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The left-right chiral and ferromagnetic-antiferromagnetic double-spin-glass clock model, with the crucially
even number of states q = 4 and in three dimensions d = 3, has been studied by renormalization-group theory. We
find, for the first time to our knowledge, four spin-glass phases, including conventional, chiral, and quadrupolar
spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases
and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass
ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is
seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also
otherwise very rich, including regular and temperature-inverted devil’s staircases and reentrances.
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I. INTRODUCTION

Spin-glass phases, created by competing frustrated random
ferromagnetic and antiferromagnetic interactions, have been
known [1] to incorporate a plethora of interesting complex
phenomena, not the least being the natural generation chaos
[2–4]. Recently, it has been shown [5,6] that competing left-
and right-chiral interactions also create spin-glass phases, even
in the absence of competing ferromagnetic and antiferromag-
netic interactions. First shown [5] with the chiral Potts models
[7–11] with the inclusion of quenched randomness, chiral spin
glasses were recently extended [6] to clock models with an odd
number of states (q = 5), resulting in a literally moviesque
sequence of phase diagrams, including regular and inverted
devil’s staircases, a chiral spin-glass phase, and algebraic
order.

The chiral clock model work was purposefully initiated
[6] with an odd number of states q, in order to deal
with the complexity of the global phase diagram, since
it is known that odd-q models do not show [12] the
traditional ferromagnetic-antiferromagnetic spin-glass phase.
This is because neighboring antiferromagnetically interact-
ing odd-q clock spins cannot achieve perfect antiferromag-
netic alignment. Furthermore, there are two configurations
for the near-antiferromagnetic alignment, creating a built-
in disorder. The traditional ferromagnetic-antiferromagnetic
spin-glass phase does not occur and the antiferromagnetic
phase is a critical phase lacking conventional long-range
order [12]. On the other hand, the even-q clock spins
can achieve complete antiferromagnetic pairing and exhibit
the conventional antiferromagnetic long-range order and the
traditional ferromagnetic-antiferromagnetic spin-glass phase
[13]. Thus, the current study is on the random chiral clock
model with an even number of states (q = 4), which sup-
ports the ferromagnetic-antiferromagnetic usual spin-glass
phase [13], as well as, as we see below, with added phase
diagram complexity, the chiral spin-glass phase and two
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other new spin-glass phases. A double spin-glass model
is constructed, including competing quenched random left-
right chiral and ferromagnetic-antiferromagnetic interactions
and solved in three dimensions by renormalization-group
theory.

The extremely rich phase diagram includes, to our knowl-
edge for the first time, more than one (four) spin-glass phases
in the same phase diagram and three separate spin-glass–to–
spin-glass phase transitions. These constitute phase transitions
between chaoses. We determine the chaotic behaviors of the
spin-glass phases, of the phase transitions between the spin-
glass phases, and the phase transitions between the spin-glass
phases and the ferromagnetic, antiferromagnetic, quadrupolar,
and disordered phases.

II. DOUBLE SPIN-GLASS SYSTEM: LEFT-RIGHT CHIRAL
AND FERRO-ANTIFERRO INTERACTIONS

The q-state clock spin glass is composed of unit spins that
are confined to a plane and that can only point along q angularly
equidistant directions, with Hamiltonian

−βH =
∑
〈ij〉

Jij �si · �sj =
∑
〈ij〉

Jij cos θij , (1)

where β = 1/kBT , θij = θi − θj , at each site i the spin angle
θi takes on the values (2π/q)σi with σi = 0,1,2, . . . ,(q − 1),
and 〈ij 〉 denotes summation over all nearest-neighbor pairs
of sites. As the long-studied ferromagnetic-antiferromagnetic
spin-glass system [1], the bond strengths Jij , with quenched
(frozen) ferromagnetic-antiferromagnetic randomness, are
+J > 0 (ferromagnetic) with probability 1 − p and −J (anti-
ferromagnetic) with probability p, with 0 � p � 1. Thus, the
ferromagnetic and antiferromagnetic interactions locally com-
pete in frustration centers. Recent studies on ferromagnetic-
antiferromagnetic clock spin glasses are reported in
Refs. [12–14].

In the q-state chiral clock double spin glass, recently
introduced (and used in the qualitatively different odd q = 5),
frustration also occurs via randomly frozen left or right
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chirality [5], thus doubling the spin-glass mechanisms. The
Hamiltonian in Eq. (1) is generalized to random local chirality,

−βH =
∑
〈ij〉

[
Jij cos θij + �δ

(
θij + ηij

2π

q

)]
. (2)

In a cubic lattice, as sites along the respective coordinate direc-
tions are considered, the x, y, or z coordinates increase. Since
bond moving in the Migdal-Kadanoff approximation [15,16]
is done transversely to the bond directions, this sequencing
is respected. Equivalently, in the corresponding hierarchical
lattice [17–21], one can always define a direction along
the connectivity, for example, from left to right, and assign
consecutive increasing number labels to the sites. In Eq. (2),
for each pair of nearest-neighbor sites 〈ij 〉 the numerical site
label j is ahead of i, frozen (quenched) ηij = 1 (left chirality)
or −1 (right chirality), and the delta function δ(x) = 1 (0) for
x = 0 (x �= 0). The overall concentrations of left and right
chirality are, respectively, 1 − c and c, with 0 � c � 1. The
strength of the random chiral interaction is �/J , with the
temperature divided out. Thus, the system is chiral for � �= 0,
chiral-symmetric for c = 0.5, and chiral-symmetry-broken for
c �= 0.5. The global phase diagram is in terms of temperature
J−1, antiferromagnetic bond concentration p, random chirality
strength �/J , and chiral symmetry-breaking concentration c.

III. RENORMALIZATION-GROUP METHOD:
MIGDAL-KADANOFF APPROXIMATION AND
EXACT HIERARCHICAL LATTICE SOLUTION

Our method, previously described in extensive detail [6]
and used on a qualitatively different model with qualitatively
different results, is simultaneously the Migdal-Kadanoff ap-
proximation [15,16] for the cubic lattice and the exact solution
[17–21] for a d = 3 hierarchical lattice, with length rescaling
factor b = 3. Exact calculations on hierarchical lattices are
also currently widely used in a variety of statistical mechanics
[22–36], finance [37], and, most recently, DNA-binding [38]
problems.

Under the renormalization-group transformation [6], the
Hamiltonian, Eq. (2), maps onto the more general form

−βH =
∑
〈ij〉

Vij (θij ), (3)

where θij = θi − θj can take q = 4 values, so that for each
pair 〈ij 〉 of nearest-neighbor sites, there are q = 4 different
interaction constants

{Vij (θij )}={Vij (0),Vij (π/2),Vij (π ),Vij (3π/2)} ≡ Vij ,

(4)

which are, in general, different at each locality (quenched
randomness). The largest element of {Vij (θij )} at each lo-
cality 〈ij 〉 is set to 0, by subtracting the same constant
from all q = 4 interaction constants, with no effect on the
physics; thus, the q − 1 = 3 other interaction constants are
negative.

The starting double-bimodal quenched probability distribu-
tion of the interactions, characterized by p and c as described
above, is not conserved under rescaling. The renormalized

quenched probability distribution of the interactions is ob-
tained by the convolution [39]

P ′(V′
i ′j ′) =

∫ ⎧⎨
⎩

i ′j ′∏
ij

dVijP (Vij )

⎫⎬
⎭δ(V′

i ′j ′ − R({Vij })), (5)

where Vij ≡ {Vij (θij )} as in Eq. (4), R({Vij }) represents the
renormalization-group recursion relation [6], primes refer to
the renormalized system, and the procedure is effected numer-
ically. The different phases and phase transitions of the system
are identified by the different asymptotic renormalization-
group flows of the quenched probability distribution P (Vij ).
Similar previous studies, on other spin-glass systems, are
reported in Refs. [12,13,40–47].

IV. GLOBAL PHASE DIAGRAM:
MULTIPLE-SPIN-GLASS PHASES

Figure 1 shows a calculated sequence of phase diagram
cross sections for the left-chiral (c = 0) (top row) and
quenched random left- and right-chiral (c = 0.5) (bottom row)
systems with, in both cases, quenched random ferromagnetic
and antiferromagnetic interactions. The system exhibits a
disordered phase (D), a ferromagnetic phase (F), a conven-
tionally ordered (in contrast to the algebraically ordered for
q = 5) antiferromagnetic phase (A), a quadrupolar phase (Q),
a new “one-step” phase (R), a multitude of different chiral
phases, and four spin-glass phases (SCh, SFA, SQ, SR) including
spin-glass–to–spin-glass phase transitions. The ferromagnetic
and different chiral phases accumulate as conventional and
temperature-inverted (abutting to the reentrant [48–52] dis-
ordered phase) devil’s staircases [53,54] at their boundary
with the disordered (D) phase. This accumulation and its
multiplicity of intervening phases occur at all scales of phase
diagram space (i.e., at all magnifications of the phase diagram
figure, as, for example, shown up to a 100-fold calculated
magnification in Fig. 4 of [6]), which is the definition of a
devil’s staircase.

Unlike the odd-q case of q = 5, which incorporates built-
in entropy [6] even without any quenched randomness, no
algebraically ordered phase [55,56] occurs in this even-q
case of q = 4. The devil’s staircase of the chiral phases
is again seen. Most interestingly, quadrupolar and “one-
step” phases, different spin-glass phases for the first time in
the same phase diagram, and spin-glass–to–spin-glass direct
phase transitions are seen. The phases and phase boundaries
involving spin glassiness are tracked through the calculated
Lyapunov exponents of their chaos.

In all ordered phases, the renormalization-group trajectories
flow to strong (infinite) coupling. In the ferromagnetic phase,
under renormalization-group transformations, the interaction
Vij (0) becomes asymptotically dominant. In the antiferro-
magnetic phase, under renormalization-group transformations,
the interaction Vij (π ) becomes asymptotically dominant. In
the quadrupolar phase Q, the interactions Vij (0) and Vij (π )
become asymptotically dominant and equal. Thus, there are
two such quadrupolar phases, namely, along the spin directions
±x and ±y, with the additional (factorized) trivial degeneracy
of a ± spin direction at each site. In the new “one-step
phase” R, the interactions Vij (+π/2) and Vij (−π/2) become
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FIG. 1. A calculated sequence of phase diagrams for the left chiral (c = 0) (top row) and quenched random left and right chiral (c = 0.5)
(bottom row) systems with, in both cases, quenched random ferromagnetic and antiferromagnetic interactions. The horizontal axis is the random
chirality strength �/J . The consecutive phase diagrams are for different concentrations p of antiferromagnetic interactions. The system exhibits
a ferromagnetic phase F, an antiferromagnetic phase A, a multitude of different chiral phases, a quadrupolar phase Q, a “one-step” phase R, and
four differently ordered spin-glass phases: the chiral spin-glass SCh, the usual ferromagnetic-antiferromagnetic spin glass SFA, the quadrupolar
spin glass SQ, and SR . The phase diagrams obtained from p and 1 − p are symmetric, since the system has an even number of spin directions.
For some of the chiral phases, the π/2 multiplicity of the asymptotically dominant interaction is indicated. The ferromagnetic and chiral phases
accumulate as different devil’s staircases at their boundary with the disordered (D) phase.

asymptotically dominant and equal. Thus, in this phase,
the average local spins can span all spin directions, taking
±π/2 steps from one spin to the next in the renormalized
systems. The identification of the distinct chiral phases,
each with distinct chiral pitches, has been explained in
Ref. [6].

The renormalization-group trajectories starting in the spin-
glass phases, unlike those in the ferromagnetic, antiferro-
magneric, quadrupolar, “one-step,” and chiral phases, do
not have the asymptotic behavior where at any scale one
potential V (θ ) is dominant. These trajectories of the spin-glass
phases asymptotically go to a strong-coupling fixed probability
distribution P (Vij ) which assigns nonzero probabilities to
a distribution of Vij values, with no single Vij (θ ) being
dominant. These distributions are shown in Figs. 2 and 3.
Different asymptotic fixed probability distributions indicate
different spin-glass phases.

Since, at each locality, the largest interaction in
{Vij (0),Vij (π/2),Vij (π ),Vij (3π/2)} is set to 0 and the three
other interactions are thus made negative, by subtracting the
same constant from all four interactions without affecting
the physics, the quenched probability distribution P (Vij ),
a function of four variables, is actually composed of four
functions Pσ (Vij ) of three variables, each such function

FIG. 2. Asymptotic fixed distribution of the chiral spin-glass
phase SCh. The part of the fixed distribution P1(Vij ), for interactions
Vij in which Vij (π/2) is maximum and therefore 0 (and the
other three interactions are negative), is shown in this figure, with
vij (θ ) = Vij (θ )/〈|Vij (θ )|〉. The projections of P1(Vij ) onto two of its
three arguments are shown in each panel. The other three Pσ (Vij )
have the same fixed distribution. Thus chirality is broken locally
but not globally, just as, in the long-time studied ferromagnetic-
antiferromagnetic spin glasses, spin-direction symmetry breaking is
local but not global (i.e., the local magnetization is nonzero and the
global magnetization is 0).
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FIG. 3. Asymptotic fixed distributions of three spin-glass
phases, with vij (θ ) = Vij (θ )/〈|Vij (θ )|〉. For the ferromagnetic-
antiferromagnetic spin-glass SFA phase, r = 0, σ = 2 and r = 2, σ =
0. The other two angles do not occur. For the quadrupolar spin-glass
SQ phase, r = 0, σ = 1 and r = 1, σ = 0, with Vij (0) = Vij (π ) and
Vij (π/2) = Vij (3π/2). For the spin-glass SR phase, r = 1, σ = 3 and
r = 3, σ = 1. The other two angles do not occur. The vij (0) = vij (π )
curve, obtained from the left panel in Fig. 2, also matches the curve
here.

corresponding to one of the interactions being 0 and the other
three, arguments of the function, being negative. Figures 2 and
3 show the latter functions.

In Fig. 2 for the spin-glass phase SCh, the part of the fixed
distribution, P1(Vij ), for the interactions Vij in which Vij (π/2)
is maximum and therefore 0 (and the other three interactions
are negative) is shown. The projections of P1(Vij ) onto two of
its three arguments are shown in each panel in Fig. 2. The other
three Pσ (Vij ) have the same fixed distribution. Thus, chirality
is broken locally, but not globally, just as, in the long-time-
studied ferromagnetic-antiferromagnetic spin glasses, spin-
direction symmetry breaking is local but not global (i.e., the
local magnetization is nonzero and the global magnetization
is 0). The asymptotic fixed distribution of the phase SCh, shown
in Fig. 2, assigns nonzero probabilities to a continuum of values
for all four interactions {Vij (0),Vij (π/2),Vij (π ),Vij (3π/2)}.
The phase SCh is therefore a chiral spin-glass phase. The
similar chiral spin-glass phase has been seen previously,
but as the sole spin-glass phase, for the odd q = 5 [6].
The chiral spin-glass phase occurs even when there are
no competing ferromagnetic-antiferromagnetic interactions
[5,6].

As shown in Fig. 3, in the asymptotic fixed distribution of
the spin-glass phase SFA, nonzero probabilities are assigned to
a continuum of values of {Vij (0),Vij (π )}. Figure 3 shows the
fixed distribution values P0(Vij (π )) for Vij (0) maximum and
therefore set to 0. Completing the asymptotic fixed distribution
of SFA is an identical function P2(Vij (0)) for Vij (π ) maximum
and therefore set to 0. At this fixed distribution, the values
of Vij (π/2) and Vij (3π/2) diverge to −∞, so that these
angles do not occur. Thus, SFA is the long-studied [1] spin-
glass phase of competing ferromagnetic and antiferromagnetic
interactions.

Figure 3 also shows the asymptotic fixed distribution of
the spin-glass phase SR , with the functions P1(Vij (3π/2)) for

Vij (π/2) maximum (and therefore set to 0) and P3(Vij (π/2))
for Vij (3π/2) maximum (and therefore set to 0). Again,
the other two angles do not occur at this asymptotic fixed
distribution. Furthermore, Fig. 3 also shows the asymptotic
fixed distribution of the spin-glass phase SQ, with the func-
tions P0(Vij (π/2)) and P1(Vij (0)), with Vij (0) = Vij (π ) and
Vij (π/2) = Vij (3π/2). Thus, this fixed distribution does not
locally distinguish between ± spin directions and is thus a
quadrupolar spin-glass phase.

In fact, the vij (0) = vij (π ) curve obtained from the left
panel in Fig. 2 also matches the curve here. The three fixed
distributions given in Fig. 3 exhibit the same numerical curve
but refer to widely different interactions. Thus, they underpin
different spin-glass phases.

V. PHASE TRANSITIONS BETWEEN CHAOS

Another distinctive mechanism, that of chaos under scale
change [2–4] or, equivalently [13], chaos under spatial trans-
lation, occurs within the spin-glass phase and differently at the
spin-glass phase boundary [13] in systems with competing fer-
romagnetic and antiferromagnetic interactions [2–4,13,46,57–
83] and, more recently, with competing left- and right-chiral
interactions [5,6]. Originally found in hierarchical systems
[2–4], scaling or, equivalently, translation spin-glass chaos is
now well accepted for real d = 3 lattices and experimental
systems [2–4,13,46,57–83].

Figure 4 gives the asymptotic chaotic renormalization-
group trajectories of the four spin-glass phases and of the phase
boundaries of the spin-glass phases with the other spin-glass
phases, the non-spin-glass ordered phases, and the disordered
phase.

Chaos is measured by the Lyapunov exponent, whose
calculation for the multi-interaction Vij (0), Vij (π/), Vij (π ),
Vij (3π/2) case is given in Ref. [6]. Spin-glass chaos occurs
for λ > 0 [74], and the more positive λ, the stronger is
chaos. Within all four spin-glass phases, the average inter-
action diverges as 〈|V |〉 ∼ byRn, where n is the number of
renormalization-group iterations and yR = 0.25 is the runaway
exponent. In the non-spin-glass ordered phases, the runaway
exponent value is yR = d − 1 = 3 [84].

At the SCh-SR , SCh-SQ, and SFA-F and its symmetric SFA-A
phase boundaries, yR = 0.25 also. At the SCh-SFA phase
boundary, yR = 0.11 for Vij (0), Vij (π ), and yR = 0.25 for
Vij (π/2), Vij (3π/2). At the phase boundaries of the spin-glass
phases with some non-spin-glass ordered and disordered
phases, the average interaction remains nondivergent, fixed
at 〈V 〉 = −0.34 for SFA-Q, SR-R, SQ-D and 〈V 〉 = −1.07
for SCh-D. As indicated by the Lyapunov exponents, chaos
is stronger within the spin-glass phase than at its phase
boundaries with non-spin-glass phases.

As expected from the asymptotic fixed distribution analysis
given above, the three spin-glass phases SFA, SQ, and SR

and the phase transitions between these phases have the same
Lyapunov exponent, λ = 1.92, and therefore the same degree
of chaos. The chiral spin-glass SCh has more chaos (λ = 1.98)
from the other three spin-glass phases. The phase transition
between the chiral spin-glass phase SCh and the other three
spin-glass phases is a phase transition between different types
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FIG. 4. Chaotic renormalization-group trajectories of the four spin-glass phases (black) and of the phase boundaries of the spin-glass
phases with other spin-glass phases (red) and with non-spin-glass ordered (blue) and disordered (green) phases. The phase boundary chaoses
of each spin-glass phase are given in the corresponding vertically aligned panels. In each case, only one of the four interactions Vij (0),
Vij (π/2), Vij (π ), and Vij (3π/2) at a given location 〈ij〉, under consecutive renormalization-group transformations, is shown, except, for
illustration, all four interactions are shown for the chaos at the phase transition between the chiral spin-glass and disordered phases. The
θij angular value of each interaction Vij (θij ) is indicated in the panels, as well as the Lyapunov exponent λ calculated from the chaotic
sequence under renormalization-group transformations. The Lyapunov exponent is calculated over 1000 renormalization-group iterations, after
throwing out the first 200 iterations. Within all four spin-glass phases, the average interaction diverges as 〈|V |〉 ∼ byRn, where n is the number of
renormalization-group iterations and yR = 0.25 is the runaway exponent. At the SCh-SR , SCh-SQ, SFA-A, and SFA-F phase boundaries, yR = 0.25
also. At the SCh-SFA phase boundary, yR = 0.11 for Vij (0), Vij (π ) and yR = 0.25 for Vij (π/2), Vij (3π/2). At the phase boundaries of the
spin-glass phases with some non-spin-glass-ordered and disordered phases, the average interaction remains nondivergent, fixed at 〈V 〉 = −0.34
for SFA-Q, SR-R, SQ-D and 〈V 〉 = −1.07 for SCh-D. As indicated by the Lyapunov exponents, chaos is stronger within the chiral spin-glass
phase.

of chaos. This phase transition itself of course exhibits chaos,
as do all spin-glass phase boundaries.

VI. CONCLUSION

The left-right chiral and ferromagnetic-antiferromagnetic
double spin-glass clock model, with the crucially even number
of states q = 4 and in three dimensions d = 3, has been solved
by renormalization-group theory, which is approximate for
the cubic lattice and exact for the corresponding hierarchical
lattice. We find in the same phase diagram, for the first time to
our knowledge, four spin-glass phases, including conventional,
chiral, and quadrupolar spin-glass phases and phase transitions
between spin-glass phases. The chaoses, in the different
spin-glass phases and in the phase transitions of the spin-glass
phases with the other spin-glass phases, the non-spin-glass

ordered phases, and the disordered phase, are determined
and quantified by Lyapunov exponents. It is seen that the
chiral spin-glass phase is the most chaotic spin-glass phase.
The calculated phase diagram is also otherwise very rich,
including regular and temperature-inverted devil’s staircases
and reentrances.

The recently found chiral spin-glass phase could possibly
be seen in quenched random dimolecular crystals. In fact, if
magnetic moments could be included in the component chiral
molecules, the double spin-glass system, with the multiplicity
of spin-glass phases seen here, could be achieved.
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