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We address diffusion processes in a bounded domain, while focusing on somewhat unexplored affinities
between the presence of absorbing and/or inaccessible boundaries. For the Brownian motion (Lévy-stable cases
are briefly mentioned) model-independent features are established of the dynamical law that underlies the
short-time behavior of these random paths, whose overall lifetime is predefined to be long. As a by-product, the
limiting regime of a permanent trapping in a domain is obtained. We demonstrate that the adopted conditioning
method, involving the so-called Bernstein transition function, works properly also in an unbounded domain,
for stochastic processes with killing (Feynman-Kac kernels play the role of transition densities), provided the
spectrum of the related semigroup operator is discrete. The method is shown to be useful in the case, when the
spectrum of the generator goes down to zero and no isolated minimal (ground state) eigenvalue is in existence,
like in the problem of the long-term survival on a half-line with a sink at origin.
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I. MOTIVATION

Diffusion processes in a bounded domain (likewise the
jump-type Lévy processes) serve as important model systems
in the description of varied spatio-temporal phenomena of
random origin in nature. When arbitrary domain shapes are
considered, one deals with highly sophisticated problems
on their own, an object of extensive investigations in the
mathematical literature.

A standard physical inventory, in the case of absorbing
boundary conditions which are our concern in the present
paper, refers mostly to the statistics of exits, e.g., first and
mean first exit times, probability of survival, and its asymptotic
decay, thence various aspects of the lifetime of the pertinent
stochastic process in a bounded domain [1–6]; see also
Refs. [7–9].

Typically one interprets the survival probability as the prob-
ability that not a single particle may hit the domain boundary
before a given time T . The long-time survival is definitely
not a property of the free Brownian motion in a domain with
absorbing boundaries, where the survival probability is known
to decay to zero exponentially with T → ∞ [4,5]. Therefore,
the physical conditions that ultimately give rise to a long-living
random system, like those considered in Refs. [4,5] (see also
Ref. [6]), must result in a specific remodeling (conditioning,
deformation, emergent, or “engineered” drift) of the “plain”
Brownian motion.

For simple geometries (interval, disk, and the sphere) the
exponential decay of the single-particle survival probability
has been identified to scale the stationary (most of the time)
gas density profile, while that profile and the decay rates
stem directly from spectral solutions of the related eigenvalue
problem for the Laplacian with the Dirichlet boundary data,
respectively on the interval, disk, and sphere; see, e.g.,
Refs. [1,4,5]. In fact, the square of the lowest eigenfunction,
upon normalization, has been found to play the role of the
pertinent gas profile density, while the associated lowest
eigenvalue of the motion generator determines the decay rate.

These observations have been established within so-called
macroscopic fluctuation theory (of particle survival). Effec-
tively, that was also the case in Ref. [6], where a suitable

choice of the Monte Carlo updating procedure has resulted in
the increase of the survival probability in the diffusion model.
That has been paralleled by a temporarily favored motion trend
(engineered drift), away from the boundaries, directed towards
the midinterval locations.

The long-lifetime regime of a diffusion process in a
bounded domain may be comparatively set against that the infi-
nite lifetime (trap, with the inaccessible boundaries); see, e.g.,
Refs. [10,11] and references therein. The limiting behavior
(with respect to the lifetime) of absorbing diffusion processes
and symptoms of their convergence towards permanently
trapped relatives (never leaving a bounded domain) is worth
investigation.

It is useful to mention our earlier analysis of the permanent
trapping problem, including a fairly serious question about
what is actually meant by the Brownian motion in a trap
(interval), with a preliminary discussion of that issue for
jump-type processes of Lévy type [11].

A common formal input, both for absorbing and perma-
nently trapped diffusion processes in a bounded domain, is that
of spectral problems for Dirichlet Laplacians and Laplacians
perturbed by suitable potentials; see Refs. [10–13]. The notion
of Markovian semigroup operators and their integral (heat)
kernels is here implicit, and a pathwise description by means
of the Feynman-Kac formula is feasible.

That entails an exploration of affinities of general killed
diffusion processes with diffusions with an infinite lifetime. We
point out that the notion of killing stems from a probabilistic
interpretation of the Feynman-Kac formula [14–16].

Our discussion departs from much earlier investigations of
random processes that either stay forever within a prescribed
convex domain or are bound to avoid such a domain while
“living” in its exterior [1]. We are strongly motivated by the
past mathematical research, whose roots can be traced back to
Knight’s “taboo processes” [17–19].

We introduce a direct conditioning method that essentially
relies on pathwise intuitions underlying the notion of the
Feynman-Kac semigroup transition kernel, given the diffusion
generator. It is based on the concept of the Bernstein transition
function (actually a conditional probability density) [20,22],
which in the present paper is explored as a diagnostic tool

2470-0045/2017/96(3)/032104(9) 032104-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.032104


PIOTR GARBACZEWSKI PHYSICAL REVIEW E 96, 032104 (2017)

for the description of dynamical properties, e.g., an emergent
dynamical law, of short-time paths segments in a “bunch,”
predefined to be long-living, sample trajectories of a stochastic
diffusion process with absorption.

The Bernstein function has an appearance of the (x,t)-
dependent probability density, associated with paths pinned at
two fixed space-time points: (y,s) (initial) and u,T (terminal),
s < t < T . Our finding is that if T � t is large enough, then
the Bernstein function is approximated by (and, with T →
∞, ultimately reduces to) the transition probability density
p(x,t |y,s) of the diffusion process with an infinite lifetime,
where the u dependence is absent. The is the embodiment of the
sought-for dynamical law. The corresponding Fokker-Planck
equation follows.

Our major playground is Markovian diffusion processes
in a bounded domain with absorbing boundaries. Next, we
shall demonstrate the validity of extensions of our strategy
to absorbing processes in unbounded domains (like a sink on
the half-line) and to more general Markovian processes with
killing.

We indicate that our conditioning method is not specific
to the standard Brownian (diffusions) “territory.” One can
readily pass from Brownian diffusions to jump-type Lévy
stable stochastic processes, whose restriction to a bounded
domain, or the case of an unbounded domain with a sink, have
been an object of vivid studies in the current literature.

II. INTERVAL WITH ABSORBING ENDS
AND TERMS OF SURVIVAL

A. Preliminaries

Diffusion processes in the interval with various boundary
conditions have become favored model systems in the statisti-
cal physics approach to the Brownian motion and were often
exploited in unexpected settings (e.g., prisoner in an expanding
cage on the cliff), including the extensions of the formalism
to higher dimensions [1,21]; see also Refs. [2,3,7]. In Ref. [1]
there is a whole chapter about diffusion in the interval with
absorption at its ends. Other inspirations (bounded variation of
interest in economy, harmonic and optical traps) can be gained
from Refs. [7–9] (see also Ref. [11]) where the permanent
trapping problem has been addressed.

Let us consider the free diffusion ∂tk = D�xk within an
interval D = [a,b] ⊂ R, with absorbing boundary conditions
at its end points a and b. The time and space homogenous
transition density, with x,y ∈ (a,b), 0 � s < t and b − a = L,
reads

k(x,t |y,s) = 2

L

∞∑
n=1

sin

[
nπ

L
(x − a)

]
sin

[
nπ

L
(y − a)

]

× exp

[
−Dn2π2

L2
(t − s)

]
. (1)

Note that limt→s k(x,t |y,s) ≡ δ(x − y). We point out that in
view of the time homogeneity, we can write k(x,t |y,s) =
kt−s(x|y). One should keep in mind that k is a symmetric
function of x and y, i.e., k(yt |x,s) = k(y,t |x,s).

We deliberately use the notation k(x,t |y,s) if probability is
not conserved by the dynamics (it “leaks out” and decays with

the growth of time), which is the case for absorbing boundary
conditions. If the transition density would conserve probability
in the interval (that corresponds to a diffusion never leaving
D), the standard notation p(x,t |y,s) will be used.

While setting a = 0, s = 0, and y = x0 in (1) we arrive at
a customary notion of the concentration k(x,t |x0,0) = c(x,t),
typically employed in the literature; see Ref. [1]. Initially one
has

∫ L

0 c(x,t = 0) dx = 1, hence for t > 0 the absorption at
the boundaries enforces a decay of the probability density,
whose time rate may be quantified by (d/dt)

∫ L

0 c(x,t) dx

where t > 0. The decay of c(x,t) is known to be exponential,
and its time rate is determined by the lowest positive eigenvalue
of the Laplacian in a bounded domain (the role of so-called
eigenfunction expansions [21] needs to be emphasized).

To simplify notation, we note that x → x ′ = (x − a)/L
transforms the interval [a,b] into [0,1]. Another transforma-
tion x → x ′ = x − 1

2 (a + b) maps [a,b] into [−c,c], with
c = L/2, whose special case (set L = 2) is the interval [−1,1].
From now on we employ the symmetric interval [−c,c] with
L = 2c,c > 0. We also set D = 1/2.

B. (Dirichlet) heat kernel in a bounded domain
and its pathwise interpretation

The transition density k(x,t |y,s), as defined by Eq. (1), is
known to be an integral (heat) kernel of the semigroup operator
exp[ 1

2 (t − s)�D], where the notation �D directly refers to the
standard Laplacian in the domain D, with absorbing boundary
conditions. The pertinent diffusion process is Markovian and
has an explicit semigroup encoding in terms of the motion
operator Tt−s = exp[ 1

2�D(t − s)].
The semigroup property Tt−sTs−r = Tt−r , with t > s > r ,

implies the validity of the composition rule
∫
D

k(x,t |y,s) k(y,s|z,r) dy = k(x,t |z,r).

Given a suitable function f (x), its semigroup evolution is
defined as

f (x) → f (x,t) = (Ttf )(x) = exp

[
1

2
�Dt

]

f (x) =
∫
D

k(x,t |y,0)f (y) dy,

and f (x,t) is a solution of the “heat” equation inD: ∂tf (x,t) =
1
2�Df (x,t).

Semigroup kernels admit the pathwise interpretation by
means of the Feynman-Kac formula (e.g., the path integral),
which has become a classic [14] (actually that is possible in
any bounded domain in Rn, an interval being a particular case).
Indeed, k(x,t |y,s) is prescribed for a specific “bunch” ω ∈
�x,t

y,s of sample paths of the Brownian motion: ω(τ ),s � τ � t

[here ω(s) = y stands for the point of origin while ω(t) = x is
the destination point], all of which survive within D ≡ (−c,c)
up to time t > s, e.g., their killing time exceeds t . We have

{
exp

[
1

2
�D (t − s)

]}
(x,y) = k(x,t |y,s) =

∫
dμx,t

y,s(ω)

= μx,t
y,s(ω). (2)
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The notion of the conditional Wiener measure of the set of
random paths connecting y with x, in the time interval (s,t)
is here implicit [14]. (Note that the term “conditional” means
here that two endpoints y and x are fixed, while in case of the
Wiener measure only one point, that of the origin of random
motion, is fixed.)

Following the traditional lore, we say that μx,t
y,s(ω) is a total

mass of the pinned paths set �x,t
y,s . It is the transition kernel

k(x,t |y,s) which is the pertinent mass measure.
For clarity of arguments, we presume y < x. Let us choose

a window I = [a,b] ⊂ [y,x] with a < b (it is a standard
preparatory step in the construction of the conditional Wiener
measure). We can assign a mass to a specific subset �x,t

y,s(I ) of
the considered pinned paths set that comprises these sample
paths only, which at an intermediate time r,s < r < t reach or
cross the window I , before approaching the final destination
x at time t . The mass of such subset of sample paths is known
to be

μx,t
y,s(I )=

∫
I

k(x,t |u,r)k(u,r|y,s) du< μx,t
y,s(D) = k(x,t |y,s).

(3)

Note that with I replaced by D in the above integral, the
semigroup composition rule yields the mass k(x,t |y,s).

The transition density k(x,t |y,s) allows us to define a
probability that the process started at y at time s will
actually reach an interval (x,x + �x) at time t > s. It
reads P (�([y,x]),�x) = k(x,t |y,s)�x. Likewise we obtain
a probability P (�(I ),�x) = μx,t

y,s(I )�x for the I -constrained
subset of paths.

The ratio

P (�(I ),�x)

P (�([y,x]),�x)
=

∫
I

k(x,t |u,r) k(u,r|y,s)

k(x,t |y,s)
du (4)

is nothing but a conditional probability quantifying the fraction
of mass of the a subset of paths crossing I at time r , while set
against the overall mass of all sample paths with origin y at s

and destination x, at time t , s < r < t .
Under the integral sign in Eq. (4) we encounter a conditional

probability density (with respect to u), known as the Bernstein
transition function, that has been investigated in a setting
quite divorced from the present study contexts [20,22,23]:
B(x,t ; u,r; y,s) = k(x,t |u,r) k(u,r|y,s)/k(x,t |y,s), where∫
D B(x,t ; u,r; y,s) du = 1

C. Conditioning via Bernstein transition function:
Dynamical law that underlies long survival

Let us adjust the previous notation for the Bernstein
function for the diffusion process (1) to refer to an overall
time interval [0,T], whose duration T is arbitrarily assigned,
but assumed a priori to be large. We focus attention on the
transitional (x,t) behavior of the Bernstein function, for times
[s,t] ⊂ [0,T ], T � t > s � 0), provided we fix two control
space-time points: (y,s) for the origin, (u,T ) for the target,
leaving (x,t) as the unrestricted, “running” one.

Accordingly, we rewrite the Bernstein transition function
as

B(u,T ; x,t ; y,s) = k(u,T |x,t) k(x,t |y,s)

k(u,T |y,s)
, (5)

remembering that presently it is a probability density with
respect to x ∈ [−c,c] (e.g., integrates to 1).

Although Eq. (5) explicitly determines the time t evolution
of the Bernstein density, given (y,s) and (u,T ), the main goal
of our subsequent analysis is to deduce the detailed (as yet
unspecified) dynamical rule for the Bernstein density, as a
function of (x,t) which would have the form of a standard
transport equation, appropriate for diffusion processes, like
the Fokker-Planck one.

We point out that an analogous problem has been addressed
in another context [20,22]. The outcome was the so-called the
Bernstein stochastic process, whose Markovianess could be
established under suitable (supplementary) conditions.

Since the time interval (T − s) � s is large (and likewise
T − t) if compared to T , the transition density k(u,T |y,s)
stands for the mass of all sample paths that have a large overall
survival time ∼T , while running from y to u within (−c,c).
Moreover, the kernel k(u,T |x,t), where x ∈ (−c,c) may be
chosen arbitrarily, refers to paths with a large survival time
∼T as well. To the contrary, the kernel k(x,t |y,s) quantifies
the mass of sample paths that run from y to x in a relatively
short (compared to T ) time interval t − s.

Our further reasoning relies on asymptotic (large-time)
properties of Feynman-Kac kernels. For a sufficiently large
value of T , the dominant terms in the numerator and denumer-
ator of Eq. (5) have a similar form. An exemplary asymptotic
of of the transition density k(u,T |y,s)) reads

k(u,T |x,t) ∼ sin

[
π

L
(x + c)

]
sin

[
π

L
(u + c)

]

× exp

[
− π2

2L2
(T − t)

]
, (6)

and that for k(u,T |y,s) is readily obtained from k(u,T |x,t))
by formal replacements x → y, t → s.

Accordingly (remember about T � t and L = 2c), we
arrive at a conditioned transition density where the (familiar
in the mathematical literature) Doob-type conditioning of
k(x,t |y,s) is nontrivially modified by an emergent time-
dependent factor exp [+ π2

8c2 (t − s)]. We actually have

B(u,T ; x,t ; y,s) ∼ p(x,t |y,s) = k(x,t |y,s)
sin

[
π
2c

(x + c)
]

sin
[

π
2c

(y + c)
]

× exp

[
+ π2

8c2
(t − s)

]
. (7)

Note that sin[ π
2c

(x + c)] = cos( π
2c

x). We recall that the entry
k(x,t |y,s) in the above is the transition density of the original
process with absorption at the interval endpoints; see Eq. (1).

In the large-T regime both T and u dependence are absent
in the approximate formula (7). Thus, the target point u is
irrelevant for the description of the dynamical behavior of the
Bernstein function for times τ ∈ [s,t]. There was even no need
to execute literally the T → ∞ limit. Once we have T � t , an
approximation (7) is fully legitimate. Moreover the T → ∞
limit actually admits time intervals [s,t] of arbitrary finite
duration.

An interesting point is that in Eq. (7), we have arrived at
the well-known transition probability density of the unique
Markovian diffusion process that never leaves the prescribed
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interval (its endpoints are inaccessible from the interior); see,
e.g., Refs. [17,18] The transition density (7) of this conditioned
diffusion process is the sought-for dynamical law for the time
evolution of the Bernstein density (under our premises). The
corresponding transport equation is well known as well.

By general principles we deduce [17,18] the forward drift
of the conditioned diffusion process in question

b(x) = ∇ ln cos

(
π

2c
x

)
= − π

2c
tan

(
π

2c
x

)
(8)

and the transport equation in the Fokker-Planck form (partial
derivatives are executed with respect to x)

∂tρ = 1
2�ρ − ∇(bρ). (9)

The transition density p(x,t |y,s) [Eq. (7)] is its solution. We
have also the probability transport rule valid for any probability
density ρ(x,t) = ∫ c

−c
ρ(y)p(x,t |y,0) dy with ρ0(y) considered

as the initial data for the F-P evolution.
Accordingly, the dynamics of the Bernstein function (5),

on the s,t,t − s time scales that are small relative to T , is well
approximated by that of a transition probability density (7)
of the diffusion process never leaving the interval. The larger
the presumed survival time T of sample paths in question,
the larger may be (ultimately arbitrary, for T → ∞) the time
duration of the “small-scale” [s,t] process.

The dynamics (7) is thus a generic (albeit approximate for
finite T ) property of all long-living trajectories of random
motion in the interval with absorbing ends. The requirement
of an infinite survival time (permanent trapping) leaves us with
the diffusion process (7), with a guarantee that no trajectory
may reach the interval endpoints.

D. Feynman-Kac kernel in the interval
and eigenfunction expansions

We point out an obvious link of the previous analysis with
the standard (quantum mechanical by provenance) spectral
problem for the operator − 1

2� in an infinite well, supported on
the interval (−c,c), denoting λn, n = 1,2, . . . the eigenvalues
and φn,n = 1,2, . . . the orthonormal basis system composed
of the eigenfunctions φn.

In particular a “miraculous” emergence of the time-
dependent factor exp [+ π2

2L2 (t − s)] might seem to be annoying
at the first glance. However, this factor secures the existence of
an asymptotic invariant probability density. Since π2/2L2 =
λ1 is the lowest eigenvalue of − 1

2�D, we effectively encounter
here a standard additive “renormalization” − 1

2�D − λ1 in
the semigroup generator definition. Then the strictly positive
operator (bottom of the spectrum is λ1) becomes replaced by
the non-negative operator with the bottom of the spectrum at
zero; see, e.g., Refs. [14,15].

The spectral decomposition of (1/2)�D allows us to rewrite
k(x,t |y,s) in a handy form:

k(x,t |y,s) =
∞∑

n=1

e−λn(t−s) φn(x)φn(y). (10)

It is clear that under suitable regularity assumptions concerning
the long-time T behavior of Feynman-Kac kernels, specifically
that we have k(u,T |y,s) ∼ φ1(y)φ1(u) exp[−λ1(T − s)], one

arrives at the legitimate T → ∞ expression:

p(x,t |y,s) = k(x,t |y,s)
φ1(x)

φ1(y)
e+λ1(t−s) (11)

as anticipated previously [set, e.g., λ1 = π2

2L2 and φ1(x) =√
2
L

cos(πx/L)].
Given the limiting transition probability density (11), we

can now assume that t � s, By resorting to the large time
behavior of the kernel (6), we readily deduce the relaxation
pattern of the random motion, namely, and we get

p(x,t |y,s) ∼ [φ1(x)]2 = ρ(x) = 2

L
cos2(πx/L). (12)

While keeping in memory the L2(−c,c) normalization of φ1(x)
we have thus identified the stationary invariant probability
density ρ(x) of the diffusion process, conditioned never to
leave the interval. In Fig. 1 we have depicted the stationary
probability density (12), while set against the forward drift (8).

E. Time rates to equilibrium

Collecting the generic features (typicalities) of the diffusion
in the interval with absorbing ends, i.e., (1) k(x,t |y,0) =∑

j exp(−λj t) φj (y)φj (x), (2) the transition density of the
conditioned process in the universal form p(x,t |y,0) =
k(x,t |y,0) e+λ1t φ1(x)/φ1(y), and (3) the relaxation asymptotic
limt→∞ p(x,t |y,0) = ρ(x) = φ2

1(x), we can address an issue
of the time rates towards equilibrium in the conditioned
random motion (11).

Let us denote k̃(x,t |y,0) = eλ1t k(x,t |y,0)/φ1(x)φ1(y). We
employ an estimate (known to be valid for t > 1) [25]
(see also Ref. [26]):

|k̃(x,t |y,0) − 1| � C e−(λ2−λ1)t , (13)

where C is a suitable constant. That yields immediately
multiply both sides by [ρ(x) = φ2

1(x)] the general formula for
the time rate to equilibrium, provided we name the invariant
stationary density ρ(x) the equilibrium density of the process:

|p(x,t |y,0) − ρ(x)| � C e−(λ2−λ1)t ρ(x). (14)

We have the exponentially fast approach toward equilibrium
(realized via the invariant density shape rescaling by en
exponential factor), whose speed depends on the spectral gap
between two lowest eignvalues.

In the interval (−1,1) we have [compare, e.g., Eq. (1)]
λ1 = π2/8 and λ2 = π2/2, hence λ2 − λ1 = 3π2/8. We have
also ρ(x) = cos2(πx/2).

The above rate formula has much broader significance,
since it is generally valid for diffusions in convex domains
(irrespective of space dimensions) [25].

F. Semigroup transcript of the Fokker-Planck dynamics

Let us employ the standard textbook notation [21] with
dimensional constants kept explicit. Scalings leading to di-
mensionless notations, used throughout the present paper, are
obvious.

Let us consider the Langevin equation dXt = b(Xt ) dt +√
2νBt , where the drift velocity is a gradient field, e.g.,
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FIG. 1. Conditioned Brownian equilibrium in the interval with inaccessible endpoints: the permanent trapping enclosure. Left: the
probability density ρ(x) = cos2(πx/2); right: the forward drift b(x) = −(π/2) tan(πx/2) of the Fokker-Planck equation in a trap (−1,1)
⊂ R, [24].

b = −∇V . The corresponding Fokker-Planck equation takes
the form ∂tρ = ν�ρ − ∇(bρ).

We assume that asymptotically, the Fokker-Planck dynam-
ics sets down at the equilibrium (stationary) solution ρ∗(x),
e.g., limt→∞ ρ(x,t) = ρ∗(x). Since the drift b(x) does not
depend on time, the Fokker-Planck equation implies that
b = ν∇ ln ρ∗, i.e., the stationary solution ρ∗ fixes b and in
reverse. Accordingly, we arrive at the Boltzmann-Gibbs form
of ρ∗(x) = exp[−V(x)/ν]. That is consistent with the primary
definition of b = −∇V .

Following tradition [21] let us introduce a multiplicative
decomposition of ρ(x,t):

ρ(x,t) = (x,t)ρ1/2
∗ (x). (15)

The introduced positive function (x,t) satisfies the general-
ized diffusion equation

∂t = ν� − V , (16)

where the potential field V = V (x) is given (up to an additive
constant allowing to make positive any bounded from below
V ):

V = 1

2

(
b2

2ν
+ ∇b

)
. (17)

Equation (15) actually derives from the semigroup dynamics
exp(−tĤ /ν) describing a stochastic process with killing, if
V (x) is positive-valued (that is, trivial for potentials which
are bounded from below, since we can always add a suitable
constant to make the potential positive-definite).

If the spectral solution for ĥ = −ν� + V allows for an
isolated eigenvalue at the bottom of the spectrum, denoted
λ1, we can always introduce Ĥ − λ1 as the semigroup
generator. Then (preserving only the discrete part of the
spectral decomposition), (x,t) = exp(+λt)

∑
n=1 cn exp

(−λnt) φn(x) → φ1(x) = ρ
1/2
∗ (x) In that case the dynamics

of (x,t) asymptotically sets down at ρ
1/2
∗ (x).

Remark. It is an amusing exercise to check that by setting
ν = 1/2 and inserting the drift field expression (8), we actually
obtain V (x) = 0 identically in the open interval (−c,c). Note
also that b = ∇ ln ρ∗, where ρ∗ = (φ1)2; see also Ref. [11].

III. DISK WITH AN ABSORBING BOUNDARY
AND THE CONDITIONING

To make clear the links with the past and current mathemat-
ical literature on a similar subject, let us, e.g., quote the major
result of Ref. [27] (see also Refs. [28] and [26,29]), which has
been actually formulated for bounded planar domains.

We adopt the original notation of Ref. [27] to that used in
the present paper and stress that the order of variables x and y

is here interchanged if compared with that in Ref. [27], formula
(1.1). Namely, let � stand for a planar domain of finite area, λ

is the first positive eigenvalue of half the Laplacian (1/2)� in
�, and φ is the first L2 normalized eigenfunction

∫
�

φ2 = 1.
Let k(x,t |y,0) be the fundamental solution of the heat

equation with Dirichlet boundary conditions. Then for any
x ∈ �, there holds

lim
t→∞

eλt k(x,t |y,0)

φ(y)φ(x)
= 1 (18)

uniformly in y ∈ �. Equation (18) clearly is instrumental in
defining the Brownian motion conditioned to stay forever in
�. Let us recall then the long-time behavior of the transition
kernel as reported in Eq. (7). The same asymptotic in the
present notation would read k(x,t |y,0) ∼ φ(y)φ(x) exp(−λt).

As a simple example of the bounded (and convex) planar
domain, we take a domain in the regular disk shape, i.e.,
bounded by the circle of a fixed radius R. The spectral solution
for such two-dimensional domain is clearly in reach, albeit
somewhat murky from the casual (user-friendly) point of view.

The spectral decomposition formula (8) for the transition
density of the process in a disk with absorbing boundary is
valid here, with suitable amendments that reflect the two-
dimensional setting.

Since we are interested in the long-T duration of the
conditioned process, in view of our previous discussion in
Sec. II, we need basically the knowledge of the stationary
density and the forward drift. In the present case these read
respectively:

ρ(r) ∼ j 2
0

(
z1r
R

)
j 2

1 (z1)
= φ2

1(r), (19)

where z1 = 2.4048 . . . is the first positive zero of the
Bessel function j0(r), and r = (x,y) below we shall use
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FIG. 2. Conditioned Brownian equilibrium in the unit disk with an inaccessible boundary: the permanent trapping enclosure. Left: the
probability density ρ(x); right: the forward drift b(x) of the Fokker-Planck equation in a trapping disk [24].

[r̂ = (1/r)(x,y)]. The density is purely radial, hence only the
radial component of b(r) = b(r) r̂ is different from zero with

b(r) = ∂

∂r
ln φ1(r) = −z1j1

(
z1r
R

)
Rj0(z1r)

. (20)

The stationary probability denity (19) and the forward drift
(20) are comparatively depicted in Fig. 2. We have here a
fully fledged two-dimensional Brownian motion, with a drift
b(r) that is a purely radial vector field. The Fokker-Planck
equation is two-dimensional: ∂tρ(r,t) = (1/2)�ρ − ∇(bρ).
For completeness, we shall reproduce this equation in the polar
coordinates, with the radial form of the drift being explicit:

∂tρ = 1

2

(
∂2

∂r2
+ 1

r

∂

∂r

)
ρ −

[
1

r

∂(rbρ)

∂r

]
. (21)

We point out that the time rate formulas become more
complicated in dimensions exceeding D > 1, since if we admit
the general (not exclusively radial) random motion the disk,
the Laplacian spectrum becomes degenerate (except for the
ground state) and the eigenvalues (increasing) order is not set
merely by n = 1,2, . . ., but needs to account for the angular
label l [30–32]. For example, we know the the first positive zero
of j0 (l = 0 sector) approximately equals 2.4048, the second
zero equals 5.5201, while the first zero of j1 (l=1 sector) reads
3.8137, and the first zero of j2 equals 5.1356.

Remark. The survival problem on the disk can be reformu-
lated in a pictorial way by referring directly to the front-cover
picture of Redner’s monograph [1] and taking some inspiration
from Refs. [2,3], even though the problems addressed there
refer to absorbing boundary conditions and first passage
time issues. Take literally a (somewhat drunken) Brownian
wanderer on top of the island (disk) which is surrounded by
a cliff (plus predators in the ocean). Add a psychologically
motivated fear component to the wanderer’s behavior, when
one is close to the island boundary. Then we readily arrive at the
following problem: How should that fearful Brownian agent
move to increase his chances for survival? Our disk solution,
establishing the regime of the inaccessible boundary, gives
the optimal stationary probability density (transition density
likewise, albeit not in a handy closed form) and the drift field.
The random wanderer obeying the associated Fokker-Planck
equation and following the underlying Langevin) dynamics
would live indefinitely on the island (disk), while moving

safely away from the inaccessible boundaries with no chance
to reach them.

As a useful supplement, let us add that the three-
dimensional spherical well problem, with absorption at the
boundary, can be addressed in the very same way. The
probability density reads [here r = (x,y,z) and r̂ stand s for a
unit vector]

ρ(r) = 1

2πR

sin2(πr/R)

r2
= φ2

1(r), (22)

where R stands for the sphere radius. The forward drift of
the pertinent stochastic process, that never leaves the sphere
interior, reads

b(r) = ∂rφ1(r)

φ1(r)
r̂ =

[
π

R
cot

(
πr

R

)
− 1

r

]
r̂ = b(r)r̂. (23)

We have here a fully fledged three-dimensional Brownian
motion, with a drift b(r). The Fokker-Planck equation is
now three-dimensional, and its radial form is reproduced for
completeness:

∂tρ = 1

2

(
∂2

∂r2
+ 2

r

∂

∂r

)
ρ −

[
1

r

2 ∂(r2bρ)

∂r

]
. (24)

IV. FEYNMAN-KAC KERNELS FOR KILLED
STOCHASTIC PROCESSES AND THE KILLING REMOVAL

It is well known that operators of the form Ĥ = −(1/2)� +
V � 0 with V � 0 give rise to transition kernels of diffusion-
type Markovian processes with killing (absorption), whose rate
is determined by the value of V (x) at x ∈ R. That interpretation
stems from the celebrated Feynman-Kac (path integration)
formula, which assigns to exp(−Ĥ t) the positive integral
kernel:

[exp(−(t − s)

(
−1

2
� + V

)
](y,x)

=
∫

exp

{
−

∫ t

s

V [ω(τ )] dτ

}
dμs,y,x,t (ω). (25)

In terms of Wiener paths that kernel is constructed as a path
integral over paths that get killed at a point Xt = x with an
extinction probability V (x) dt , in the time interval(t,t + dt)
(note that physical dimensions of V before scaling them out
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were J/s, that is, usually secured by a factor 1/2mD or 1/h̄).
The killed path is henceforth removed from the ensemble of
ongoing Wiener paths.

Given a discrete spectral solution for Ĥ = −(1/2)� +
V with V (x) � 0, comprising the monotonically growing
series of nondegenerate positive eignevalues, with real L2(R)
eigenfunctions, the integral kernel of exp(−tĤ ) has the time-
homogeneous form

k(y,x,t) = k(x,y,t) =
∑

j

exp(−εj t) φj (y)φj (x). (26)

Consider the harmonic oscillator problem with Ĥ =
(1/2)(−� + x2). The integral kernel of exp(−tĤ ) is given
by a classic Mehler formula:

k(x,y,t) = [exp(−tĤ )](y,x) = 1√
π

exp[−(x2 + y2)/2]

×
∞∑

n=0

1

2nn!
Hn(y)Hn(x) exp(−εn t)

= exp(−t/2) (π [1 − exp(−2t)])−1/2

× exp

[
1

2
(x2 − y2) − (x − e−t y)2

(1 − e−2t )

]

= 1

(2π sinh t)1/2
exp

[
− (x2 + y2) cosh t − 2xy

2 sinh t

]
,

(27)

where εn = n + 1
2 , φn(x) = [4n(n!)2π ]−1/4 exp(−x2/2) Hn(x)

is the L2(R) normalized Hermite (eigen)function,
while Hn(x) is the nth Hermite polynomial Hn(x) =
(−1)n(exp x2) dn

dxn exp(−x2). Note a conspicuous presence of
the time-dependent factor exp(−t/2).

Let us replace t by T − t and accordingly consider
k(x,T |y,s) = k(T − t,x,y). Now we pass to the conditional
transition density (5) and investigate the large-T (eventually
T → ∞) regime. Since for large-value T we have (compare,
e.g., also Ref. [14])

k(x,t |u,T ) ∼ 1√
πe(T −t)/2

e− 1
2 (x2+u2), (28)

by repeating the conditioning procedure of Sec. II, we readily
arrive at the approximation [cf. (7)] of the Bernstein transition
function by a transition probability density p(x,t |y,s) =
pt−s(x|y) of the familiar Ornstein-Uhlenbeck process

B(u,T ; x,t ; y,s) → p(x,t |y,s)

= k(x,t,y,s)
exp(−x2/2)

exp (−y2/2)
e(t−s)/2

= k(y,x,t)
φ1(x)

φ1(y)
e+ε1(t−s) = [π (1 − e−2(t−s))]−1/2

× exp

[
− (x − e−(t−s)y)2

(1 − e−2(t−s))

]
, (29)

where φ1(x) = π−1/2 exp(−x2/2) and ε1 = 1/2 have been
accounted for.

Here the Fokker=Planck operator takes the form
LFP = (1/2)� − ∇[b(x)·] and b(x) = −x. Clearly b(x) =
∇ ln φ1(x), as should be the case. The asymptotic (invariant,
stationary) probability density of the pertinent process reads
ρ(x) = φ2

1(x) = (1/π ) exp(−x2). For earlier considerations
on how to transform the Feynman-Kac averages for processes
with killing into those that refer to processes without any
killing, see, e.g., Ref. [33].

V. HANDLING THE SINK: SURVIVAL ON THE HALF-LINE
AND BESSEL PROCESSES

The conditioning procedure up to now seems to rely heavily
on contracting semigroups, whose generators have purely
discrete spectral solutions with the bottom eigenvalue being
well separated from the rest of the spectrum.

The above outlined conditioning procedure will surely work
for potentials that are bounded from below continuous func-
tions, since we can always redefine potentials with a bounded
from below negative part, by adding to V (x) a modulus
of its minimal value |V (xmin)| or a modulus of any of its
multiple (identical) local minima: V (x) → V (x) + |V (xmin)|
so arriving at V (x) � 0. The redefined potential is nonnegative
and gives rise to the diffusion-type process with killing, whose
transition density k(x,t |y,s) is given by the Feynman-Kac
formula [14,15].

It is our aim to demonstrate that we need not have a
discrete spectral solution at hand. The employed conditioning
procedure appears to work properly, also when the spectrum of
the involved semigroup generator is continuous. This is, e.g.,
the case for Brownian motion on a half-line with an absorbing
barrier (sink).

We set the sink at 0 and consider the Brownian motion as
being restricted to the positive semiaxis (x ∈ R+). The perti-
nent transition density is obtained via the method of images,
by employing the standard Brownian transition probability
density induced by [(1/2)�]

p(x,t |y,s) = [2π (t − s)]−1/2 exp[−(x − y)2/2π (t − s)],

(30)

namely,

k(x,t |y,s) = p(x.t |y,s) − p(x,t | − y,s) = 2√
2π (t − s)

× exp

[
− x2 + y2

2(t − s)

]
sinh

(
xy

t − s

)
. (31)

The large-T behavior of k(u,T |y,s) is easily inferred to imply
(the situation is less straightforward than in the previous
examples, since the time label T persists in the exponent;
note that we replace T − s and T − t by T )

k(u,T |y,s) ∼ 2√
2πT

exp

[
−y2 + u2

2T

]
uy

T
. (32)

Accordingly, in the large-T regime, the Bernstein function is
approximated by an intriguing functional expression:

B(u,T ; x,t ; y,s) ∼ p(x,t |y,s) exp

[
y2 − x2

2T

]
, (33)

where we single out, as a leading factor, an immediately
recognizable transition probability function of the Bessel
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process

p(x,t |y,s) = k(x,t |y,s)
x

y
. (34)

We have fixed the (y,s) and (u,T ) data and there is no u-
dependence in the asymptotic expression (33). Consequently,
exp(y2/2T ) is irrelevant as far as the large-T regime is
concerned. What matters, however, is the remaining term
exp(−x2/2T ), which is not quite innocent for x that are
comparable in size with T 1/2. Surely, for large finite T the
exponential term may be regarded to very be close to one
for not too large values of x, such as x < T 1/2/100, since
exp(−1/20 000) ∼ 1–5×10−5 is sufficiently close to 1.

Pushing T → ∞ refers to an eternal survival and involves
the pointwise convergence of B(u,T ; x,t ; y,s) to p(x,t |y,s)
in Eq. (33), ultimately leaving us with a transition probability
density for the Bessel process.

The forward drift of this process is known [17,18] to be
equal to b(x) = ∇ ln x = 1/x. The Fokker-Planck generator
takes the familiar (Bessel process) form LFP = (1/2)� −
[b(x)·]. We note that the point 0 is presently inaccessible for
the process.

Told otherwise, the one-dimensional Brownian motion
starting from y > 0, conditioned to remain positive up to
time T , converges as T → ∞ to the radial process of the
three-dimensional Brownian motion, known as the Bessel
process.

Remark. In the one-parameter family of Bessel processes,
with drifts of the form b(x) = (1 + 2a)/2x, in the case of
a � 0, the point x = 0 is never reached from any y > 0 with
probability 1. To the contrary, for a < 0, the barrier at x = 0
is absorbing (sink).

Let us recall the backward generator of the pro-
cess: (1/2)� + b(x)∇ with b(x) = (1 + 2a)/2x. The one-
parameter family of pertinent transition densities reads

ka(x,t |y,0) = y2a+1

t(xy)a
exp

[
−x2 + y2

2t

]
I|a|

(
xy

2t

)
. (35)

Let us consider the special case of a = ±(1/2) for which the
modified Bessel function takes a handy form:

I1/2(z) =
√

2

πz
sinh z. (36)

It is easy to verify that k−1/2(x,t |y,0) coincides with the
transition density of the Brownian motion constrained to stay
on R+, with a sink at 0. The generator simply is (1/2)� on
R+, with absorbing boundary at 0.

On the other hand k+1/2(x,t |y,0) is a transition probability
density of the Bessel process with b(x) = 1/x (e.g., the
Brownian motion conditioned to never reach 0, if started from
any y > 0). Its F-P generator reads (1/2)� − ∇[b(x)·], with
b(x) = ∇ ln x.

VI. PROSPECTS

Our conditioning strategy involving the Bernstein tran-
sition probability densities heavily relies on the large-time
asymptotic properties of transition densities for processes
with absorption (killing). Once the kernels k(x,t |y,s) are
given the spectral resolution form (e.g., the eigenfunction
expansions) we can expect that our considerations should be
safely extended to Lévy-stable processes, additively perturbed
by suitable potential functions. That refers to Lévy motions in
energy landscapes of Refs. [26,29] and references therein.

In the case of a discrete spectral resolution of the
random motion generator, transition kernels are in principle
computable and amenable to asymptotic procedures of
Secs. II to V. Basically, the kernels have no known explicit
analytic forms. If we know the lowest eigenvalue and the
corresponding eigenfunction, the conditioning itself can be
imposed in exactly the same way as before (via Bernstein
transition functions). A link of the killed stochastic process
and its “eternally living” partner can surely be established for
jump-type processes as well.

For deceivingly simple problems (albeit in reality, techni-
cally quite involved) of the Lévy-stable finite and infinite well
or its spherical well analog, numerically accurate and approx-
imate analytic formulas are known for the ground states. We
have in hand their shapes (hence the resultant stationary proba-
bility densities of the conditioned process) together with corre-
sponding lowest eigenvalues [35–38]. Analogous results were
established for some Lévy stable oscillators [34,35,39,40]

The solution for the half-line Lévy-stable problem with an
absorbing barrier (rather involved and available in terms of
an approximate analytic expression) is also in existence [41]
and may be used to deduce the process living eternally on the
half-line, following our conditioning method. All that needs
more elaborate analysis, which we relegate to the future.
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