2) Recursively, we remove couples of equal spins from this
product.

(3) We classify the remaining product by the number of
spins in each sublattice, (n1,n2).

(4) We add one to the geometric factorG(n1,n2) and proceed
to the next iteration.

When the algorithm finishes, we obtain all the G(n1,n2)
values for a given N = LM . The computational cost is
associated to the number of iterations of the main loop, which
grows as (LM)n, that is, exponentially with the order of the
cumulant. In practice, we have only reached the computation
of the fourth cumulant with this program. However, a number
of optimizations can be implemented in order to reach higher
order cumulants, which we summarize in what follows.

1. Translational symmetry

Our lattice is symmetric under translations, implying that
all geometrical factors are proportional to Nd, the number of
links. Fixing, e.g., the first link of the product, one obtains
the same G(n1,n2), but divided by a common factor Nd. The
same factor is gained in the overall speed of the program. In
addition to that, the degree of the polynomials G(n1,n2) is
also reduced by one, and it suffices with n (instead of n + 1)
different sizes in order to recover the N dependence. One
can go even further by realizing that the geometrical factor

corresponding to non-neighboring links, G(n,n), is the only
one with maximum degree Nn−1. This allows us to express it
in terms of the remaining factors,

1

Nd
G(n,n) = (Nd)n−1 − 1

Nd

∑
{(n1,n2)}\(n,n)

G(n1,n2), (A10)

which are only of order n − 2 or less. This means that it is
enough to run the program for n − 1 lattice sizes, compute
all the geometrical factors but G(n,n) via the Lagrange
interpolator, and then with the previous expression find the
N dependence of this last factor.

2. From permutations to combinations

The product of links commutes, so its contribution to the
geometrical factors is the same regardless of the order. Then,
we can change the main loop over permutations with repetition
to a loop over combinations with repetition, by taking into
account the multiplicity of each combination. Schematically,
we perform ∑

i,j,...,k

contrib(li lj · · · lk)

→
∑

i�j�···�k

mult × contrib(li lj · · · lk), (A11)

where contrib represents a function in our program that
takes a product of links and returns the contribution to the
geometrical factors. If there are r different links, each one ap-
pearing k1, . . . ,kr times, the multiplicity of the combination is
given by

mult = n!

k1! · · · kr !
. (A12)

3. Blocks: Grouping links together

Many of the link products have few, if any, repeated spins,
and their contributions to the geometrical factors can be
counted without having to analyze one by one each of them.
This is possible by grouping them in sets of links that we will
call in what follows blocks, and replacing the loop over link
products by a loop over block products. When the blocks in a
product are not neighbors (i.e., they do not have any common
spin), we do not need to perform the computation link by link
and the contribution can be summed up trivially. Let b1 and
b3 be two non-neighboring blocks, each one composed by Nb

links, and let us denote the contributions to the geometrical
factors by λ(n1,n2), where λ is an integer counting how many
products of links have n1 (n2) spins in the first (second)
sublattice. Then we have

contrib(b1b3) = N2
b (2,2), (A13)

or in general, for the product of k non-neighboring blocks,
Nk

b (k,k). Following this strategy, we divide our lattice into
unidimensional blocks of 2M links, in a way that the j th block,
bj , contains all links the first spin of which belongs to the j th
column. As a consequence, bj is a neighbor of blocks j − 1
and j + 1, and, taking into account the boundary conditions,
b0 and bL−1 are neighbors too.
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TABLE I. Numerical data for θ = 0, Fig. 2.

|F | −Fφ(k = 1) −Fφ(k = 4) −Fφ(k = 8)

0.0500 0.693 0.696 0.696
0.0947 0.693 0.702 0.702
0.1395 0.693 0.713 0.713
0.1842 0.693 0.728 0.728
0.2289 0.694 0.748 0.748
0.2737 0.700 0.773 0.773
0.3184 0.736 0.803 0.804
0.3632 0.792 0.840 0.842
0.4079 0.860 0.883 0.888
0.4526 0.935 0.945 0.947
0.4974 1.015 1.021 1.021
0.5421 1.098 1.101 1.102
0.5868 1.183 1.185 1.188
0.6316 1.270 1.271 1.312
0.6763 1.358 1.358 1.466
0.7211 1.446 1.446 1.660
0.7658 1.534 1.565 1.908
0.8105 1.623 1.709 2.224
0.8553 1.712 1.870 2.630
0.9000 1.801 2.049 3.152

When we have a product of neighboring blocks, we proceed
as before, analyzing the link products one by one, and there
is no computational saving. But when the n blocks are not
neighbors, we move from (Nd)n iterations to a single one.

4. Clusters of blocks

The block method, as defined above, fails to save any
computation time if two or more blocks are neighbors in a
given block product. However, we can extend the method

TABLE II. Numerical data for θ = π , Fig. 3.

|F | −Fφns(k = 1) −Fφns(k = 4) −Fφns(k = 8)

0.0500 0.277 0.329 0.335
0.0947 0.352 0.392 0.397
0.1395 0.427 0.458 0.461
0.1842 0.503 0.526 0.528
0.2289 0.579 0.596 0.598
0.2737 0.655 0.668 0.669
0.3184 0.733 0.742 0.743
0.3632 0.811 0.817 0.818
0.4079 0.890 0.894 0.895
0.4526 0.970 0.973 0.973
0.4974 1.051 1.053 1.053
0.5421 1.133 1.134 1.134
0.5868 1.215 1.216 1.216
0.6316 1.299 1.299 1.300
0.6763 1.383 1.383 1.446
0.7211 1.468 1.468 1.650
0.7658 1.554 1.554 1.903
0.8105 1.640 1.640 2.223
0.8553 1.726 1.800 2.632
0.9000 1.813 1.986 3.155

TABLE III. Numerical data for θ = π , Fig. 5.

|F | e(k = 1) e(k = 4) e(k = 8)

0.0500 5.350 5.210 5.189
0.0947 3.008 2.893 2.877
0.1395 2.180 2.086 2.073
0.1842 1.765 1.689 1.680
0.2289 1.521 1.461 1.455
0.2737 1.364 1.318 1.313
0.3184 1.258 1.223 1.220
0.3632 1.184 1.159 1.156
0.4079 1.132 1.114 1.112
0.4526 1.095 1.082 1.080
0.4974 1.068 1.059 1.058
0.5421 1.048 1.042 1.041
0.5868 1.034 1.030 1.030
0.6316 1.024 1.022 1.021
0.6763 1.017 1.016 2.121
0.7211 1.012 1.011 2.588
0.7658 1.009 1.008 3.222
0.8105 1.006 1.006 4.068
0.8553 1.004 2.019 5.185
0.9000 1.003 2.220 6.638

by dividing each block product into several subproducts,
which we will denote as clusters. In each cluster, one can
always connect one block to another by the equivalence
relation of being neighbors (sharing spins). And in the same
way, in each product different clusters never share any
spin. This allows us to compute the contributions of each
cluster separately, and then compose them with the following
law:

λ1(a,b) ⊕ λ2(c,d) = λ1λ2(a + c,b + d). (A14)

TABLE IV. Numerical data for θ = π , Fig. 6.

|F | e|ns(k = 1) e|ns(k = 4) e|ns(k = 8)

0.0500 0.833 0.693 0.672
0.0947 0.837 0.721 0.705
0.1395 0.841 0.747 0.735
0.1842 0.847 0.771 0.762
0.2289 0.854 0.794 0.787
0.2737 0.861 0.815 0.810
0.3184 0.870 0.835 0.831
0.3632 0.879 0.853 0.851
0.4079 0.889 0.870 0.869
0.4526 0.899 0.886 0.885
0.4974 0.909 0.900 0.899
0.5421 0.919 0.913 0.912
0.5868 0.929 0.925 0.924
0.6316 0.937 0.935 0.934
0.6763 0.946 0.944 2.049
0.7211 0.953 0.952 2.529
0.7658 0.960 0.959 3.173
0.8105 0.965 0.965 4.027
0.8553 0.970 1.985 5.151
0.9000 0.975 2.192 6.610
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TABLE V. Numerical data for the phase diagram of Fig. 11.

θ Fc(k = 1) Fc(k = 4) Fc(k = 8)

0.050000 0.263 0.420 0.431
0.266667 0.261 0.417 0.430
0.483333 0.259 0.412 0.424
0.700000 0.255 0.404 0.417
0.916667 0.249 0.393 0.406
1.133333 0.241 0.378 0.394
1.350000 0.231 0.361 0.378
1.566667 0.220 0.341 0.358
1.783333 0.207 0.317 0.335
2.000000 0.192 0.292 0.309
2.133333 0.179 0.272 0.292
2.266667 0.167 0.253 0.271
2.400000 0.153 0.231 0.248
2.533333 0.138 0.207 0.223
2.666667 0.119 0.179 0.195
2.800000 0.100 0.148 0.162
2.868319 0.088 0.130 0.141
2.936637 0.074 0.109 0.119
3.004956 0.058 0.086 0.093
3.073274 0.038 0.056 0.061

If the contributions of the clusters involve more than one
geometrical factor, linearity applies:∑

ab

λab(a,b) ⊕
∑
cd

λcd (c,d) =
∑
ab,cd

λabλcd (a + c,b + d).

(A15)

Processing one cluster with k blocks takes a computing time
proportional to (Nd)k . So dividing the whole block product
in smaller clusters implies for almost every block product a
significant amount of time saved. Only when all the blocks are
part of the same cluster there is no speed up.

TABLE VI. Numerical data for θ = 2 and N = 400, eight
cumulants.

|F | −Fφ −i〈m〉 〈m2
s 〉 e cv

0.280 0.5954 0.3406 0.0976 0.6847 0.1021
0.285 0.6023 0.3315 0.1153 0.6919 0.1278
0.290 0.6093 0.3218 0.1379 0.7006 0.1607
0.295 0.6163 0.3113 0.1668 0.7111 0.2023
0.300 0.6235 0.2998 0.2034 0.7239 0.2529
0.305 0.6308 0.2872 0.2488 0.7393 0.3106
0.310 0.6383 0.2734 0.3033 0.7573 0.3693
0.315 0.6460 0.2585 0.3655 0.7775 0.4190
0.320 0.6538 0.2429 0.4323 0.7991 0.4492
0.325 0.6619 0.2273 0.4994 0.8210 0.4541
0.330 0.6703 0.2122 0.5626 0.8418 0.4359
0.335 0.6788 0.1982 0.6192 0.8608 0.4028
0.340 0.6875 0.1854 0.6681 0.8776 0.3638
0.345 0.6963 0.1738 0.7096 0.8923 0.3255
0.350 0.7053 0.1633 0.7447 0.9051 0.2910
0.355 0.7144 0.1537 0.7744 0.9162 0.2612
0.360 0.7236 0.1450 0.7999 0.9259 0.2357

Another major optimization can be performed by realizing
that translational invariance can also be applied here, since
a given cluster, say b0b1b1, and any of its translations,
b0+t b1+t b1+t , have the same contribution to the geometrical
factors. Then, when a cluster is going to be computed, we
can express it in terms of its equivalence class, compute its
contribution, and store it in memory. Every time one of its
translations appears, we just take the value from the memory,
saving a lot of computing time. In addition to that, once
we have computed the factors G(n1,n2) for the first size
L × M , we know in advance all the cluster contributions for
any L′ × M lattice (the blocks keep its size constant). Since
almost all the computing time is spent in figuring out the
cluster contributions, we reduce in this way the full problem of
computing the geometrical factors in lattices of n − 1 different
sizes to only one size, the smallest one, M × M . In practice,
the time spent by the rest of the sizes needed is barely the
1–2% of that of the first size.

5. Computation of a cluster

The last optimization concerns the computation of the
clusters themselves. Until now it is done simply by performing
a loop over each possible permutation of links belonging to
each of the blocks in the cluster. However, one can go one
step further and divide the blocks composing the cluster into
smaller sets, that we will call sites. A site is simply the set of
two links the first spin of which lies in the site i,j , that is,

site(i,j ) ≡ {sij si+1,j ,sij si,j+1}. (A16)

With this new subdivision, we can apply in the same way the
techniques described above. In order to compute the cluster
b1 . . . bk , we start a loop over every permutation of sites
s1 . . . sk , with si ∈ bi . Each site product is divided into clusters,
the contributions of which can be summed with Eq. (A15)
and are calculated by performing another loop over each link
product (2k iterations for a site product of k elements). Finally,

TABLE VII. Numerical data for θ = 2 and N = 3200, eight
cumulants.

|F | −Fφ −i〈m〉 〈m2
s 〉 e cv

0.280 0.5928 0.3513 0.0161 0.6633 0.0551
0.285 0.5995 0.3438 0.0214 0.6672 0.0720
0.290 0.6062 0.3360 0.0311 0.6724 0.1042
0.295 0.6129 0.3269 0.0513 0.6804 0.1815
0.300 0.6198 0.3143 0.0991 0.6954 0.3780
0.305 0.6269 0.2947 0.2013 0.7243 0.6725
0.310 0.6343 0.2705 0.3347 0.7622 0.7053
0.315 0.6421 0.2488 0.4447 0.7954 0.5897
0.320 0.6502 0.2305 0.5276 0.8222 0.4958
0.325 0.6585 0.2148 0.5920 0.8443 0.4244
0.330 0.6671 0.2010 0.6437 0.8628 0.3710
0.335 0.6758 0.1887 0.6865 0.8786 0.3302
0.340 0.6846 0.1775 0.7226 0.8923 0.2976
0.345 0.6936 0.1673 0.7537 0.9044 0.2705
0.350 0.7027 0.1579 0.7807 0.9151 0.2472
0.355 0.7119 0.1492 0.8043 0.9247 0.2268
0.360 0.7212 0.1411 0.8251 0.9332 0.2086
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by summing up each site product contribution, we obtain the
whole cluster contribution.

All the described optimizations do not remove the exponen-
tial dependence on n of the algorithm. However, they allow us
to reach the eighth cumulant, which takes about three days of
computing time in a modern laptop.

APPENDIX B: NUMERICAL TABLES

In Tables I–VII we present some of the data corresponding
to the figures in Sec. IV. In addition to that, we pro-
vide numerical results for several observables at θ = 2 and
k = 8.
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