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Formation and relaxation of quasistationary states in particle systems with power-law interactions
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We explore the formation and relaxation of the so-called quasistationary states (QSS) for particle distributions
in three dimensions interacting via an attractive radial pair potential V (r → ∞) ∼ 1/rγ with γ > 0, and either
a soft core or hard core regularization at small r . In the first part of the paper, we generalize, for any spatial
dimension d � 2, Chandrasekhar’s approach for the case of gravity to obtain analytic estimates of the rate of
collisional relaxation due to two-body collisions. The resultant relaxation rates indicate an essential qualitative
difference depending on the integrability of the pair force at large distances: for γ > d − 1, the rate diverges in
the large particle number N (mean-field) limit, unless a sufficiently large soft core is present; for γ < d − 1, on
the other hand, the rate vanishes in the same limit even in the absence of any regularization. In the second part of
the paper we compare our analytical predictions with the results of extensive parallel numerical simulations in
d = 3 performed with an appropriate modification of the GADGET code, for a range of different exponents γ and
soft cores leading to the formation of QSS. We find, just as for the previously well studied case of gravity (which
we also revisit), excellent agreement between the parametric dependence of the observed relaxation times and
our analytic predictions. Further, as in the case of gravity, we find that the results indicate that, when large impact
factors dominate, the appropriate cutoff is the size of the system (rather than, for example, the mean interparticle
distance). Our results provide strong evidence that the existence of QSS is robust only for long-range interactions
with a large distance behavior γ < d − 1; for γ � d − 1, the existence of such states will be conditioned strongly
on the short-range properties of the interaction.
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I. INTRODUCTION

There are many systems of particles interacting with
long-range interactions in nature: self-gravitating bodies in
astrophysics and cosmology [1], two-dimensional fluid dy-
namics [2], cold atoms [3], etc. Considering, for simplicity,
d-dimensional particle systems, which interact through an
isotropic pair potential v(r), long-range systems are usually
defined as those for which

v(r → ∞) ∼ g

rγ
, (1)

where γ � d, and g is a coupling constant. This character-
ization of interactions as long-range arises in equilibrium
statistical mechanics [4]: in a system of N particles in a volume
V , the average energy of a particle is, for γ > d, independent
of the size of the system in the “usual” thermodynamic
limit N → ∞, V → ∞ at fixed density N/V . For γ � d,
a different thermodynamic limit must be taken in order to
recover extensivity of the thermodynamic potentials, and N

independent intensive properties of the system, as N → ∞.
More specifically, the potential energy �i of a particle scales
as �i ∼ gN/V γ/d , and g and V must be scaled appropriately
with N so that �i is constant. This is usually called the
mean-field thermodynamic limit (or the Vlasov limit when

*Current address: Parc Valrose 06108 Nice Cedex 02, France;
Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.

is taken at fixed system size). Using this scaling, the total
energy becomes extensive and it is possible to compute thermal
equilibrium properties. For the class of systems we consider
here, with attractive power-law interactions at large scales
in three dimensions, such a treatment has been given in
Ref. [5]. For γ < d, they present unusual features compared
to short-range systems: inhomogeneous spatial distributions,
inequivalence of the statistical ensembles, negative specific
heat in the microcanonical ensemble, etc.1

For the case of gravity, it was understood decades ago,
however, in the context of astrophysics (through the seminal
works of Chandrasekhar, Lynden-Bell, and others), that such
considerations based on equilibrium statistical mechanics are
only relevant physically on time scales very long compared
to those on which such systems evolve dynamically (e.g., the
formation and evolution of galaxies) and that the scenario of
the dynamics of such systems is completely different to that of
short-range systems: on a time scale τdyn characteristic of the
mean-field dynamics (and independent of N in the mean-field
limit described above), one observes the formation, under the
effect of a mean-field global interaction through the so-called
mean-field relaxation, of very slowly evolving macroscopic
states (e.g., galaxies), which are far from thermal equilibrium.
For gravity in d = 3 dimensions, the time scale for evolution

1All these considerations are for classical systems. For studies of
properties of quantum spin systems with power-law interactions see
e.g., Refs. [6,7].
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towards equilibrium (or at least increase of the microcanonical
entropy for the cases in which thermal equilibrium is not
well defined, see Ref. [8]) in which was first estimated
by Chandrasekhar [9] to be τcoll ∼ (N/ ln N )τdyn. Thus, as
N → ∞ in the mean-field limit, the system remains trapped
in such states and never evolves towards thermodynamic
equilibrium. A similar phenomenology has been established
in the last years in the study of various other systems with
long-range interactions (see, e.g., Refs. [10–13]): relaxation
on a mean-field time scale to a “quasistationary state” (QSS)
followed by a relaxation towards thermodynamic equilibrium
on a time scale which diverges with the particle number N .
This scenario has thus been proposed as a kind of paradigm for
the dynamics of this class of interactions (e.g., Refs. [4,14,15]).

More formally, the evolution of a system of N particles
interacting through the pair potential (1) can be described by
the equation

∂f

∂t
+ v(r,t) · ∂f

∂r
+ F[f ] · ∂f

∂v
= CN, (2)

where f (r,v,t) is the mean phase space density function, i.e.,
the density of particles at the position r with velocity v at time
t , and CN is called the “collision term.” In general the latter
is a functional of the n-point distribution functions. The term
F[f ] is the mean-field force which can be written in terms of
the pair potential v(r) as

F[f ] = −
∫

f (r′,v,t)∇rv(|r − r′|)dr′dv. (3)

A mean-field dynamical description is valid if, in the mean-
field (or Vlasov) limit, we have that

lim
N→∞

CN = 0 (4)

in which case the dynamics is described by the Vlasov
equation, known as the “collisionless Boltzmann equation” in
the astrophysical literature (e.g., Ref. [1]). QSS are understood
as stable stationary solutions of these equations, and mean-
field relaxation as the evolution towards such states in the
same mean-field framework (on time scales of order τdyn).
Correspondingly, in any finite (but large) N system, the
term CN then describes the “collisional” corrections to the
mean-field dynamics.

For long-range interactions, therefore, to show that QSS
should exist, one should analyze these collision terms, and
determine firstly that they do indeed satisfy the condition
(4). Further in order to understand their evolution away from
QSS at large but finite N , and (possibly) towards thermal
equilibrium, one needs to derive a suitable kinetic theory,
which should allow one to infer the scalings of the time
scale (or scales) characterizing such evolution as a function
of N . Concerning the first step it has been shown rigorously
that the Vlasov limit exists for γ < 0 [16], and for values
of γ extending up to γ = 1 (i.e., the gravitational case in
d = 3) provided a suitable regularization (i.e., softening) of the
potential is imposed at small separations [17–20]. However,
these provide only rigorous lower bounds (∼ ln N ) to the time
scales on which the Vlasov dynamics is valid. They do not
allow us to calculate in any practical manner the time scales for
collisional relaxation, nor even to determine their parametric
scalings. Many attempts have been made in this direction

through the construction of explicit kinetic theories [21–29]
but, in practice it is difficult to apply these methods to realistic
systems to establish the relevant time scales, and in particular
their parametric scalings. Moreover, these theories do not
take into account strong collisions. Often (e.g., Ref. [15])
it is argued, using such approaches, that the characteristic
time scale for collisional relaxation has a generic scaling
τcoll ∼ Nτdyn, except for the special case of homogeneous QSS
in one dimension.

In this paper, we explore the conditions under which the
limit (4) is satisfied for the generic power-law interaction (1).
To do so, we use a nonrigorous (but well defined) approach
to the problem: we generalize the simple method initiated by
Chandrasekhar for the case of gravity [1,9]. This amounts to
assuming that the dominant contribution to the collisionality,
described by the term CN , comes from two-body collisions.
For the gravitational interaction, this simple approach has
turned out to account remarkably well for the observed time
scales of collisional relaxation (in numerical simulations). We
generalize this approach to a generic power-law interaction;
and compare the results obtained to the results of numerical
simulations of several such systems.

Several important results emerge from this analysis. Firstly,
it becomes evident through this approach that, in general, the
characteristic time τcoll for collisional relaxation scales with
the particle number N and may depend on the properties of
the two-body potential at small distances. Our results for the
two-body collisional relaxation lead to the conclusion that, in
this respect, an important qualitative distinction can be made
between the cases γ < d − 1 and γ > d − 1: in both cases,
for unsoftened potentials, τcoll ∼ Nδ , where δ is a constant
depending on γ and the dimension of space d. However, the
sign of δ is positive only if γ < d − 1. This means that when
the size of the core is sent to zero, the condition Eq. (4) can be
satisfied only for γ < d − 1. The existence of QSS requires
the satisfaction of this condition, and therefore such states
can exist for γ � d − 1 only if the rate of collisionality is
reduced through the introduction of a sufficiently soft core. In
other words, for γ < d − 1 QSS can be considered to occur
simply because of the large distance behavior of the potential,
while for γ � d − 1 their existence depends on the details
of the short-distance behavior. This leads to what we call a
dynamical (rather than thermodynamical) classification of the
range of interactions, which has been proposed also using
different analyses in Refs. [30–33].

The essential result above has already been reported in
Ref. [31]. In this paper, we present a more detailed and
more extended study of collisional relaxation in these systems,
both for the analytical and numerical parts. In the analytical
part, we present both a new quantitative treatment of the
two-body relaxation including the contribution from hard
collisions, and also of the case of different specified soft
core regularizations. In the numerical part, we present much
more extensive results and detailed analysis, including notably
potentials, which decrease more slowly than the gravitational
potential, and a full quantitative exploration of the role of
softening. The paper is organized as follows: in the next
section we give a brief review on the literature of the collisional
relaxation in the context of gravitational systems and detail our
generalization of Chandrasekhar calculation of the two-body
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collisional relaxation rate for the pair potentials (1), with soft
or hard regularizations at small distances. This leads us to write
parametric scalings which allow us to infer our classification
of the range of pair interactions. In the following section,
we describe the numerical simulations we use to explore the
validity of our analytical results, their initial conditions and the
macroscopic quantities we measure to characterize collisional
relaxation. In the next section, we present our numerical
results, first for the previously studied case of gravity, and
then for several cases with γ > 1 and γ < 1. We compare
then quantitatively the relaxation time obtained theoretically
with our simulations and, in the next section, we give numerical
evidence indicating that the maximum impact parameter scales
with the size of the system. In the final section, we draw our
conclusions.

II. RELAXATION RATES DUE TO TWO-BODY
COLLISIONS

The parametric dependence of the characteristic time τdyn

for mean-field evolution is given by that of the typical time
a particle needs to cross the system, of size R, under the
mean-field force:

τdyn �
√

mRγ+2

gN
, (5)

where m is the mass of each particle. The determination
of the parametric dependence of the characteristic time of
collisionality τcoll—and, as expected, of relaxation towards
thermodynamic equilibrium—is much less evident. For the
case of gravity (γ = 1) in three dimensions, Chandrasekhar
gave the first estimates in 1943 [34], through a calculation
of a diffusion coefficient in velocity space for an infinite
homogeneous self-gravitating distribution of particles. The
central hypothesis, as for short-ranged systems, was to suppose
that the main contribution to the collisional relaxation process
arises from two-body encounters. He calculated the variation
of velocity of a test particle undergoing a “collision” with a
particle of the homogeneous distribution, the global relaxation
process being the cumulative effect of such “collisions.” As we
will see in the next subsection the standard notion of impact
parameter appears in the calculations. Due to the assumption
of an infinite homogeneous distribution and to the long-range
nature of gravity, Chandrasekhar had to cut off the maximum
impact parameter allowed at some scale, which he chose to be
given by the typical interparticle separation.

More than twenty years after the paper of Chandrasekhar,
Hénon [35] did a new calculation following the hypothesis of
Chandrasekhar, but considering that all the impact factors up
to the ones of the size of the system would contribute to the
relaxation, instead of the ones of the order of the average
interparticle distance. There is then no need to introduce
artificially an upper cutoff in the impact parameter, as it
is naturally fixed by the size of the system. More recent
theoretical approaches, like, e.g., Refs. [21,36] (and references
therein), have followed a more complete approach, linearizing
the Boltzmann equation (2). This approach makes possible to
take into account not only local but also collective effects. This
approach is, however, very cumbersome analytically and does

not lead in practice to definite conclusions about the issues we
address here.

On the other hand, N -body computer simulations of the
relaxation problem have been performed to test the analytical
predictions. In three dimensions, such studies have been
developed only for the case of gravitational interaction. We
note, amongst others, numerical studies focusing on the
cosmological aspect [37], others focusing on the maximum
relevant impact parameter in the relaxation process [38–40].
After some controversy, it seems that the appropriate maximal
impact parameter is the size of the system (rather than the in-
terparticle distance as postulated initially by Chandrasekhar).
The study of the relaxation in softened potentials (see, e.g.,
Ref. [41]) give more indications in this direction. This is a
result we will confirm and provide new evidence for in this
paper.

In the rest of this section, we present our generalization
of the two body collisional relaxation time for any attractive
power-law pair potential of the form (1), with γ > 0 and a soft
or hard core regularization at r = 0, and any spatial dimension
d � 2. The reasons for these restrictions on γ and d become
evident in the calculation below. These calculations give us the
parametric dependence for the relaxation rate via two-body
collisions, � = τ−1

coll, in a virialized system. As discussed in
the introduction, if we assume that these processes are the
dominant ones in the collisional dynamics, we can then write
the condition for the existence of a regime in which a mean-
field (Vlasov) description of the dynamics is valid as [31]

� τdyn → 0 when N → ∞. (6)

Since QSS corresponds to the stationary (and thus virialized)
states of the Vlasov equation, condition (6) is also a necessary
one for the existence of such states.

A. Generalization of Rutherford scattering for generic
power-law interactions

We consider two particles of equal mass m, position vectors
r1 and r2, and velocity vectors v1 = ṙ1 and v2 = ṙ2. Their
relative position vector is denoted

r = r1 − r2 (7)

and their relative velocity V = ṙ. In their center of mass frame,
the velocities of the two particles are given by ±(V/2). Thus
if �V is the change in the relative velocity of the particles
in the two-body encounter, the changes in velocity of the two
particles in the laboratory frame, �v1 and �v2, (which are
equal to those in the center of mass frame) are

�v1 = �V
2

, (8a)

�v2 = −�V
2

. (8b)

The equations of the relative motion are those of a single
particle of mass m/2 with position vector r(t) subject to the
central potential.

We decompose �V as

�V = �V⊥e⊥ + �V‖e‖, (9)
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χ

b

e

e⊥

φ

FIG. 1. Trajectory of a particle in a two-body collision in the
center of mass frame, with a definition of the relevant quantities for
its analysis, notably the deflection angle χ .

where e‖ is a unit vector defined parallel to the initial axis of
motion, and e⊥ a unit vector orthogonal to it, in the plane of the
motion (see Fig. 1). In the center of mass frame, the collision
occurs as depicted in Fig. 1, which shows the definition of
the impact factor b, and the deflection angle χ = 2φ − π . As
energy is conserved in the collision, the magnitudes of the
initial and final relative velocity, V = |V|, are equal. It follows
that

�V⊥
V

= − sin(χ ), (10a)

�V‖
V

= 1 − cos(χ ). (10b)

The angle φ can be calculated, as a function of the impact
factor b, using the classic formula [42]

φ(b) =
∫ ∞

rmin

(b/r2)dr√
1 − (b/r)2 − 4v(r)/mV 2

, (11)

where rmin is the positive root of the denominator.
We consider now the case of a pure decaying power-law

pair potential,

v(r) = − g

rγ
(12)

and γ > 0. For g > 0, the corresponding force is attractive,
while for g < 0 it is repulsive. In what follows, we will
consider the attractive case, but we will discuss below also
the repulsive case. Indeed, it turns out that our essential results
hold in both cases.

The integral (11) leads naturally to the definition of the
characteristic length scale

b0 =
(

2|g|
mV 2

)1/γ

. (13)

Considering the attractive case, Eq. (11) may then be rewritten
as

φ(b) =
∫ ∞

rmin

(b/r2)dr√
1 − (b/r)2 + 2(b0/r)γ

. (14)

Changing to the variable x = b/r , we obtain

φ(b/b0) =
∫ xmax

0

dx√
1 − x2 + 2(b0/b)γ xγ

, (15)

10-4

10-3

10-2

10-1

100

101

10-1 100 101 102

b/b0

|Δ
V
|/V

γ = 1
γ = 5/4
γ = 3/2

FIG. 2. Absolute value of relative change in the perpendicular
(thin lines) and parallel (thick lines) components of the relative
velocity in a two-body encounter, for different attractive power-law
potentials. The behaviors at small and large values of b/b0 are well
described by the analytical expressions given in the text. Note that for
some values of b/b0 the change of velocity is zero, which corresponds
to particles that make one or several loops, with χ = 2πn, n ∈ N.

where now xmax is the positive root of the denominator. Since
xmax, for given γ , is a function of b/b0 only, it follows that φ

is also a function of b/b0 only.
Equation (14) can be solved analytically only in a few

cases, and notably for the case γ = 1 which corresponds to
gravity in d = 3. For the general (γ �= 1) case, the integral
can easily be computed numerically, and �V⊥

V
and �V‖

V
can

then be calculated. Figure 2 displays the results for a few
chosen cases. In order to derive analytically the parametric
dependencies of the two-body relaxation rate, it suffices, as
we will see, to have analytical approximations in the two
asymptotic regimes of soft (b/b0 � 1) and hard (b/b0  1)
collisions. The corresponding expressions have been derived
in a separate article [43] by one of us (BM) and another
collaborator. In what follows, we make use of the relevant
results of [43], where the full details of their derivations may
be found.

1. Soft collisions (b � b0)

When b � b0 the particle trajectories are weakly perturbed,
and the collision is said to be soft. It is shown in Ref. [43] that,
in this region, one has

χ (b/b0) = 2A(γ )(b0/b)γ + O((b0/b)2γ ), (16)

where

A(γ ) = √
π

�
(

γ+1
2

)
�

(
γ

2

) , (17)

with �(x) being the Euler Gamma function. As the angle of
deflection χ  1, it follows that

�V⊥
V

= −2A(γ )

(
b0

b

)γ

+ O((b0/b)2γ ) (18a)

�V‖
V

= 2A(γ )2

(
b0

b

)2γ

+ O((b0/b)4γ ). (18b)
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In Appendix A, an alternative derivation of Eq. (18a) is
presented.

2. Hard collisions (b � b0)

It is shown in Ref. [43] that, in this asymptotic regime,

χ (b/b0) = γπ

2 − γ
+ O((b/b0)α), (19)

where α = 2γ /(2 − γ ) for γ < 2/3, α = b/b0 ln (b0/b) for
γ = 2/3 and α = 1 for 2/3 < γ < 2. If γ � 2, collisions are
well defined with an asymptotic free state [43] only if

b > βb0, (20)

where

β = γ 1/γ

(
1 − 2

γ

) 2−γ

2γ

. (21)

For b � βb0, on the other hand, there is a finite time singularity,
i.e., the relative distance of the particles vanishes at a finite
time.

The first term in the asymptotic expansion Eq. (19) gives
the angle of deflection in the limit of arbitrarily small impact
factors, and shows that it depends on γ . While for the case
γ = 1 (i.e., gravity in d = 3) each particle velocity is exactly
reversed in the center of mass frame (χ = π ), the general result
for the deflection angle is different, and it increases to infinity
as γ → 2 from below. At γ = 4/3, each particle performs one
full loop around the center of mass and escapes asymptotically
in the same direction it arrived in, at γ = 12/7 each particle
performs two full loops etc., and as γ → 2 from below the
number of such loops diverges.

For γ � 2, as noted, there is in fact a singularity, with the
particles running into one another at a finite time. To include
this case in our treatment we must therefore assume that the
pair potential Eq. (12) is regularized at r = 0, so that there
is a well defined collision for any impact factor. It follows
from our analysis that this means that the asymptotic behavior
below some arbitrarily small scale must be either repulsive, or,
if attractive, diverging more slowly that 1/r2. In what follows,
this assumption will suffice to extend our results to the range
γ � 2.

B. Computation of the cumulative effect of many collisions

Following Chandrasekhar, we assume that thermal relax-
ation is induced by the randomization of particles velocity
by two-body collisions. In order to estimate the accumulated
effect of two-body collisions on a particle as it crosses the
whole system, we estimate first the number of encounters
per unit of time with impact parameter b. In doing so, we
make the following approximations: (1) the system is treated
as a homogeneous random distribution of particles in a d

dimensional sphere of radius R and (2) the initial squared
relative velocity of colliding particles is given by the variance
of the particle velocities in the system.

Each particle is then assumed to perform a simple homoge-
neous random walk in velocity space, with zero mean change
in velocity (because the deflections due to each encounter
have no preferred direction), and a positive mean squared
velocity which we determine below. In this approximation,

z

FIG. 3. The system is approximated as a perfectly spherical
distribution of particles with radius R.

we assume that the particles have rectilinear trajectories.
This approximation clearly breaks down in the case of hard
collisions, in which the trajectory is strongly perturbed. We
expect however the estimation of the number of collisions per
unit of time to remain correct in this case, because encounters
modify only the direction of the velocity, and not its modulus.

As illustrated schematically in Fig. 3, we now divide the
system in disks of thickness dz, and write the average number
of encounters with impact parameter between b and b + db of
a particle crossing this disk as

δn = BdN

Rd
bd−2 db dz, (22)

where Bd is a numerical factor which depends on the spatial
dimension d (e.g., B2 = 2/π , B3 = 3/2).

Multiplying Eq. (22) by the square of Eq. (10) with the
condition (15), and integrating from b = 0 to b = √

R2 − z2

and then from z = 0 to z = R, we then estimate the average
change in the velocity during one crossing of the system,
for the perpendicular and parallel components of the velocity,
respectively, as

〈|�V 2
⊥,‖|〉

|V 2| = 2BdN

(
b0

R

)d−1

I⊥,‖

(
b0

R

)
, (23)

where

I⊥,‖(xR) =
∫ xR

0
dx xd−2 �⊥,‖(x)

√
1 − x2

x2
R

, (24)

where x = b/b0, xR = R/b0 and

�⊥(x) = sin2 (χ (x)), (25a)

�‖(x) = [1 − cos (χ (x))]2. (25b)

Writing the expression for
〈|�V 2

⊥,‖|〉
|V 2| in this way allows

a simple and useful comparison with the case of particles
interacting by an exact repulsive hard core potential. Indeed,
it is straightforward to show (see e.g., Ref. [44]) that for
(infinitely) hard particles with a diameter σ , one has

χ (b) =
{

2 arccos
(

b
σ

)
if b � σ

0 otherwise
. (26)

Calculating
〈|�V 2

⊥,‖|〉
|V 2| for this case using exactly the same

approach used above, one obtains for the case σ = b0, exactly
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Eq. (23) with

I⊥ = 8

(d + 3)(d + 1)
, (27a)

I‖ = 4

d − 1
I⊥. (27b)

Let us return now to the expressions Eq. (24) for the case
of (attractive) power-law interactions. Given that xR � 1, we
can make the approximation

I⊥,‖(xR) ≈
∫ 1

0
dx xd−2 �⊥,‖(x)

+
∫ xR

1
dx xd−2 �⊥,‖(x)

√
1 − x2

x2
R

. (28)

The first integral gives the contribution due to hard collisions
(b < b0). It is finite provided only that the deflection angle is
well defined, i.e., provided only that the two-body collisions
is well defined. As we have discussed above this is true for
any γ < 2, and for γ � 2 if we assume the singularity at
r = 0 to be appropriately regularized. Thus this term gives

a contribution to
〈|�V 2

⊥,‖|〉
|V 2| which has precisely the parametric

dependencies of an exact repulsive hard core, differing only
by an overall numerical factor.

Considering now the second term, giving the contribution
from soft collisions (b > b0), we see that there are two different
cases according to the large x behavior of �⊥,‖: the integral
is convergent as xR → ∞ if and only if xd−1�⊥,‖(x) → 0 as
x → ∞. We thus infer from Eq. (18) the following:

(1) For 0 < γ < (d − 1)/2,

I⊥(xR) ≈ 4A2(γ )
∫ xR

0
dx xd−2−2γ

√
1 − x2

x2
R

(29)

= A2(γ )
√

π
�[d/2 − 1/2 − γ ]

�[d/2 + 1γ ]
x

d−1−2γ

R (30)

and I‖(xR)  I⊥(xR). Thus the integral is dominated by the
contribution of soft scatterings, for which the change in the
relative velocity is predominantly orthogonal to the initial
relative velocity. Replacing Eq. (29) in Eq. (23), we obtain
the scaling

〈|�V2|〉
V 2

≈ 〈|�V 2
⊥|〉

|V 2| ∼ N

(
b0

R

)2γ

, (31)

where

〈|�V|2〉
V 2

= 〈|�V⊥|2〉
V 2

+ 〈|�V‖|2〉
V 2

. (32)

(2) For γ = (d − 1)/2, which corresponds to gravity in
d = 3, the contribution from all impact factors from the scale
b0 must be included and

I⊥(xR) ≈ 4A2(γ ) ln xR. (33)

As in the previous case, I‖(xR)  I⊥(xR). Note that, given
xR � 1 this result for I⊥(xR) is very insensitive to precisely
where the lower cut-off at b ∼ b0 is chosen. We obtain

therefore

〈|�V2|〉
|V 2| ∼ N

(
b0

R

)d−1

ln

(
R

b0

)
. (34)

(3) For γ > (d − 1)/2, we have

I⊥,‖(xR) ≈ I⊥,‖(∞) ≈
∫ ∞

0
dx xd−2 �⊥,‖(x), (35)

which is a constant that can be numerically calculated in a
straightforward way for any given pair potential in this class.
We obtain therefore

〈|�V2|〉
V 2

∼ N

(
b0

R

)d−1

. (36)

In the last case, for sufficiently rapidly decaying potentials, we
obtain therefore the same scaling as for the case of hard core
particles of diameter b0.

C. Scalings with N of the relaxation rate in a QSS

Using these results, we now determine how the relaxation
rate scales with the parameters of the system. Assuming the
system to be in a QSS, we can then obtain its scaling as a
function of N alone. For clarity, we drop irrelevant numerical
prefactors, but these will be analyzed further in Sec. VI.

We define the relaxation rate � as the inverse of the time
scale at which the normalized average change in velocity
squared due to collisions is equal to one. Given that the
estimated 〈|�V|2〉

V 2 is the average change in a crossing time τdyn,
we have therefore

�τdyn � 〈|�V|2〉
V 2

. (37)

In order to obtain the scaling with N from the above results,
we need to determine how the ratio b0/R scales with N . Using
the definition (13) and assuming, as stated above, that the
modulus of the relative velocity of colliding particles can be
taken to be of the same order as the typical velocity of a single
particle v, we have(

b0

R

)γ

∼ g

mv2Rγ
∼ 1

N

gN2

(mNv2)Rγ
∼ 1

N

U

K
, (38)

where K is the total kinetic energy and U the total potential
energy of the system.

If we now assume the system to be in a QSS, i.e., in virial
equilibrium, the virial theorem gives that

2K + γU = 3PV, (39)

where P is the pressure of the particles on the boundaries if
the system is enclosed, and P = 0 if the system is open.

By definition the mean-field scaling with N makes each
term in Eq. (39) scale in the same way with N so that the
relation remains valid independently of N (up to finite N

fluctuations). Thus using this scaling we can infer that

b0 ∼ RN−1/γ . (40)

Using Eqs. (31), (34), and (36), we then infer the following
behaviors.
(1) For 0 < γ < (d − 1)/2,

� τdyn ∼ N (b0/R)2γ ∼ N−1. (41)
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(2) For γ = (d − 1)/2,

� τdyn ∼ N−1 ln (N ). (42)

(3) For γ > (d − 1)/2,

� τdyn ∼ N−(d−1−γ )/γ . (43)

It follows that that the condition (6) only holds for potentials
with γ < d − 1. Only in this case therefore can the QSS be
supposed to exist as we have assumed. For γ � d − 1, on the
other hand, the relaxation induced by two-body collisionality
occurs on a time scale which is short compared to a particle
crossing time, and a stationary nonthermal state cannot exist
on the latter time scale, i.e., a QSS cannot exist.

D. Relaxation rates for softened power-law potentials

We consider now the case in which the power-law potential
is “softened” at short distances, i.e., regulated so that the
modulus of the force between two particles is bounded above
at some finite value. The principle motivation for considering
this case here is that, in practice, even for γ < 2, we are
unable numerically to test directly the validity of the scaling
predictions Eqs. (36)–(41) for the exact (singular) potentials:
the numerical cost of integrating sufficiently accurately hard
two-body scatterings over the long time scales required is
prohibitive. Instead we will consider power-law potentials
softened at a scale ε, and study the scaling with both N and ε

of the relaxation rates in the numerically accessible range for
these parameters.

A detailed analysis of the two-body scattering for such
softened power-law potentials has been given also in Ref. [43].
We again use the results of this paper to infer, using Eqs. (23)–
(25) above, the parametric scalings of the relaxation rate. As
in the previous section, we defer until later a discussion of the
exact numerical factors, for the specific smoothing functions
used in our numerical simulations.

As softening modifies the force below a characteristic scale
ε, its effect is to modify the deflection angles for impact factor
b below a scale of the same order. From the considerations
above, it is then evident that, for ε < b0, such a softening does
not change the parametric scalings: it can only change the
numerical value of the (finite) first integral in Eq. (28). For
ε > b0, on the other hand, the second integral in Eq. (28) is
modified because the functions �⊥,‖ are modified up to x ∼
ε/b0. Assuming that ε  R, this will lead to a modification of
the parametric scaling of the full expressions for 〈|�V|2〉

V 2 when
γ � (d − 1)/2. In Ref. [43], it is shown that, when ε � b0, the
deflection angle can be approximated as

χ �
{

2B(γ )
(

b0
ε

)γ (
b
ε

)
if b < ε∗

2A(γ )
(

b0
b

)γ
if b > ε∗ , (44)

where B(γ ) is a finite constant the exact value of which
depends on the functional form of softening used [and A(γ ) is
as defined in Eq. (17)]. The scale ε∗ is of the same order as ε

[from continuity of Eq. (44) at b = ε∗, their ratio is given by

ε∗/ε ∼ (A/B)
1

1+γ ].
Using Eq. (44), we can now calculate approximately the

second integral in Eq. (28) for the cases in which the parametric

dependence of their values are modified by the smoothing (with
ε > b0).

(1) For γ > (d − 1)/2 (taking xR → ∞):

I⊥ �
[
B2(γ )

d + 1
+ A2(γ )

2γ − d + 1

](
ε

b0

)d−1−2γ

, (45a)

I‖ �
[

B4(γ )

4(d + 3)
+ A4(γ )

4γ + 1 − d

](
ε

b0

)d−1−4γ

, (45b)

and therefore I⊥ � I‖ if ε � b0.
(2) For γ = (d − 1)/2, assuming xR � (ε/b0) (i.e., ε 

R), we obtain

I⊥ � A2(γ ) ln

(
R

ε

)
, (46)

while I‖ is given as Eq. (45b), and I⊥ � I‖ if ε � b0.
Using these results we infer finally that the scalings of the

relaxation rates of a QSS [with b0 scaling as in Eq. (40)] in the
large N limit are the following.

(1) If 0 < γ < (d − 1)/2),

� τdyn ∼ N−1, (47)

i.e., the same as in the absence of smoothing.
(2) If γ > (d − 1)/2, then

� τdyn ∼ N−1
( ε

R

)d−1−2γ

. (48)

(3) If γ = (d − 1)/2, then

� τdyn ∼ N−1 ln

(
R

ε

)
. (49)

In summary, the correct parametric scaling for the two-body
relaxation rates of a QSS, in the case of a power-law potential
softened at a scale ε > b0, are well approximated by simply
introducing a cutoff at an impact factor of order ε (and therefore
considering only the contribution from soft collisions).

For what concerns the existence of QSS, we thus conclude
that, with a softened power-law potential, one can satisfy the
condition (6) even for any γ � d − 1. Indeed, taking ε/R

to be independent of N (i.e., scaling the softening with the
system size), we obtain in all cases that �ε τdyn ∼ N−1. More
generally, it is straightforward to deduce what scaling of ε with
N is required to satisfy the condition (6) in the mean-field limit.

III. NUMERICAL SIMULATIONS

We have performed numerical simulations in d = 3 of
the evolution of N particle systems, extending to sufficiently
long times to observe their collisional evolution.2 As we have
discussed in the previous section, exact power-law interactions
with γ � (d − 1)/2 lead to strong collisions at impact factors
b < b0. Indeed, as we have seen, when γ increases much
above unity, particles can even make multiple loops around
one another during collisions [cf. Eq. (19)]. The smaller

2For a recent numerical study of these systems focusing on the
shorter time (mean-field) evolution i.e., collisionless relaxation, see
Refs. [45,46].
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is b, the shorter is the characteristic time for a collision
compared to the mean-field time and therefore the greater is the
temporal resolution required for an accurate integration (and,
in particular, conservation of the energy). This means it is too
expensive numerically, even for a few thousand particles, to
accurately simulate such a system for times long enough to be
comparable to the predicted relaxation times. Indeed, we have
seen that the calculation we have done predicts that, even for
(d − 1)/2 < γ < d − 1 (i.e., 1 < γ < 2 in d = 3), relaxation
should be dominated by strong collisions with b ∼ b0 but
nevertheless � τdyn diverges in the mean-field limit.

For these reasons, we employ a potential with a softening
which is sufficiently large to suppress strong collisions.
The predicted scalings we can test are thus those given in
Sec. II D, rather than the ones corresponding to pure power-law
potentials given in Sec. II C. By studying also the scalings with
the softening ε at fixed N , however, we can indirectly test in
this way the extrapolation to the scalings in Sec. II C.

A. Code

We use a modification of the publicly available gravity code
GADGET2 [47]. The force is computed using a modified Barnes
and Hut tree algorithm, and we have modified the code in order
to treat pair potentials of the form Eq. (1) and softened versions
of them (which are those we use in practice). We use an opening
angle θ = 0.001, which ensures a very accurate computation
of the force. The evolution of the system is computed using
a Verlet-type Drift-Kick-Drift symplectic integration scheme.
The simulations are checked using simple convergence tests
on the numerical parameters, and their accuracy is monitored
using energy conservation. For the time steps used here it is
typically conserved to within 0.1% over the whole run, orders
of magnitude smaller than the typical variation of the kinetic
or potential energy over the same time.

B. Initial and boundary conditions

As initial conditions we take the N particles randomly dis-
tributed in a sphere of radius R = 1/2, and ascribe velocities to
particles so that each component is an independent uniformly
distributed variable in an interval [−ξ,ξ ] (i.e., “water-bag”
type initial conditions in phase space). The parameter ξ is
chosen so that the initial virial ratio is unity, i.e., 2K/|U | = γ .
We make this choice of initial conditions because it is expected
to be close to a QSS, to which (collisionless) relaxation should
occur “gently,” and this is indeed what we observe. We have
chosen to enclose the system in a cubic box of size L = 1,
in order to avoid the complexities associated with particle
evaporation. This constraint is imposed in practice using soft
boundary conditions, which are implemented by changing
the sign of the ith component of the velocity when the ith
component of the position lies outside the simulation box. We
use a time step of the order of 10−3τdyn (which provides well
converged results), where τdyn is defined precisely below.

C. Softening

We have performed simulations using two different
softening schemes: a “compact” softening and a “Plum-
mer” softening. The former corresponds to a two-body

10-1

100

10-1 100 101

Δ
V

2 ⊥
ε

Δ
V

2 ⊥
0

b0

γ = 5/4, compact
γ = 5/4, plummer
γ = 3/2, compact
γ = 3/2, plummer

FIG. 4. Numerical evaluation of Eqs. (11) and (23) normalized
to the value for ε/b0 → 0 for γ = 5/4 and 3/2. The power-law lines
are the theoretical scaling (48).

potential

vC(r,ε) =
{ − g

rγ if r � ε

− g

εγ v(r/ε) if 0 � r � ε
, (50)

where v(x) is a polynomial, of which the exact expression
is given in Appendix B. It is chosen so that the potential
and its first two derivatives are continuous at r = ε, and it
interpolates to a force which vanishes at r = 0 via a region in
which the force becomes repulsive. The Plummer smoothing
corresponds to the simple potential

vP
ε (r) = − g

(r2 + ε2)γ /2
, (51)

which is everywhere attractive.
As we have noted, it is straightforward to calculate

numerically the relaxation rates for these softened potentials,
using Eqs. (11) and (23). We show in Fig. 4 the ratio of the

resultant 〈|�V2
⊥|〉

〈|V 2|〉 compared to its value for the exact power
law, for γ = 5/4 and 3/2, as a function of the ratio ε/b0. As
described in the previous section, we observe that, for ε  b0,
the effect of the softening is negligible, while for ε � b0, we
recover a simple power-law scaling with ε, which agrees with
that derived above for this regime, cf. Eq. (48). We note that in
Fig. 4 the normalization for the asymptotic Plummer curves is
greater than for the compact softening.

Performing simulations with these two different softening
schemes allows us to test not just the robustness of the
agreement with the theoretical scalings derived above, which
should not depend on the details of the softening scheme. It
also allows us to test more quantitatively for the correctness
of the theoretical predictions for the relaxation rates, which
predicts also the relative amplitude of the relaxation rate in the
regime ε � b0. To facilitate this comparison, it is convenient
to define an effective softening εeff obtained by assuming that
all the collisions are soft, i.e.,

χε �
{

0 if b < εeff

2A(γ )
(

b0
b

)γ
if b � εeff

. (52)

Computing the same quantity as in Fig. 4, we can determine,
by matching with the result for any other softening scheme,
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TABLE I. Factor α [see Eq. (53)] to compute the effective
softening εeff (see text) in units of ε, for the two different softening
schemes used in this work.

γ compact core plummer core

1 0.80 1.69
5/4 0.74 1.55
3/2 0.75 1.50

a value of εeff in units of ε. We can compute therefore an
effective softening using

εeff = α ε, (53)

where the values of α are given in Table I for our two softening
schemes, for the values of γ we explore here (in the range
γ � 1 where the softening plays a role). The result for the
case of gravity and the Plummer softening is in agreement
with that derived in Ref. [41] (see also Ref. [48]).

Thus our analytical calculations predict that the relaxation
rates of QSS measured with the different softening schemes
should not only scale in the same way as a function of ε

(for ε � b0) but also they should be equal at values of ε

corresponding to the same εeff .

D. Sets of simulations

We performed, for each value of γ , and each softening
scheme, two different kinds of sets of simulations. One set is
at fixed particle number N and a range of different values of
the softening ε, while in the other set ε is kept constant and N

is varied. To refer to the simulations, we will use the notation
C(γ ; N,ε) for a simulation with the compact (“C”) softening
(1), power-law exponent γ , particle number N , and softening
ε. Similarly, we denote P(γ ; N,ε) a set of simulations with
the Plummer (“P”) smoothing.

The simulations on which our results below are based are
the following.

(1) A set C(γ ; N = 203,ε) for γ = 1/2, γ = 1, γ = 5/4
and γ = 3/2 with the values of ε listed in the first column of
Table II.

(2) A set C(γ ; N,ε/L = 0.005) for γ = 1/2, γ = 1, γ =
5/4 and γ = 3/2 with the values of N listed in the third column
of Table II.

(3) A set P(γ ; N = 203,ε) for γ = 5/4 and γ = 3/2 with
the values of ε listed in the second column of Table II.

(4) A set P(γ ; N,ε/L = 0.005) for γ = 5/4 and γ = 3/2
with the values of N listed in the third column of table Table II.

E. Numerical estimation of the relaxation rate

To measure numerically the relaxation rate of a QSS, we
study the temporal evolution of different appropriate quan-
tities. We consider principally two quite different quantities:
on the one hand, the total kinetic (or potential) energy of the
system, and on the other hand, the averaged quantity defined
as

�(t) ≡ 〈(e(t) − e(t∗))2〉
2k2(t∗)

, (54)

TABLE II. List of simulations: the first column gives all the values
of the softening parameter ε at fixed number of particles N = 203 for
the two sets of simulations P and C corresponding to a different kind
of softening; the second column gives all the values of the softening
parameter ε at fixed number of particles N = 103; and the third gives
the values of the number of particles N employed in two sets of
simulations P and C corresponding to a different kind of softening
at fixed ε/L = 0.014. The † means that this simulation has been
performed only for the case γ = 5/4, an accurate conservation of
energy was not achieved for the other values of γ .

ε/L with N = 203 ε/L with N = 103 N with ε/L = 0.014

0.00056† – 103

0.0014 – 123

0.0028 – 163

0.0056 0.0056 203

0.0084 0.0084 263

0.0112 0.0112 303

0.014 0.014
0.028 0.028
0.056 0.056
0.084 0.084
0.112 0.112

where e(t) is the total energy of a single particle (at time t), and
k(t) is the kinetic energy per particle. The time t∗ is an initial
chosen time (and thus t > t∗) at which the system has relaxed,
starting from the initial condition, to a QSS (typically we have
t∗ ∼ 10 τdyn). The brackets 〈·〉 indicate an average over all the
particles in the system.

The variation of the kinetic energy K (or potential energy
U ) is a simple probe of the macroscopic evolution of the
system. For a system evolving through a continuum of
virialized QSS, the virial relation (39) holds to an excellent
approximation at all times, and thus the variation of K is linked
directly to the variation of the pressure on the system wall.
Provided this latter term is significant, it will be expected to be
a good indicator of the evolution. The second quantity probes
more directly the microscopic evolution of the quantities con-
sidered in the theoretical calculation. Indeed, the calculation
in Sec. II A provides a prediction for the average variation
of the velocity of particles due to collisions. The difficulty
with measuring this directly is that the velocity of particles
also changes continuously because of the mean-field potential.
Particle energy, on the other hand, remains exactly constant in
a QSS, and its change is in principle due to collisional effects,
which we posit here are dominated by the two-body collisions.

F. Other indicators of relaxation

In order to determine whether the system is in a QSS
(and hence not in thermal equilibrium), and also to provide
further tests of its macroscopic evolution due to collisional
effects, we also compute moments of the system’s velocity
distribution. If the system is at thermal equilibrium, the
probability distribution of velocities must be Gaussian for each
component with zero mean, and therefore all odd moments
of such components must vanish, while even moments of
order higher than two are determined as a simple power of
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FIG. 5. Results of simulations for the case of gravity (γ = 1). (a) Evolution of the total kinetic energy normalized to its initial value, for
N = 203 and different values of ε, i.e., the set of simulations C(1; 203,ε/L); (b) evolution of the normalized total kinetic energy with ε = 0.014
and a range of different values of N , i.e., the set of simulations C(1; N,0.014); (c) velocity distribution for the simulation C(1; 203,0.0028)
at t = 20τdyn; (d) evolution of φ4 and φ6 for the simulations C(1; 203,0.0028) and C(1; 203,0.02); (e) density distribution for the simulations
C(1; 203,ε) at varying ε and t = 20τdyn; (f) density distribution for the simulations C(1; i,0.01) at t = 20τdyn; and (inset) the same quantity for
the simulation C(1; 303,0.01) in a log-log plot (note the density drops rapidly at R/L ≈ 1/3).
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FIG. 6. Measures of relaxation times for the case of gravity (γ = 1). (a) Evolution of the parameter �(t) for chosen values of ε and
fixed N = 203, i.e., in the set of simulations C(1; 203,ε/L); (b) evolution of �(t) for the range of N simulated and ε = 0.014, i.e., the set
of simulations C(1; N,0.01); and (c) plot of �τdyn as a function of ε/L for both N = 203 and 103. In the latter case, following Eq. (49), the
amplitude of the relaxation rate has been multiplied by a factor of 8 in order to collapse both the scalings on a single curve; the straight line is
the theoretical scaling �τdyn ∼ ε−1; (d) plot of � as a function of N for fixed ε/L = 0.01.

the variance: 〈
v2n

i

〉 = (2n − 1)!!
〈
v2

i

〉n
.

In order to detect the deviation from the Gaussian distribution
of the velocity, we use the first two even moments of order
larger than two, normalized so that they are zero in the case of
a Gaussian distribution:

φ4 =
〈
v4

i

〉
3
〈
v2

i

〉2 − 1, (55)

φ6 =
〈
v6

i

〉
15

〈
v2

i

〉3 − 1, (56)

where · denotes average over the coordinates.

G. Units

As noted above, we take the side of the enclosing box
L = 1. The mean-field characteristic time is defined [following
Eq. (5)] as

τdyn =
√

mLγ+2

gN
(57)

and we report our results for velocities in units of

v∗ = L

τdyn
=

√
gN

mLγ
. (58)

IV. RESULTS FOR CASE OF GRAVITY (γ = 1)

In this section, we check our numerical and analytical
results using the canonical case of gravity as an established
benchmark.
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FIG. 7. Results of simulations for the case γ = 5/4. (a) Evolution of the normalized total kinetic energy for different values of ε at fixed
N = 203, i.e., the set of simulations C(5/4; 203,ε); (b) same quantity but for varying N and fixed ε/L; (c) velocity distribution for the simulation
C(5/4; 203,0.0028) at t = 10τdyn; and (d) evolution of φ4 and φ6 for the simulation C(5/4; 203,0.0028).

A. Qualitative inspection of evolution

Figure 5(a) shows the evolution of the total kinetic energy
normalized to its initial value at t = 0, for different values
of the softening ε. We observe that, for sufficiently small
softening, and sufficiently short times, the curves match very
well. We interpret this to be because they are following
the same mean-field evolution. Further, the kinetic energy
(and viral ratio) shows a rapid relaxation (by t ≈ τdyn) to
relatively small and progressively damped oscillations around
an approximately stationary value. This is the familiar mean-
field relaxation to a QSS, which in practice we will consider
to be established below from t ≈ 10τdyn. For larger times, we
observe a slow linear drift in time of the average value of the
kinetic energy, which can be interpreted as a signature of the
slow collisional relaxation process. In line with the prediction
of Eq. (49), this collisional relaxation is suppressed when
the softening increases. Figure 5(b) compares the evolution
of systems with a fixed (compact) softening but different

number of particles. We observe a similar behavior to that in
the previous plot, and very consistent with the interpretation
given of this evolution as the relaxation to a QSS: we
observe a drift away from the almost stationary kinetic energy,
which develops more slowly as the number of particles N

increases.
Figure 5(c) shows, for the simulation C(1; 203,0.0028), the

velocity distribution at t = 20τdyn. We observe that the tails
of the distribution are clearly non-Gaussian, and thus that the
system is not at thermal equilibrium. This is confirmed by
the evolution of the functions φ4 and φ6, which are plotted in
Fig. 5(d). They are clearly nonzero, indicating a non-Gaussian
velocity distribution, and further, show manifestly a slow
growth on a longer time scale which is indicative of relaxation
towards a Gaussian distribution. Finally, as shown in Figs. 5(e)
and 5(f), respectively, the density profile (i.e., mean density in
spherical shells centred on the center of mass of the system) at
t = 20τdyn appear to be independent of the parameters ε and
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FIG. 8. Tests of scaling of measured relaxation rates: (a) �τdyn as a function of ε (compact softening), for the cases γ = 5/4 and 3/2 in
simulations; and (b) as a function of N for γ = 5/4 and 3/2; (c) collapse plot at N = 203 constant and varying ε for γ = 5/4 (upper curves,
all the curves have been multiplied by a factor of 1.25) and γ = 3/2 (lower curves); and (d) collapse plot at constant ε/L = 0.1 and varying
N for γ = 5/4 (lower curve) and γ = 3/2 (upper curve).

N , as they should be if this profile is indeed characteristic of a
QSS.

B. Scaling of the relaxation rate

Figures 6(a) and 6(b) show the evolution of the collisional
relaxation parameter �(t), defined in Eq. (54), as a function
of time, for different values of ε and N . We estimate the
relaxation rate as the slope of a linear fit to �(t) at short times.
Inspecting Fig. 5(a) or 5(b), we assume that the QSS has been
reached at t = 10τdyn, and we take the reference time t∗ to
evaluate the slope of �(t) as t∗ = 20τdyn. We can estimate the
value of b0 using Eq. (13) by measuring the relative velocity
from the simulation. This gives b0/L ≈ 8.8 × 10−5. As this is
considerably smaller even that the smallest softening used, we
expect that the relaxation rate will scale as in Eq. (49) rather
than Eq. (42). We show in Figs. 6(c) and 6(d) the measured
scalings of the relaxation rate with ε and N respectively. We

observe that there is indeed very good agreement with the
theoretical scaling of Eq. (49).

V. RESULTS FOR POTENTIALS WITH γ �= 1

We now consider the case of power-law interactions other
than gravity. We consider first pair interactions which decrease
more rapidly at large separations than the gravitational one,
i.e., γ > 1, and then the case γ < 1.

A. Interactions decaying faster than gravity (γ > 1)

We present results for two specific cases: γ = 5/4 and 3/2.
As discussed above we do not consider larger values because,
as predicted by the our analytical calculations, the two-body
collision rates increase rapidly as γ does, making it more and
more difficult numerically to separate the associated time scale
from the mean-field one. Indeed, from Eq. (48), it follows that,
at fixed N , the relaxation rate scales as ε−2γ .
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Figures 7(a) and 7(b) display results for the evolution of the
total kinetic energy in the case γ = 5/4. We observe a very
similar behavior to that in the gravitational case: the curves
are superimposed at the early stage of evolution, and start to
separate as time increases. Consistent with the interpretation
of this drift as due to two-body relaxation, we observe that it
becomes slower for larger N and larger ε. Figure 7(c) shows the
velocity distribution at t∗ = 10τdyn, and Fig. 7(d) the temporal
evolution of the parameters φ4 and φ6 starting from this time.
The velocity distribution is clearly initially non-Gaussian but
apparently evolves progressively towards a Gaussian. We do
not display our results for the case γ = 3/2, but very similar
behaviors are again observed.

We estimate the relaxation rate in the same manner as
we did above for the case of gravity, using the evolution
of the indicator �(t) (which we do not plot) starting from
the reference time t∗ (with t∗ = 10τdyn for γ = 5/4, and
t∗ = 5τdyn for γ = 3/2). Estimating again the value of b0

using Eq. (13), we obtain b0/L ≈ 3.7 × 10−4 for γ = 5/4,
and b0/L ≈ 8.7 × 10−4 for γ = 3/2. As in the case of gravity,
these are therefore smaller than or of the same order as the
minimal softening ε used, and we thus expect that the scaling
of the relaxation rate should be given by Eq. (48).

Figure 8(a) shows the measured relaxation rate for a range
of softenings ε (for compact softening) at constant particle
number N = 203, for both γ = 5/4 and 3/2. Figure 8(b)
shows the scaling of the relaxation rate at varying N and
constant ε/L = 0.01. The error bars have been determined as
the statistical error in the fit of �, and are smaller than the size
of the symbols. We observe that there is very good agreement
between the scalings measured and the theoretically predicted
one (48). For the largest values of ε we observe a departure
from the theoretical scaling. This is due to the finite size of the
system (when ε is around one tenth of the size of the system,
where the latter is estimated from the fall-off of the density
profile).

We have considered above collisional relaxation over time
scales over which the parameters used to monitor evolution
change by a small amount. In principle, the predicted scalings
should apply also on longer time scales, provided the scale
introduced by the softening length is sufficiently small that
it does not affect significantly the properties of the QSS.
Figure 8(c) shows the temporal evolution of the normalized
total kinetic energy for γ = 5/4 (upper curves) and γ = 3/2
(lower curves) for a constant particle number N and a range of
ε. The time axis has been rescaled in line with the theoretically
predicted scaling (43). We observe a good superposition of
the curves for the smaller values of ε, while for softening
approaching the size of the system the observed relaxation
rate is suppressed compared to the theoretical prediction, just
as for the shorter time relaxation [see Fig. 8(a)]. Figure 8(d)
shows an analogous collapse plot but for a (small) constant
ε and varying N , with the time axis now rescaled with N

following (43). We observe a very good match between the
different curves over the whole duration of the runs.

B. Results: case γ < 1

In this case, we have seen that the predicted scaling of the
relaxation rate is very simple: inversely proportional to N ,
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FIG. 9. Evolution of the kinetic energy for systems with γ = 1/2:
(a) for a range of different values of ε at fixed N = 203 and (b) for a
range of N different number of particles at fixed ε = 0.0028. In the
latter plot, the time variable has been rescaled with N in line with the
theoretically predicted scaling of Eq. (47).

and independent of the softening [cf. Eq. (47)]. This behavior
is a consequence of the fact that the dominant contribution
comes from the largest impact factor, which we have assumed
to scale with the system size. To test this prediction, we have
simulated the case γ = 1/2. Figure 9(a) shows the evolution of
the normalized kinetic energy as a function of time for a range
of (compact) softenings ε, while Fig. 9(b) shows the same
quantity for a range of N at fixed (small) ε, as a function of a
time variable linearly rescaled with N in accordance with the
predicted scaling. We observe that the results are in excellent
agreement with the theoretical predictions.

VI. TESTS OF ANALYTICAL PREDICTIONS:
BEYOND SCALING

In the previous sections, we have tested numerically the
validity of the theoretical scaling relations derived in the
first part of the paper. We now examine further how well
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FIG. 10. Measured relaxation rates as a function of εeff for the two different softening functions, for (a) γ = 5/4 and (b) 3/2.

the amplitudes of the measured relaxation rates match the
predictions.

As we have discussed (see also Ref. [13]), the approach we
have adopted in deriving two-body collision rates, following
that used originally by Chandrasekhar for gravity, makes
a number of very strong simplifying assumptions which
make the calculation intrinsically inaccurate, notably: spatial
homogeneity of the system and the assumption that all
collisions take place at a fixed relative velocity given by the
velocity dispersion. Further, the “largest impact factor,” which
we have taken to be given by the system size, is not in fact a
precisely defined quantity and indeed it is often treated as a free
parameter (see, e.g., Ref. [49] for a discussion in the context
of the orbit-averaging technique). Other collisional effects that
have been identified through the study of kinetic equations,
such as orbit resonances and various collective effects (see
e.g., Ref. [23]), are also evidently not taken into account.
Thus, even if incoherent two-body scatterings are the dominant
collisional process, we cannot expect the calculation method
given to provide a very precise prediction for the amplitudes
of the relaxation rates. Nevertheless, the fact that the predicted
scalings turn out to be in such good agreement with those
observed, one would expect the quantitative discrepancies
might not to be too large.

A. Effect of softening function

In Secs. II D and III C, we have discussed how the softening
of the potential at small scales affects the predicted relaxation
rate. The predicted modification depends, in general, not just
on the value of the softening scale, but on the detailed form of
the softened potential. We have noted, however, that, for ε �
b0, the effect of any such smoothing is an overall amplitude
shift [cf. Fig. (4)]. This allowed us to define, for any softening
potential, a constant α giving an effective softening εeff = αε.
The latter is the value of the softening of a reference softened
potential which is sharply cutoff at εeff , which gives the same
predicted relaxation rate as the actual softened potential. The
values of α for the two potentials (compact and Plummer) we
have employed are given in Table I.

Thus the theoretical calculations of the two-body relaxation
rates make a prediction about the relative amplitude of the
relaxation rates for our two different smoothings, which we
should expect to hold even if the prediction of the absolute
amplitude of both may be incorrect. Figures 10(a) and 10(b)
shows the relaxation rate measured in simulations with N =
203, as a function of the calculated εeff over a wide range. The
superposition of the two curves is almost perfect, in line with
the theoretical prediction.

B. Detailed comparison of relaxation rates

We now compare directly the amplitudes of the predicted
and measured relaxation rates. Table III shows, for the
different values of γ we have simulated, the results of this
comparison. The second column gives the numerical value
of b0 ≈ (g/(m〈v2〉))1/γ

, where 〈v2〉 is the velocity dispersion
measured at t = 20τdyn in the simulations (we have used that
〈V 2〉 � 2〈v2〉). Using this value for b0, and taking R = 0.3 for
the system size [cf. Figs. 5(e) and 5(f)], we have calculated
numerically the predicted �τdyn shown in the third column
(“Theory”) using Eq. (23). The fourth column (“Numerics”)
gives the value of �τdyn estimated in our simulations from the
short time evolution of the normalized total kinetic energy
K(t)/K(t0) as described in Sec. IV B. Comparing the last
columns we find that, despite the many crude approximations

TABLE III. Comparison of the theoretical and measured relax-
ation rates in the simulations. The second column corresponds to
an estimation of b0, the third one to the estimation of 〈|�V2|〉/|V 2|
using Eq. (23) and the fourth one the relaxation time measured in the
simulations (see text).

γ b0 ≈ (g/(2m〈V 2〉))1/γ Theory Numerics

1/2 9.2 × 10−8 7.4 × 10−3 4.6 × 10−4

3/4 8.4 × 10−6 1.4 × 10−2 1.1 × 10−3

1 8.8 × 10−5 0.016 4.6 × 10−3

5/4 3.7 × 10−4 0.059 0.023
3/2 8.7 × 10−4 0.017 0.24
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performed in the derivation of the relaxation rate we obtain,
as we have seen, not only the right scaling with the relevant
parameters, but also a relatively good quantitative agreement
for the amplitudes for all the cases simulated, with an overall
discrepancy in the normalization varying between a factor one
and eight.

C. Constraining the maximum impact factor

Going back to the original derivation of the two-body
relaxation rate by Chandrasekhar, there has been a debate
about the correct choice of the maximum impact parameter.
In Sec. II A, we have argued that it should be assumed to be of
the order of the size of the system, and we have obtained our
results making this hypothesis.

For the case γ � (d − 1)/2, which is dominated by the
largest impact factors, we can in principle test this hypothesis.
If, instead of Eq. (41), we fix an arbitrary maximum parameter
bmax, it is straightforward to show that we obtain

�τdyn = C̃N−1

(
R

bmax

)2γ−d+1

, (59)

where C̃ is a numerical coefficient (depending only on γ and
d). If we now assume that bmax ∼ RN−λ, we obtain

�τdyn ∼ Nμ, (60)

where μ = λ(2γ − d + 1) − 1. The case λ = 0 corresponds
to the assumption we have made up to now, and the result
(41). The case λ = 1/d corresponds, on the other hand, to the
assumption that bmax scales in proportion to the interparticle
distance (as originally assumed by Chandrasekhar [9]). Now
our numerical results in Sec. V indicate that, for the cases
γ = 1/2 and γ = 3/4, that �τdyn ∼ N−1, which corresponds
to μ = −1 and therefore λ = 0.

In the specific case γ = (d − 1)/2, i.e., gravity in d = 3,
it is in fact possible to quantify the maximum impact factor
rather than just its scaling. Instead of Eq. (49) (replacing ε by
εeff following the discussion in Sec. III C), we have

�τdyn = D̃N−1 ln

(
bmax

εeff

)
, (61)

where D̃ is a (calculable) numerical coefficient. Using the
simulations presented in Sec. IV, we can fit very well the
relaxation rate with

�τdyn = ln

(
L

3εeff

)
7.2

N
. (62)

Comparing these last two equations, we have that α ≈ 0, and,
further, that bmax ≈ L/3 ≈ R/3. This size corresponds with
the sharp fall-off of the density profile shown in the inset
of Fig. 5(f). To check that bmax does not depend on N , we
did another set of simulations with the same parameters, but
N = 103 particles. From these we obtained the scaling of the
relaxation rate as a function of ε plotted in Fig. 6(c), in which,
following Eq. (49), the relaxation rate has been multiplied by
a factor of eight. We thus obtain very good agreement with the
predicted scaling. Our findings confirm therefore the results
of Farouki and Salpeter [38,40], who found that the maximum
impact parameter should be taken of order of the size of the
system.

VII. CONCLUSION

In this paper, we have studied collisional relaxation in
systems of particles interacting with a power-law potential
v(r → ∞) ∼ 1/rγ (1), introducing a regularization of the
singularity in the force as r → 0 when necessary. In our ana-
lytical calculations, we have generalized the “Chandrasekhar
approach” in the case of gravity to such potentials. We have
also included the contribution of hard collisions rather than just
weak collisions, in which the mean-field trajectories of the par-
ticles are weakly perturbed, which is the approximation usually
found in the literature, see e.g., Ref. [23]. We have found that
the collisional dynamics is dominated by (1) weak collisions,
if γ < (d − 1)/2, and (2) hard collisions, if γ > (d − 1)/2,
while the case γ = (d − 1)/2, which corresponds to gravity
in d = 3, is at the threshold. Moreover, we considered the
large N , mean-field (or Vlasov) limit scaling of the two-body
relaxation rate, assuming the considered particle system to
be in viral equilibrium. In absence of force regularization
(other than an infinitesimal one assumed implicitly to make
two-body collisions defined for γ > 2), we found that this
rate, expressed in units of the characteristic time for mean-field
dynamics τdyn, vanishes in the large N for γ < d − 1, and
diverges in this limit for γ > d − 1. This means that only in
the former case does the mean-field limit of the dynamics
exists for a virialized system; in the latter case it does not
exist because the collisional relaxation completely dominates
the mean-field dynamics. Only in the former case, therefore,
can a QSS be expected to exist on a physically relevant time
scale. This leads to the following dynamical classification
of power-law interactions, as (1) dynamically long-range for
γ < d − 1: in this case τdyn  τcoll for sufficiently large N

(and limN→∞ �τdyn = 0), and (2) dynamically short-range for
γ � d − 1: in this case τcoll  τdyn for sufficiently large N .

This classification was proposed initially [32] on the basis
of a formal analysis of convergence properties of the force
on a particle in the thermodynamic limit, and subsequently
in Ref. [31] on the basis of the analysis detailed here. It has
also been justified using different analytical approaches to
the full kinetic theory of such systems [30,33]. As noted in
Introduction, this classification differs from the usual one used
to distinguish long-range from short-range interactions in the
context of a thermodynamic analysis, in which the important
feature is the integrability of the pair potential. There is
therefore a range of γ , d − 1 < γ < d, in which the interaction
is dynamically short-range, but long-range according to its
thermal equilibrium properties. In this case, if the number
of particles is sufficiently large, there will be no QSS (as in
short-range systems), but the thermal equilibrium state will
present the typical features of a long-range system, i.e., spatial
inhomogeneity, inequivalence of ensembles, etc.

We note that the more sophisticated approach using the
Landau equation (without collective effects) or the Lenard-
Balescu one (with collective effects) give rise to the same
thresholds at γ = (d − 1)/2 and γ = d − 1, respectively (see,
e.g., Ref. [30]). We emphasize, however, that these equations
cannot make any prediction for the regimes in which strong
collisions occur because they assume that collisions are weak,
i.e., the orbits of particles are weakly perturbed because of
the collisions. Therefore their prediction for the scaling of the
collisional relaxation time is always τcoll ∼ N−1τdyn.
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We have also generalized these scalings when the inter-
particle potential is regularized (“softened”) at small scales.
With this regularization the case γ � 2 (in which the poten-
tial barrier cannot prevent the particles to collide for pure
power–law potentials) becomes well defined. In this case,
the relaxation rate depends on the value of the softening
length ε for interactions in which small impact factors play
a predominant role, i.e., γ � (d − 1)/2.

We have presented, for d = 3, detailed numerical results
which support our theoretical findings. We have confirmed
previous results in the literature for the gravitational case
γ = 1, notably for the scaling relations satisfied by the
relaxation rate as function of the softening ε and the number of
particles N . Furthermore, using the scaling of the relaxation
rate with ε, we have found very strong numerical evidence
that the maximum impact parameter is related with the
size of the system and not microscopic scales such as the
interparticle distance. We have simulated also the dynamically
long-range cases γ = 5/4 and 3/2, in which the collisional
relaxation is dominated by collisions around the minimum
impact parameter, obtaining again very good agreement with
the theoretical scalings. For dynamically long-range systems
dominated in our calculations by collisions with the largest
impact parameter, we have found, as predicted, that a softening
in the potential does not affect the relaxation rate.

The natural extension of this work is the numerical study
of collisional relaxation allowing strong collisions, in order
to check the scalings of this regime derived in this paper. For
such study, it is necessary to develop very refined integration
schemes in order to integrate properly such collisions. It would
also be interesting in particular to explore the case of gravity
with a hard cord regularization, for which the thermodynamic
analysis has been considered in the literature (see e.g.,
Refs. [50,51]). Another interesting perspective is to study the
problem with a more rigorous approach using the angle-action
variables (with probably also many approximations because
it is a very complicated formalism) in order to describe more
precisely the relaxation dynamics, and in particular study more
precisely the validity of the Chandrasekhar approximation as
a function of the range of the interaction γ .
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APPENDIX A: AN ALTERNATIVE DERIVATION OF THE
CHANGE IN PERPENDICULAR VELOCITY

DUE TO A COLLISION

It is interesting to derive Eq. (18a) with a simpler method
which can give more physical insight. We can compute the
change in perpendicular velocity integrating the perpendicular

component of the force for all the duration of the collision,
assuming that the relative trajectories are unperturbed with
constant relative velocity V :

F⊥ = γg

bγ+1

[
1 +

(
V t

b

)2
]−( γ

2 +1)

. (A1)

The change in the perpendicular component of the velocity in
a time 2tc is thus

|�V⊥| = γg

mbγ+1

∫ tc

−tc

dt

[
1 +

(
V t

b

)2
]−( γ

2 +1)

(A2)

= γg

mbγ V

∫ − V tc
b

V tc
b

ds(1 + s2)−( γ

2 +1) (A3)

� γ

(
b0

b

)γ ∫ ∞

−∞
ds(1 + s2)−( γ

2 +1). (A4)

Taking the limit tc → ∞ and performing the integral we obtain
exactly (18a).

APPENDIX B: EXACT FORM OF THE POTENTIAL WITH
A SOFT CORE

The potential v(r,ε) is, for r � ε, exactly

v(r � ε,ε) = g

rγ
. (B1)

We define u = r/ε. For u < 1, we use the following form of
the potential for soft core softenings (see Fig. 11):
(1) γ = 1/2:

v(u,1)ε1/2 = 15.75u2 − 22.5u3 + 8.75u4; (B2)

(2) γ = 3/4:

v(u,1)ε3/4 = 11.875u2 − 17.4167u3 + 6.875u4; (B3)

(3) γ = 1:

v(u,1)ε = 10u2 − 15u3 + 6u4; (B4)
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FIG. 11. Softened potentials used in the paper normalized to the
unsoftened one.
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(4) γ = 5/4:

v(u,1)ε5/4 = 8.925u2 − 13.65u3 + 5.525u4; (B5)

(5) γ = 3/2:

v(u,1)ε3/2 = 8.25u2 − 12.8333333u3 + 5.25u4. (B6)
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