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Escape of coupled Brownian particles across a fluctuating barrier
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The escape of two harmonically coupled Brownian particles across the fluctuating barrier of a bistable potential
is investigated with correlated additive and multiplicative fluctuations. Positive correlations enhance the rate of
escape across the barrier when the coupling is effective, whereas for weakly coupled particles, escape becomes
difficult. It is found that the system exhibits the phenomenon of resonant activation when the rate of barrier
fluctuations is comparable to the relaxation time in the bistable potential. Using a decoupling ansatz, we derive
the Markovian limit of the problem in the steady state, under the constraint that the barriers fluctuate on a time
scale faster than the relative oscillation of the two particles. Adiabatic elimination of the fast variable of the
dynamical system is discussed in appropriate limits.
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I. INTRODUCTION

Thermally driven escape across potential barriers is a
problem of general interest in domains varying from chemical
kinetics to transport theory. The rate of thermal escape across
a barrier was provided in the seminal work by Kramers [1]
and has received several useful extensions since then [2–4].
However, in many cases of interest, the potential barrier
confining the Brownian particle is itself randomly fluctuating
with its own time scale [5], which may be at times comparable
to the relevant time scales of the system [6]. A particular
example is the escape of O2 or CO ligands out of proteins after
photodissociation [7]. Taking such fluctuations into account,
Doering and Gadoua [8,9] showed in their pioneering work that
the rate of escape across the fluctuating barrier of a bistable
potential depends nonmonotonically on the rate of barrier
fluctuations. This phenomenon of resonant activation was
later experimentally investigated using an RC circuit with a
tunnel diode [10], confirming the theoretical predictions. Later
studies incorporated Gaussian fluctuations [11–13] to show
a generic occurrence of the phenomenon [14–16], whenever
the time scale of barrier fluctuations is comparable to the
relaxation times in the system.

The above studies, however, have focused on independent
fluctuations, which form a subset of a broader class of corre-
lated fluctuations. Physically, such correlations arise naturally
when the fluctuations have a common origin [17–19] and pro-
vide a new bifurcation branch in the dynamics of the system;
e.g., a random dynamical system perturbed by two correlated
additive noises can exhibit a purely deterministic behavior for
the case of perfect anticorrelation, a nontrivial feature for a
randomly perturbed dynamical system. Such correlations are
known to affect both the transient and steady-state dynamical
properties of a particle in a bistable potential [20–25]. This is
because correlations control the relative distribution of power
from the source to different fluctuations, e.g., additive and
multiplicative, and lead to observed behaviors with varying
correlation. Apart from being of theoretical interest, the
dynamics in a bistable potential is also of technological
relevance [26] wherein correlated noises are employed to
achieve asymmetric confinement in one of the bistable states.
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In many cases of interest, the system under investigation is
not a single particle but a collection of particles, e.g., a dimer
or a polymer. In addition, the escape of dimers and polymers
[27] across potential barriers has been of considerable interest
for independent noise sources. Recent studies have shown that
the presence of correlations [28] significantly modifies the
escape process. In particular, the rate of escape of a dimer
vanishes for the case of strong anticorrelations, at any finite
temperature. Motivated by these observations, we take up
the study of escape properties of two harmonically coupled
Brownian particles in a bistable potential with a fluctuating
barrier. Such a study is directly relevant to the escape of
O2 like molecules across proteins, which contain additional
vibrational degrees of freedom, and also has implications to-
wards the understanding of two-headed molecular motors like
kinesin [29]. In the present example, the barrier fluctuations
associated with the two particles are colored Gaussian and
correlated with each other, making the problem intrinsically
non-Markovian. In addition, the heat baths associated with the
two particles are chosen to be Gaussian white and correlated.
However, in the present study we choose barrier fluctuations
to arise independently of thermal fluctuations. We find that the
system exhibits the phenomenon of resonant activation. We
also study the Markovian limit [30] of the above problem by
using a decoupling ansatz [31]. The Markovian approximation
is constrained by the relative magnitude of the time scales of
barrier fluctuations and vibrational degrees of freedom of the
dimer. We also find that in appropriate limits, the vibrational
degrees of freedom can be adiabatically eliminated. The paper
is organized as follows. In the next section we study the
dynamical properties of the non-Markovian system, followed
by its Markovian limit in Sec. III. A discussion and summary
are given in Sec. IV.

II. DYNAMICAL SYSTEM

Let us start with the equations of motion for the system of
two coupled Brownian particles in a bistable potential U with
a fluctuating barrier

ẋ1 = −U ′(x1) + F1
(
x1,η

m
1

) + F12(x1,x2) + ηa
1(t), (1a)

ẋ2 = −U ′(x2) + F2
(
x2,η

m
2

) + F21(x1,x2) + ηa
2(t), (1b)
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where ηa
i , i = 1,2, are Gaussian-white-noise processes with

mean zero and correlations

〈
ηa

1(t)ηa
1(t ′)

〉 = 〈
ηa

2(t ′)ηa
2(t)

〉 = 2Daδ(t − t ′), (2a)〈
ηa

1(t)ηa
2(t ′)

〉 = 〈
ηa

1(t ′)ηa
2(t)

〉 = 2Daρaδ(t − t ′), (2b)

where Da is the noise intensity and a measure of the dimension-
less temperature of the associated heat bath and ρa ∈ [−1,1]
the correlation. The existence of such a correlation between
the noise processes is natural as ηa

1 and ηa
2 have the same

thermal origin. The potential U (x) = −x2/2 + x4/4 in Eq. (1)
is a bistable potential with global minima at x = ±1 and a
local maximum at x = 0, constituting the barrier separating
the two wells. The fluctuations in the barrier are characterized
by the fluctuating terms Fi(xi,η

m
i ) = xiη

m
i , i = 1,2, where the

noise processes ηm
i are colored Gaussian with mean zero and

correlations,

〈
ηm

1 (t)ηm
1 (t ′)

〉 = 〈
ηm

2 (t)ηm
2 (t ′)

〉 = (Dm/τ )e−|t−t ′ |/τ , (3a)〈
ηm

1 (t)ηm
2 (t ′)

〉 = 〈
ηm

1 (t ′)ηm
2 (t)

〉 = ρm(Dm/τ )e−|t−t ′ |/τ , (3b)

with τ the correlation time and Dm the intensity of barrier fluc-
tuations in the limit of vanishing τ . For finite correlation times,
the intensity of barrier fluctuations is σ 2 = Dm/τ . In the above
equations, ρm ∈ [−1,1] is the correlation between the fluctu-
ations of the potential barriers associated with the individual
particles. In addition, we choose the barrier fluctuations to
be independent of the thermal fluctuations. The two Brownian
particles interact by the harmonic potential Ush = k

2 (x1 − x2)2,
with the corresponding forces Fij (x1,x2) = − ∂

∂xi
Ush(x1,x2),

with i ∈ {1,2} and i �= j , and k being the spring constant. In
Eqs. (1)–(3) the superscripts a and m correspond to additive
and multiplicative, respectively.

In order to diagonalize the correlation matrices in Eqs. (2)
and (3), let us transform the dynamical system to its center of
mass xc = x1+x2

2 and relative coordinates xr = x1−x2
2 , with the

dynamical equations now reading

ẋc = fc(xc,xr ) + xcζ
m
c (t) + xrζ

m
r (t) + ζ a

c (t), (4a)

ẋr = fr (xc,xr ) + xcζ
m
r (t) + xrζ

m
c (t) + ζ a

r (t), (4b)

where fc(xc,xr ) = −[U ′(xc + xr ) + U ′(xc − xr )]/2 and
fr (xc,xr ) = −[U ′(xc + xr ) − U ′(xc − xr )]/2 − 2kxr . The
additive noise processes in Eq. (4) are defined as ζ a

c = ηa
1+ηa

2
2

and ζ a
r = ηa

1−ηa
2

2 and are independent Gaussian-white-noise
processes of mean zero and correlations

〈
ζ a
c (t)ζ a

c (t ′)
〉 = Da(1 + ρa)δ(t − t ′), (5a)〈

ζ a
r (t)ζ a

r (t ′)
〉 = Da(1 − ρa)δ(t − t ′). (5b)

The multiplicative noise processes in Eq. (4) defined similarly
to ζm

c = ηm
1 +ηm

2
2 and ζm

r = ηm
1 −ηm

2
2 are independent colored

Gaussian noise processes with mean zero and correlations

〈
ζm
c (t)ζm

c (t ′)
〉 = (Dm/2τ )(1 + ρm)e−|t−t ′ |/τ , (6a)〈

ζm
r (t)ζm

r (t ′)
〉 = (Dm/2τ )(1 − ρm)e−|t−t ′ |/τ . (6b)

Equations (4)–(6) define the dynamical system of two har-
monically coupled Brownian particles in a bistable potential
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FIG. 1. Variation of the MFPT with correlation time τ of the
barrier fluctuations. The nonmonotonic dependence of the MFPT
on τ is evident from the figure and occurs for τ ≈ 1, which is the
relaxation time in the bistable potential U . It should be noted that
both axes are represented in logarithmic scale. The intensity of the
barrier fluctuations σ 2 = Dm/τ . The MFPT is calculated over 10 000
ensembles.

with a fluctuating barrier in contact with a heat bath in terms
of the center of mass xc and relative coordinates xr . The
advantage of transforming Eqs. (1)–(3) is the independence of
the transformed additive and multiplicative noise processes.
However, the transformed equations in terms of xc and xr

are still non-Markovian due to the presence of colored noise
sources ζm

c and ζm
r . In order to learn about the dynamical

properties of the system under study, we numerically solve
Eqs. (4)–(6) using the concept of Markovian embedding [5].
All the numerical calculations are performed using Heun’s
method [32] in the Stratonovich interpretation [33], with the
initial conditions (xc,xr ) = (−1.0,0.02). In order to charac-
terize the escape properties of the coupled Brownian particles
across the fluctuating barrier, we calculate the escape times of
the center of mass xc to the other minima at xc = 1.0. We also
choose for simplicity the intensity of thermal fluctuations to be
fixed at Da = 0.1 and independent of each other, i.e., ρa = 0
in what follows, unless explicitly stated.

Figure 1 shows the dependence of the mean first-passage
time (MFPT) on the correlation time τ of the barrier fluc-
tuations. The nonmonotonic dependence of the MFPT on τ

implies that the escape of the coupled Brownian particles
across a fluctuating barrier exhibits the phenomenon of
resonant activation. The existence of such a phenomenon
for a system of two coupled Brownian particles results as
an outcome of two competing events: (i) a decrease in the
MFPT with increasing Dm for a fixed τ , which is seen, for
example, when we compare the MFPT for different values
of the intensity of fluctuation σ 2 for τ = 1 [Figs. 1(a) and
1(c)], and (ii) an increase in the MFPT with increasing τ for
a fixed Dm, which is evident from Eq. (6), as the intensity of
barrier fluctuations decreases with increasing τ for fixed Dm,
making the escape relatively difficult compared to low τ . The
observed properties are similar to the observations reported
for a single particle in a fluctuating bistable potential, with

032108-2



ESCAPE OF COUPLED BROWNIAN PARTICLES ACROSS A . . . PHYSICAL REVIEW E 96, 032108 (2017)

40

80

160

320

M
F

P
T

(a) k = 0.01
1

20

40

80

160

-0.8 -0.4 0.0 0.4 0.8

M
F

P
T

ρm

(b) k = 0.01
1

FIG. 2. Variation of the MFPT with noise correlation ρm for a
fixed correlation time τ = 1 for (a) σ = 0.5 and (b) σ = 2. It is
shown in (b) that for a higher intensity of barrier fluctuations, the
MFPT is lower when the coupling between the particles is large,
e.g., k = 1 as compared to nearly independent particles, k = 0.01,
for strongly correlated barrier fluctuations. The y axis is shown in
logarithmic scale and the MFPT is calculated over 10 000 ensembles.

the minima of the MFPT occurring at τ ≈ 1, which is the
relaxation time of the center of mass in the bistable potential
U (x) = −x2/2 + x4/4 [14–16]. Also evident from Fig. 1 is the
effect of coupling between the two particles, i.e., large k leads
to a lower rate of escape from one potential minimum to the
other. In addition, the noise correlation ρm can have contrasting
effects depending on the value of coupling constant k and the
intensity of barrier fluctuations σ 2 = Dm/τ , e.g., Figs. 1(c)
and 1(d) for a fixed correlation time τ .

To better understand the effect of correlation ρm between
the barrier fluctuations on the escape properties of the coupled
particle system, we report in Fig. 2 the variation of the MFPT
with ρm for different values of spring constant k and the
intensity of barrier fluctuations σ 2, for a fixed correlation
time τ = 1. It is observed that the MFPT of the center of
mass from xc = −1 to xc = 1 decreases monotonically with
ρm for a strong coupling between the particles, e.g., k = 1,
independently of the intensity of barrier fluctuations σ 2. On
the other hand, when the harmonic coupling between the
particles is weak, e.g., k = 0.01, the MFPT shows a tendency
to monotonically increase with noise correlation ρm, which is
particularly evident for strong fluctuations in the barrier, e.g.,
σ = 2. To understand the reason for such contrasting behaviors
between limits of very strong to very weak coupling, let us
first focus on the limit of strong coupling, i.e., large k. It is
known that for a very strong coupling between two particles,
the coupled-particle system behaves effectively as a single
particle placed at the center of mass of the system. As a result
the decrease in the MFPT with increasing ρm is expected in
view of Eq. (6), which makes the multiplicative fluctuations
in the center-of-mass motion (4a) relatively strong for a larger
correlation for a fixed value of σ . As the magnitude of the
fluctuations is linearly dependent on the value correlation ρm,
the decrease in the MFPT with increasing ρm is expected in
the light of single-particle dynamics in the strong-coupling
limit. On the other hand, in the limit of weak coupling,
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FIG. 3. Distribution of FPTs of the center of mass starting at xc =
−1 and reaching xc = 1, for fixed temperature Da = 0.1, correlation
time τ = 1, and independent barrier fluctuations ρm = 0 for spring
constant k = 1 for (a) σ = 0.5 and (b) σ = 2. The FPT distributions
are calculated using 10 000 data points.

Fij (x1,x2) ≈ 0 in Eq. (1) and the two particles are coupled only
by the correlation ρm [34] between the barrier fluctuations as
the associated heat baths are independent, ρa = 0. Now, for
ρm > 0, the barriers associated with the two particles move
up and down simultaneously, making the escape of the center
of mass to xc = 1 difficult because both particles should be
present in the other well at the same time. In contrast, for
ρm < 0, the barriers associated with the two particles fluctuate
opposite to each other, making the barrier crossing for one
of the particles easier relative to the other, hence making the
escape of the center of mass to the absorbing boundary at
xc = 1 easier as compared to when ρm > 0. The above results
imply that the presence of an additional vibrational degree
of freedom leads to novel features in the escape dynamics
across a fluctuating barrier. For example, compared with
the case of independent barrier fluctuations, the correlated
barrier fluctuations can result in a faster or slower escape
rate depending on the coupling between the particles; i.e., for
weak coupling positive correlations result in a decreased rate
of escape of the center of mass across the fluctuating barrier,
whereas for strong coupling the positive correlations enhance
the same.

Let us now study the effects of correlation between the
thermal baths, i.e., ρa �= 0, on the transient properties of the
coupled particle system, for fixed temperature Da = 0.1. In
Fig. 3 we report the distribution of first-passage times (FPTs)
for the center of mass starting at xc = 1 and reaching xc = −1.
It is observed that the distribution of FPTs has an exponentially
decaying tail with the MFPT as the parameter. The dependence
of the MFPT on the correlation between the heat baths
associated with the two particles, i.e., ρa �= 0, implies that
the rate of escape of the coupled Brownian particles across
the fluctuating barrier can be altered by varying the degree of
correlation ρa , even when the temperature Da of the heat bath
is kept constant. This is because the presence of correlation
distributes the power received from the heat bath between the
translational and vibrational degrees of freedom, depending
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on the strength of correlation. For negatively correlated heat
baths, the fluctuations in the vibrational degrees of freedom are
enhanced at the cost of reducing the fluctuations associated
with the translational degrees of freedom, thereby making
the diffusion of the center of mass slower and hence making
escape difficult, whereas for ρa > 0, the magnitude of the
corresponding fluctuations are reversed. Also evident from
Fig. 3 is the increase in the rate of escape with the increase in
the intensity of barrier fluctuations σ 2 for a given correlation
ρa at fixed temperature Da of the associated heat baths.

The above results have focused on the escape properties of
a system of coupled Brownian particles across a fluctuating
barrier with finite rate of fluctuation 1/τ for a fixed intensity
σ 2 = Dm/τ . For the purpose of completeness, it is interesting
to cover the extreme limits of very slow (τ → ∞) and very
fast (τ → 0) barrier fluctuations for a fixed Dm. First, let
us consider the case of quasistatically fluctuating barriers.
In the extreme limit of a vanishingly small rate, i.e., 1/τ → 0,
the barrier fluctuations are slower than all the time scales of
the system, resulting in a nearly static bistable potential in
contact with a heat bath [28]. On the other hand, for very fast
barrier fluctuations, with 1/τ → ∞, the Markovian limit of
the problem is recovered for a fixed Dm. Such a limiting case
is particularly interesting when the coupling k between the two
Brownian particles is large. In this limit, the fast time scales
of the relative fluctuations xr and correlation times τ become
comparable and put a natural constraint on the Markovian limit
of the problem. This is because a reduction of the Markovian
limit via elimination of the time scale of barrier fluctuations
is possible only when the barriers fluctuate on the fastest time
scale among all the relevant time scales of the system. In
the next section, employing the decoupling ansatz proposed
by Hänggi [31], we derive the Markovian limit of the above
problem in a self-consistent approximation [35] along the
lines of an approximate Fokker-Planck equation [36]. We also
discuss the appropriate limits of the original non-Markovian
problem (4)–(6) where further simplifications can be achieved
by adiabatically eliminating [37] the fast vibrational degrees
of freedom when coupling between the two particles is very
strong.

III. MARKOVIAN APPROXIMATION AND
ADIABATIC ELIMINATION

Given the random dynamical system defined by
Eqs. (4)–(6), the equation of motion for the probability density
p = p(xc,xr ,t) is given by

∂

∂t
p = −

∑
i∈{c,r}

∂

∂xi

fip −
∑

i∈{c,r}

∂

∂xi

〈
ζ a
i (t)δ(x(t) − x)

〉

−
∑

i∈{c,r}

∂

∂xc

xi

〈
ζm
i (t)δ(x(t) − x)

〉

−
∑

i �=j∈{c,r}

∂

∂xr

xi

〈
ζm
j (t)δ(x(t) − x)

〉
, (7)

where, according to van Kampen’s lemma [38], p(xc,xr ,t) =
〈δ(x(t) − x)〉, the averaging being done over the noise pro-
cesses. The averages in Eq. (7) can be evaluated according to

Novikov’s theorem for Gaussian fluctuations [39]. Application
of Hänggi’s decoupling ansatz [31] leads to an approximate
Fokker-Planck equation in the Stratonovich sense

∂

∂t
p = −

∑
i∈{c,r}

∂

∂xi

fip +
∑

i,j∈{c,r}
f

ij

(ij )

∂

∂x(i
xi

∂

∂xj )
xjp

+
∑

i �=j∈{c,r}
f ii

jj

∂

∂xj

xi

∂

∂xj

xip +
∑

i∈{c,r}
f i ∂2

∂x2
i

p, (8)

where (ij ) = ({ij} + {ji})/2, with the coefficients

f c = Da(1 + ρa)/2, f r = Da(1 − ρa)/2,

f cc
rr = Dm(1 − ρm)/2[1 + 2τ (1 + k)],

f rr
cc = Dm(1 − ρm)/2(1 − 2kτ ),

f cc
cc = Dm(1 + ρm)/2(1 + 2τ ), f rr

rr = Dm(1 + ρm)/2,

f cr
cr = 2f rr

rr , f rc
cr = 2f cc

rr , f cr
rc = 2f rr

cc , f rc
rc = 2f cc

cc .

The crucial step in the above derivation is decoupling of the
functional derivatives and the probability density as

〈
δ(x(t) − x)

δ

δζm
r (t ′)

xc(t)

〉
≈ 〈δ(x(t) − x)〉

〈
δ

δζm
r (t ′)

xc(t)

〉
,

(9)

from which the averages in Eq. (7) are calculated self-
consistently [35] by taking into account the stable steady
state of the noise-free dynamical system corresponding to
Eq. (4). The steps involved in the derivation follow [36] and
are outlined in the Appendix. It should be noted that the
decoupling ansatz is valid in the limit of relatively small
magnitudes of barrier fluctuations and has been extended
to moderate to strong noise intensities in a unified colored
noise approximation, for both additive [40] and multiplicative
[41] perturbations. The approximate theory has been in
excellent agreement in predicting the steady-state solution of
the non-Markovian problem. The decoupling ansatz has been
justified by Fox [42,43] using functional calculus, wherein the
uniform convergence to an effective Fokker-Planck equation
for weakly colored noise has been shown for both additive and
multiplicative perturbations. However, results based on path
integrals [44] have shown that the smallness of the correlation
time τ does not lead to an effective Markovian approxi-
mation. Notwithstanding such differences, explicit numerical
calculations for a symmetric bistable potential perturbed by a
multiplicative colored noise [36] verify the applicability of
the decoupling ansatz [31] in predicting the steady states,
particularly for the case of a bistable potential with the
barrier fluctuating by exponentially correlated Gaussian noise.
This justifies our use of the decoupling ansatz in deriving
the Markovian approximation of the non-Markovian problem
defined in Eqs. (4)–(6).
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It is also noted from Eq. (8) that the approximate Fokker-
Planck equation is constrained by the inequality 2kτ < 1.
The physical understanding behind the existence of such
an inequality is that the time scale of barrier fluctuations
is required to be faster than the time scale of vibrational
motion of the system of coupled Brownian particles, in order
to be eliminated. For τ = 0, the above equation reduces to
an equivalent Markovian problem for two coupled Brownian
particles in which the exponential time dependence in Eq. (6)
is replaced by a δ function. For τ > 0 but small compared to
the relaxation time in the bistable potential, it is evident that the
presence of finite τ modifies the effective magnitude of barrier
fluctuations when compared to the equivalent Markovian
problem. In addition, in light of the discussion in the preceding
paragraph, the use of the approximate Fokker-Planck equation
(8) is limited to the calculation of steady-state properties
of the non-Markovian problem in the limit of weak noise
color.

Let us now discuss a few cases of interest for the system
of two coupled Brownian particles. In the limit when the
barrier fluctuations associated with the two particles are very
strongly correlated, i.e., ρm ≈ 1, the multiplicative fluctuations
associated with the relative coordinate xr become insignificant
in the dynamics of the center-of-mass motion xc and vice
versa, as can be observed from Eq. (4). This results in a
considerable amount of simplification in the corresponding
Fokker-Planck equation (8) wherein the third summation term
vanishes in the limit ρm → 1. As a result, f rc

cr and f cr
rc

also vanish. Consequently, in the limit of strong positive
correlations between ζm

c and ζm
r , the competition between

the time scales of barrier fluctuations and the relaxation
of the relative coordinates is also eliminated. The situation
can be understood physically as follows: When the barrier
fluctuations associated with the two Brownian particles are
strongly correlated, the two particles almost always find a
similar environment, independent of the rate of fluctuations of
the barrier. As a result, the rate of relaxation of the relative
coordinate xr , which occurs at a time scale determined by the
spring constant k, becomes uncoupled from the rate of barrier
fluctuations. It is noted that this is not true for any arbitrary
value of correlation ρm and was also seen in the derivation
of the approximate Fokker-Planck equation (8), where the
Markovian limit of the non-Markovian problem was derived
under the constraint that the barriers fluctuate on the fastest
time scale among the relevant time scales of the dynamical
system (4)–(6).

However, the limit of strongly correlated barrier fluctu-
ations allows us to adiabatically eliminate the fast degree
of freedom, the relative coordinate xr , in the limit of large
spring constant k from the original non-Markovian problem.
When the coupling between the particles is large, the two
particles move very close to each other, x1 ≈ x2, resulting in
fr (xc,xr ) ≈ −2kxr , leading to

ẋr ≈ −2kxr + xrζ
m
c (t) + ζ a

r (t)

= [−2k + ζm
c (t)

]
xr + ζ a

r (t). (10)

Now the intensity of barrier fluctuations is σ 2 = Dm/τ ;
hence, in the limit of very strong coupling between the

particles, the spring constant k can be chosen large enough
to ignore the fluctuations due to ζm

c (t) without incurring much
error. Consequently, in the limit of strongly correlated barrier
fluctuations and large coupling between the particles, the
dynamical equations (4)–(6) reduce to

ẋc ≈ fc(xc,xr ) + xcζ
m
c (t) + ζ a

c (t), (11a)

ẋr ≈ fr (xc,xr ) + ζ a
r (t), (11b)

where

fc(xc,xr ) = −[U ′(xc + xr ) + U ′(xc − xr )]/2,

fr (xc,xr ) ≈ −2kxr ,

and the correlations 〈ζm
c (t)ζm

c (t ′)〉 = (Dm/τ )e−|t−t ′ |/τ , with
the additive fluctuations following Eq. (5). The approximate
Fokker-Planck equation associated with (11) is

∂

∂t
p(xc,xr ,t) = (

Lc
FP + Lr

FP

)
p(xc,xr ,t), (12)

where

Lc
FP = − ∂

∂xc

fc + Dm

1 + 2τ

∂

∂xc

xc

∂

∂xc

xc + Da(1 + ρa)

2

∂2

∂x2
c

,

Lr
FP = − ∂

∂xr

fr + Da(1 − ρa)

2

∂2

∂x2
r

are the Fokker-Planck operators associated with the center-
of-mass (slow) and relative (fast) coordinates, respectively.
Now the adiabatic elimination of the fast variable xr re-
quires marginalizing the probability density p(xc,xr ,t) with
the stationary solution of the corresponding Fokker-Planck
operator Lr

FP. The operator Lr
FP admits the Gaussian dis-

tribution of mean zero and variance 〈x2
r 〉 = Da (1−ρa )

4k
as its

stationary solution ψ0(xr ). The only xr dependence entering
the dynamics of the slow center-of-mass motion is through
the drift term fc(xc,xr ) = xc − x3

c − 3xcx
2
r . As a result, the

drift term associated with the center-of-mass motion is
modified to

V ′(xc) =
∫

dxrfcψ0 = xc

(
1 − 3

〈
x2

r

〉) − x3
c . (13)

This implies that the presence of an additional vibrational
degree of freedom results in an increased barrier height on an
average. This explains why the escape across the fluctuating
barrier becomes difficult for the system of coupled Brownian
particles when the coupling k between the particles is strong
and the associated potential barriers fluctuate in a strongly
correlated manner but with a low intensity σ 2 [see, e.g.,
Fig. 2(a)]. However, the modification is negligible due to large
coupling k between the particles and it can be said without
much error that in the strong-coupling limit, when the barriers
associated with x1 and x2 fluctuate in a strongly correlated
manner, the dynamics of the slow center-of-mass variable
follows a single particle in the bistable potential U (x) with the
barrier fluctuating with Gaussian white noise. The equation of
motion of such a particle is

ẋ = x − x3 + xζm(t) + ζ a(t), (14)
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with ζm and ζ a being Gaussian-white-noise processes of mean
zero and correlations

〈ζm(t)ζm(t ′)〉 = 2Dm

1 + 2τ
δ(t − t ′), (15a)

〈ζ a(t)ζ a(t ′)〉 = Da(1 + ρa)δ(t − t ′). (15b)

The transient and steady-state properties of a particle following
Eq. (14) are well understood [20–25] and hence we do not
repeat the calculations. However, it is worth noticing that
the dynamics of a Brownian particle following Eq. (14) may
not be directly identified with the Markovian limit of the
corresponding colored multiplicative noise problem [36]. This
is because Eq. (14) was derived by first taking the τ → 0
limit of the approximate Langevin equations (11) followed
by the adiabatic elimination of the fast variable xr and the
correspondence would require the equation of motion for
the probability density p(xc,xr ,t) for any arbitrary value of
correlation τ .

IV. CONCLUSION

We have looked at the escape properties of two harmoni-
cally coupled Brownian particles across the fluctuating barrier
of a bistable potential. It was found that the escape of the
center of mass of the two particles exhibits the phenomenon of
resonant activation, i.e., the nonmonotonic variation of the
escape times with the rate of fluctuations of the potential
barrier, with the minima of the MFPT occurring when the
correlation time τ is comparable to the relaxation time in the
bistable potential. Coupling between the particles generally
tends to diminish the escape rates for weakly fluctuating
barriers. It is also of interest to know the extreme limits
when barriers fluctuate on time scales that are very slow
and very fast when compared to the relaxation times in
the bistable potential. In the limit of very slow fluctuations,
1/τ → 0 and the barriers become nearly static. On the other
hand, for very fast time scales of barrier fluctuations, when
1/τ → ∞, the problem approaches an equivalent Markovian
limit. This is particularly interesting for a finite coupling
between the particles, due to competing time scales in the
k → ∞ and τ → 0 limits. We derive the Markovian limit of
the problem under the constraint that the barriers fluctuate on
the fastest of the relevant time scales of the system. For strongly
correlated barrier fluctuations, the competition between 1/τ

and k can be eliminated, which is used to study the adiabatic
limit of the problem. The present study has implications
in noise-driven transport, particularly in biological systems,
e.g., motor proteins like kinesin, and can also be generalized
to polymers, which are of general interest. These results,
however, are based on the special case in which the parametric
fluctuations arise independently of the thermal fluctuations;
nontrivial features could be expected to emerge when the
barriers fluctuate anticorrelated to thermal fluctuations due
to their competing effects.
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APPENDIX: APPROXIMATE FOKKER-PLANCK
EQUATION

Novikov’s theorem [39] allows the calculation of the
averages involved in Eq. (7) as

〈
ζm
r (t)δ(x(t) − x)

〉

=
∫ t

0
dt ′

〈
ζm
r (t)ζm

r (t ′)
〉〈 δ

δζm
r (t ′)

δ(x(t) − x)

〉

= − ∂

∂xc

∫ t

0
dt ′

〈
ζm
r (t)ζm

r (t ′)
〉〈

δ(x(t) − x)
δ

δζm
r (t ′)

xc(t)

〉

− ∂

∂xr

∫ t

0
dt ′

〈
ζm
r (t)ζm

r (t ′)
〉〈

δ(x(t) − x)
δ

δζm
r (t ′)

xr (t)

〉
.

(A1)

Similar expressions can be written for other averages in Eq. (7).
However, all such averages involve functional derivatives of
the sort δxc(t)/δζm

r (t ′) in order to evaluate the integrals like
that in Eq. (A1).

Now, from Eq. (4a) we have

xc(t) = xc(0) +
∫ t

0
ds

(
fc + xcζ

m
c + xrζ

m
r + ζ a

c

)
, (A2)

which leads to

δxc(t)

δζm
r (t ′)

= xc(t ′) +
∫ t

t ′
ds

(
∂fc

∂xc

δxc(s)

ζm
r (t ′)

+ ∂fc

∂xr

δxr (s)

ζm
r (t ′)

+ ζm
c (s)

δxc(s)

ζm
r (t ′)

+ ζm
r (s)

δxr (s)

ζm
r (t ′)

)
, (A3)

with the initial condition δxc(t)
δζm

r (t ′) |t ′=t = xr (t ′). Also from
Eq. (A3),

∂

∂t

δxc(t)

δζm
r (t ′)

= ∂fc

∂xc

δxc(t)

ζm
r (t ′)

+ ∂fc

∂xr

δxr (t)

ζm
r (t ′)

+ ζm
c (t)

δxc(t)

ζm
r (t ′)

+ ζm
r (t)

δxr (t)

ζm
r (t ′)

. (A4)

Proceeding along similar lines, the matrix differential equation
for the functional derivatives can be written as

∂

∂t

δ

δζ (t ′)
X(t) = F[X]

δ

δζ (t ′)
X(t), (A5)

where

F[X] =
(

A B

C D

)
8×8

and

A = (
∂fc/∂xc + ζm

c

)
I4, B = (

∂fc/∂xr + ζm
r

)
I4,

C = (
∂fr/∂xc + ζm

r

)
I4, D = (

∂fr/∂xr + ζm
c

)
I4,
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with I4 being the 4 × 4 identity matrix. In addition,

δX(t)

δζ (t ′)
=

(
δxc(t)

δζm
c (t ′)

,
δxc(t)

δζm
r (t ′)

,
δxc(t)

δζ a
c (t ′)

,
δxc(t)

δζ a
r (t ′)

,
δxr (t)

δζm
c (t ′)

,

δxr (t)

δζm
r (t ′)

,
δxr (t)

δζ a
c (t ′)

,
δxr (t)

δζ a
r (t ′)

)
.

The initial condition associated with the matrix differential
equation (A5) is

δX(t)

δζ (t ′)

∣∣∣∣
t ′=t

= [xc(t ′),xr (t ′),1,0,xr (t ′),xc(t ′),0,1].

Now Eq. (A5) admits the solution

δ

δζ (t ′)
X(t) = exp

( ∫ t

t ′
ds F[X(s)]

)
δ

δζ (t ′)
X(t)

∣∣∣∣
t ′=t

. (A6)

Evaluation of the right-hand side of (A6) requires the initial
values of the functional derivatives and the calculation of the
matrix F. To achieve this, we observe that

xc(t ′) = xc(t) exp

(
−

∫ t

t ′
ds

ẋc(s)

xc(s)

)
,

xr (t ′) = xr (t) exp

(
−

∫ t

t ′
ds

ẋr (s)

xr (s)

)
. (A7)

These integrals can be solved by invoking Hänggi’s decoupling
ansatz [31] according to which the long-time dynamics of a
random dynamical system is determined according the stable
fixed points of the corresponding deterministic dynamical
system. In the absence of fluctuations, Eq. (4) admits (xc,xr ) =
(±1,0) as the stable fixed points. In addition, we also ignore
the random fluctuations in Eq. (A6) and the initial conditions
as a self-consistent approximation [35,36], resulting in

F[X](xc,xr )=(±1,0) =
(−2I4 0

0 −2(1 + k)I4

)
8×8

, (A8)

with lim(xc,xr )→(±1,0)
ẋc

xc
= 0 and lim(xc,xr )→(±1,0)

ẋr

xr
= −2(1 +

k). This results in the initial conditions xc(t ′) ≈ xc(t) and
xr (t ′) ≈ xr (t) exp[2(1 + k)(t − t ′)]. Substituting the values of
F, xc(t ′), and xr (t ′) in Eq. (A6) leads to the values of the
functional derivatives

δX(t)

δζ (t ′)
≈ [xc(t)e−2(t−t ′),xr (t)e2k(t−t ′),e−2(t−t ′),

0,xr (t),xc(t)e−2(1+k)(t−t ′),0,e−2(1+k)(t−t ′)].

It is interesting to note that
δxc(t)

δζm
r (t ′)

= xr (t)e2k(t−t ′), (A9)

which arises due to the presence of ζm
r in Eq. (4a) and plays

a decisive role in the evaluation of the first term in Eq. (A1)
because of its exponentially growing character. To see this
explicitly, let us calculate the first term in Eq. (A1),∫ t

0
dt ′

〈
ζm
r (t)ζm

r (t ′)
〉〈

δ(x(t) − x)
δ

δζm
r (t ′)

xc(t)

〉

=
∫ t

0
dt ′

Dm(1 − ρm)

2τ
e−(t−t ′)/τ 〈δ(x(t) − x)xr (t)e2k(t−t ′)〉

= Dm(1 − ρm)

2τ
xr

∫ t

0
dt ′e−(t−t ′)/τ e2k(t−t ′)p

= Dm(1 − ρm)

2(1 − 2kτ )
xrp, (A10)

where we have used the decoupling ansatz in the second
equality and the last step is evaluated under the constraint that
1/τ − 2k > 0 and approaches the final value in the long-time
limit. Physically, this means that the rate of fluctuation of the
potential barrier is rapid as compared to the time scale at which
the relative vibration of the two coupled Brownian particles
relaxes towards the origin. Evaluating the other integrals
similarly leads to the steady-state Fokker-Planck equation (8).
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