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Analytical theory of the hydrophobic effect of solutes in water
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We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-
dimensional Mercedes-Benz–like model, two neighboring waters have three possible interaction states: a radial
van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction.
Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that
we can calculate the partition function and thermal and volumetric properties of solvation versus temperature,
pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their
trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more
highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with
temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation
properties and anomalies of water, at minimal computational expense.
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I. INTRODUCTION

The solvation properties of the nonpolar molecules in
water are sufficiently peculiar that they are given their own
name, the hydrophobic effect [1–5]. These unusual behaviors
are particularly reflected in the enthalpies, entropies, heat
capacities, and volumes of transfer of such solutes into water
[1–3]. It has long been of interest to interpret these observations
in terms of the structures and energies of individual water
molecules: their hydrogen bonding, tetrahedrality, etc. So
a substantial body of work has sought structure-property
relationships using atomistic potentials with explicit-solvent
models sampled by molecular dynamics (MD) or Monte Carlo
(MC) computer simulations [6–8].

An alternative route to insights is through coarser-grained
analytical theory [9–11]. The evident downside is that coarse
graining throws away some details of molecular structure.
Those details might matter. However, analytical theories also
offer some advantages: (1) They can be much faster to com-
pute. So a single study (such as the present one) can explore
how solvation depends on temperature, pressure, solute radius,
and solute energy parameters all at the same time, without large
computing resources. (2) Analytical models are particularly
good for exploring principles. In analytical theories, there can
be tight logical linkages from molecular structure to observable
properties. Parameters can be varied—much more readily
than in atomistic simulations—to test how the macroscopic
properties arise from microscopic structures. (3) Analytical
models often give the best basis for engineering models, where
there is a need to express observed behaviors fairly accurately
with a minimum number of physical parameters. (4) And, even
the disadvantage—that some details of molecular structure
must be left out of the model—can actually be an advantage,
because they provide an opportunity to explore which details
matter and which don’t. Here we give an analytical model of
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the hydrophobic effect; it builds upon earlier work by Luksic
et al. [12].

Hydrophobic hydration has some interesting aspects. Sol-
vation thermodynamics in simpler systems is determined by
an unfavorable enthalpy change of dissolution. But dissolving
nonpolar solutes in water has a favorable enthalpy of transfer
(�HT R < 0) (i.e., enthalpy for the process of transferring
nonpolar particle from vacuum to bulk water) at low tem-
peratures. Dissolving oil in water is unfavorable (�GT R > 0)
due to the negative entropy of transfer �ST R < 0 [1,2]. Also
unusual is the observation that both the enthalpy and entropy
change strongly with temperature. This fact is summarized by
stating that the heat capacity of transfer is high and positive
(�Cp,T R � 0), since

�Cp,T R = d�HT R

dT
= T

d�ST R

dT
, (1)

where T is temperature. These features are known as the
hydrophobic effect [1–3,13–19]. There have been many
models for how hydrophobic solvation depends on solute size.
Among the first, scaled particle theory (SPT) estimates the
work necessary to create a spherical cavity in water [5,20]. It
successfully predicts the free energy of small cavity formation
and was constructed to give the surface tension of water in the
planar limit. However, SPT has been criticized for predicting
a monotonic increase in the entropy penalty of transfer with
increasing cavity size and an incorrect temperature dependence
in the surface tension [5]. Stillinger was perhaps the first to
suggest that water solvates large nonpolar molecules differ-
ently than small molecules [5]. Pratt and Chandler developed
an integral equation method that used pair correlations of bulk
waters to predict the solubilities of small solutes [21]. The
theory of Lum et al. [17] reduces to Pratt-Chandler theory for
small solutes but predicts large-scale drying as predicted by
Stillinger near larger nonpolar surfaces [5]. The hydrophobic
effect plays an important role in many common processes in
nature (e.g., protein folding, ligand binding) and technology
(e.g., micelle formation). So it has been extensively studied
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experimentally [22–26]. Hydrophobic solvation as a function
of solute size has also been studied in computer simulations
using explicit and implicit water models. A key conclusion
from such simulations is that at planar nonpolar surfaces water
will waste a hydrogen bond by pointing the bond directly
at the surface, in contrast to small nonpolar surfaces, where
water conserves hydrogen bonds by pointing those bonds in
directions that straddle the solute. Explicit models (such as
TIP or SPC) can be computationally expensive, precluding
the calculation of full temperature or pressure dependencies.
And computer simulation results are, in general, susceptible
to large statistical errors, causing difficulties in determining
certain quantities accurately, such as the heat capacity [27,28].
Implicit models are faster, but the trade-off is sometimes
physical inaccuracies. There exist also many other waterlike
models that were used for treating hydrophbic effect. Core
softened [29] or Jagla fluids [30] possess waterlike structural,
dynamic, and thermodynamic anomalies, and these fluids
also display waterlike solvation thermodynamics. Another
aspect of structure-based coarse graining relies on matching
the pair correlation functions of a reference (atomistic) and
coarse-grained system [31,32]. It was demonstrated that it
can be generalized for inhomogeneous systems as well as
solvation. Coarse gaining performed in inhomogeneous sys-
tems improves thermodynamic properties and the structure of
interfaces without significant alterations to the local structure
of the bulk liquid.

Here we adapt a Mercedes-Benz (MB)-like model of water,
which has previously been studied in two and three dimensions
[9–11] to study the three-dimensional (3D) hydration of
a nonpolar solute. The idea behind the model originated
with Ben-Naim in the 1970s [33–36]. Recently, it has been
developed further by Bizjak et al. [27,37] and Dias et al.
[38,39], and studied using computer simulations [27,37–39]
and integral equation theory [37]. The MB models of water
are toy models that have the advantage of explaining in a
simple way interplay of thermodynamic properties and the
angle-dependent potential, but cannot be used for qualitative
prediction of properties. The analytical theories for MB-like
models allow the inclusion of orientation-dependent hydrogen
bonding within a framework that is simple and nearly analyt-
ical. According to the 3D MB model, each water molecule is
a Lennard-Jones (LJ) sphere with four arms, oriented tetrahe-
drally to mimic formation of hydrogen bonds. In a statistical
mechanical model, which is based on the two-dimensional
(2D) Urbic and Dill (UD) model being directly descended from
a treatment of Truskett and Dill (TD), who developed a nearly
analytical version of the 2D MB model [40,41], each water
molecule interacts with its neighboring waters through a van
der Waals interaction and an orientation-dependent interaction
that models hydrogen bonds. A related analytical treatment
was developed by Coronas et al. [42] and was also studied by
Monte Carlo simulations. It is a coarse-grained model for bulk
water that includes many-body interactions associated with
water cooperativity. It possesses waterlike anomalies and the
liquid-liquid phase transition also present in our analytical
treatment of water. The main difference between the two
models is that in ours, energy is a continuous function of
the relative orientation θ of two water molecules, while in the
other the hydrogen-bonding (HB) energy is a discontinuous

function of the relative configurations, but both models possess
similar features. For hydrophobic hydration, Xu and Dill [43]
proposed a very simple analytical theory of the hydrophobic
effect in two dimensions which builds on a 2D MB model
of water. Starting from the statistical partition functions for a
water molecule in the bulk and a water in the first solvation
shell around a hydrophobe, the theory reproduces the main
characteristics of the hydrophobic effect and accounts for
different solute size effects. The theory in Ref. [43] required
the results of a reference Monte Carlo simulation of pure
bulk water phase. That approach was improved by Luksic
et al. [12], which is simpler and circumvents any computer
simulation steps by using an analytical model of the pure
phase of water. Both solvation methods were for 2D cases.
In this work, we apply theory to a 3D MB model of water.
In addition to moving the theory to three dimensions, we
implement additional improvements by assuming that water
properties in the first solvation shell change due to higher
density because of interaction between water and solute. The
new version of the theory can be used in all liquid regions of
the 3D MB model, including the supercooled region where
computer simulations cannot obtain solvation properties due
to crystallization and convergence problems.

Here we start from an analytical 3D UD theory of water
[10]. A partition function for a water molecule in the bulk
and the first hydration shell of a hydrophobic solute is then
built using the expressions for average energies of different
states of the water molecule (hydrogen-bonded, van der
Waals, and open), upon considering the geometric restrictions
through which a solute dictates the formation or breakage
of the hydrogen bonds between water molecules in the
first solvation shell. Finally, from statistical mechanical and
thermodynamical relations, we calculate the �G,�H, T �S,
and �Cp. In order to explore the performance of the analytical
theory in describing the hydrophobic hydration, we used
existing computer simulation data [44,45] for the simplified
water model, a 3D version of the Ben-Naim water model
(3D MB) [27]. The MB model has previously been shown
to capture the essential physics of water, namely, van der
Waals interaction and hydrogen bonding, which are essential
for hydrophobic hydration [14,16–18,28]. Here we explore the
performance of the analytical theory for the dependence of the
hydrophobic effect on temperature, pressure, and solute size.

II. 3D MB WATER MODEL

We applied analytical theory to the 3D MB water model
where each water molecule is represented as a Lennard-Jones
sphere with an additional tetrahedrally dependent potential
that mimics the hydrogen bonding of true water [27]. The
interaction potential between two 3D MB particles is

U (Xi,Xj) = U 11
LJ (rij ) + UHB(Xi,Xj), (2)

where rij is the distance between centres of particles i and
j and Xi is a vector denoting the position and orientation of
particle i. Umn

LJ is the standard Lennard-Jones potential

Umn
LJ (rij ) = 4εmn

LJ

[(
σmn

LJ

rij

)12

−
(

σmn
LJ

rij

)6
]
, (3)
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where εmn
LJ denotes the well depth and σmn

LJ is the contact
parameter. m is 1 if the ith particle is water and 2 the ith
particle is a solute, and the same goes for n regarding the
j th particle. The HB term is the sum of interactions over all
possible pairs of HB arms

UHB(Xi,Xj) =
4∑
k,l

Ukl
HB(rij ,�i,�j), (4)

where U
k,l
HB is the interaction between HB arms k and l on two

particles and vector �i denotes the orientation of particle i.
The interaction between two HB arms of different particles is

Ukl
HB(rij ,�i,�j)

= εHBG(rij − rHB)G(ikuij − 1)G(jluij + 1). (5)

Here uij is the unit vector pointing from particle i to particle
j , and ik is the unit vector representing arm k on particle i.
Between vector uij and vectors representing the orientations of
arms there is dot product. G(x) is the unnormalized Gaussian
function [a requirement that G(0) = 1]

G(x) = e−x2/2σ 2
. (6)

The model does not distinguish between HB donors and
acceptors. The width of the Gaussian function for distance and
angles is the same (σ = 0.085) and was chosen to be small
enough that a direct hydrogen bond is more favorable than a
bifurcated one [27,37]. It regards two waters as being hydrogen
bonded when their HB arms are collinear with each other. The
strongest hydrogen bond is formed when two arms are pointing
towards each other particles’ centers when the centers are
separated by rHB [27,38,39]. In the following section we will
first summarize the theory for pure 3D MB and explain how
parameters of the model for analytical theory are extracted
from continuous potential presented in this section.

III. THEORY

A. The model for the pure water reference state

The structure of the liquid state is modeled as a variation of
the cell model theory and is a perturbation from a hexagonal
(ice) lattice (see Fig. 1). One grid point is occupied by
only one molecule. Our focus is on a single water molecule
and its interactions with the neighboring molecule. The
interaction between a pair of molecules can be one of the
three possibilities. Note that in our theory we limit interactions
from the continuous one to only the three most probable
interactions, minimas in energy as function of distance for
HB and LJ interactions and no interaction. We say that each
water molecule can be in one of three possible orientational
states relative to its clockwiselike positioned neighbor on the
lattice: (1) hydrogen-bonded (HB) state, (2) van der Waals (LJ)
state, or (3) nonbonded (NB) state. This is presented in Fig. 2.
First, we compute the isothermal-isobaric statistical weights,
�i , of the states as a functions of temperature, pressure, and
interaction energies [9–11].

In the HB state the test water molecule can point one of its
four HB arms at an angle θ to within π/3 of the center of its
neighbor water. This is an approximation and was determined
by the condition that one quarter of the total solid angle
is occupied per hydrogen bond and to keep calculations of

FIG. 1. The test water molecule in the context of its water lattice.
It shows the principal pair neighbor interaction, taken clockwise, to
avoid triple counting.

integrals analytical. In this case it forms a hydrogen bond
[10,11] (see Fig. 2), and the interaction energy of the test
water with its neighbor is then described by this equation

uHB(θ ) = −εHB + ks(1 − cos θ )2, 0 < θ < π/3, (7)

where εHB is an HB energy constant of the maximal strength
of a hydrogen bond and ks is the angular spring constant that
describes the weakening of the hydrogen bond with angle.
This is a type of hydrogen bond that is called a weak bond
[9] because it does not cooperate with neighboring hydrogen
bonds. The isothermal-isobaric partition function, �HB , of

FIG. 2. The three states that define pairwise water-water interac-
tions: (1) hydrogen-bonded, (2) Lennard-Jones-bonded (LJ) pairs (no
hydrogen bond), or (3) nonbonded (having neither a hydrogen bond
nor an LJ bond).
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this state is calculated by integrating this Boltzmann factor
over all angles φ, θ , and ψ and over all the separations x, y,
and z of the test molecule relative to its clockwise neighbor.
In the vdW state, the test water molecule forms a contact with
its clockwiselike positioned water, but it does not form any
hydrogen bond. Energy of this state can be written as

uLJ (θ ) = −εLJ . (8)

The isothermal-isobaric partition function, �LJ , of this state
is obtained using the same integration as for the HB state. In
the last NB state, the test water molecule does not interact with
its neighbor, so the energy is equal to zero:

u0(θ ) = 0. (9)

By knowing the isobaric-isothermal ensemble partition func-
tions for each state we can write the partition function Q1 for
a full single hexagon of six waters as

Q1 = (�HB + �LJ + �o)6. (10)

If we include also higher cooperativity in ice [9–11] we can
write the total partition function for each hexagon as

Q1 = (�HB + �LJ + �o)6 − �6
HB + δ�6

s . (11)

δ = exp(−βεc) is the Boltzmann factor for the cooperativity
energy, εc, that applies only when six water molecules all
collect together into a full hexagonal cage. The terms on the
right-hand side of this expression simply replace the statistical
weight for each weakly HB full hexagonal cage with the
statistical weight for a cooperative strongly HB hexagonal
cage. �s is the Boltzmann factor for a cooperative hexagonal
cage. It differs from �HB only in the volume per molecule,
vs , instead of vHB [9–11]. Now we combine the Boltzmann
factors for the individual water molecules to get the partition
function for the whole system of N particles. The population
of different states fj can be calculated [9–11] and all the
other thermodynamic properties from simple derivations of
the partition function as described previously [9–11,40,41].
The attraction beyond pair terms is treated in the mean-field
attractive level with energy [46], −Na/v, among hexagons,
where a is the van der Waals dispersion parameter [9,40,41]
and v is the average molar volume. Parameters needed for
calculations can be obtained directly from the interaction pair
potential between two 3D MB water particles (εHB=1, rHB=1,
εLJ =0.1, σLJ =0.7) [27,37] or from analyzing the angle and
distance dependence of the 3D MB potential in comparison
with the potential used in analytical theory (ks = 80, a =
0.045, εc = 0.18).

For modeling the solvation of a nonpolar solute, it is
necessary to summarize volumes and to calculate additional
quantities. Volumes of the states are [10,11]

vs = 8
√

3r3
HB

9
, (12)

vHB = vs

xv

, (13)

vLJ = σ 3
LJ , (14)

vo = kBT

p
+ vLJ . (15)

FIG. 3. Definition of the critical angle, φc.

The xv = 2.5 is chosen empirically to get the proper behavior
of the density dependence in the original water papers [10,11].
The ensemble average energy, 〈uj 〉, for each of the three types
of water molecule structures, can be calculated as

〈uj 〉 =
∫ π/3

0 uj sin θ dθ exp [−(uj + pvj/2)/kBT ]∫ π/3
0 sin θ dθ exp [−(uj + pvj/2)/kBT ]

. (16)

Integration gives us

〈uHB〉 = −εHB + kT

2
−

√
kskT

4π
exp

(− ks
4kT

)
erf

(√
ks

4kT

) , (17)

〈uS〉 = 〈uHB〉 + εc

6
, (18)

〈uLJ〉 = −εLJ, (19)

〈u0〉 = 0. (20)

The average energy 〈uS〉 is obtained by adding 1/6 of the
correlation energy to 〈uHB〉. The average energy of a water
molecule, summed over the four different water states, can be
expressed as

〈ε〉b = 2(〈uHB〉fHB + 〈uS〉fS + 〈uLJ〉fLJ). (21)

B. The model for inserting a nonpolar solute into water

To develop the theory for the solvation of nonpolar solutes, we
followed the same steps as in Luksic et al. [12]. A nonpolar
solute molecule of diameter σs is inserted into water. Now we
consider what happens with two water molecules in the first
hydration shell of the solute (see Fig. 3). The presence of the
solute imposes a geometric restriction since a solvation-shell
water molecule may be unable to form all four hydrogen bonds
with its neighboring waters as in the bulk. Let ζ (φ,θ,ψ) be
the maximum number of hydrogen bonds the water in the first
solvation shell can form for a specific orientation. φ,θ,ψ are
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Euler angles describing the orientation of a water molecule
in the first solvation shell, and ζ (φ,θ,ψ) is also a function of
the solute radius. There are different possibilities depending
on the size of the solute molecule. For smaller solutes, water
molecules in the first solvation shell can form a maximum
of either three or four hydrogen bonds depending on the
orientation. For bigger solutes, first-shell water molecules can
form a maximum of only one, two, or three hydrogen bonds. A
critical angle φc is defined as angle at which a HB arm points
along a tangent to the solute (see Fig. 3), and both waters are
in the Lennard-Jones minimum

φc = arccos
rHB

(σs + σLJ)
6
√

2
. (22)

This is the angle where water can still form a hydrogen bond.
A similar definition of this angle was used by Chaimovich
and Shell in their work [47,48]. Integration over all possible
orientations of water (over all three Euler angles) is equal to
8π2. The next step is to determine the ratio of orientations of
water molecules that can form four, three, two, or one hydrogen
bond. Note that water can always forms at least one hydrogen
bond in the first solvation shell. Ratios can be determined
by sampling over orientations of water in first solvation shell
and counting the number of hydrogen bonds water can form.
This gives us ratios of orientations ζi where water can form
i hydrogen bonds. A solute molecule does not impose just
geometric restrictions on first-shell water molecules, but it also
perturbs the energetics of water-water interactions in the first
shell. Water’s density in the first solvation shell is higher than
in the bulk, depending on the value of the attraction between
the solute and the water

ρh = ρbexp(βεSW ), (23)

where εSW = εLJ is the minimum of the Lennard-Jones
interaction between solute and water. Since we do not have
density as input to the analytical theory, we have to calculate
properties of water in the first solvation shell by increasing
pressure for

�p = βεSW

κ
, (24)

where κ is compressibility of bulk water. The populations of
waters with different states in the first solvation shell are now
different comparing to the bulk and are equal to f h

j . Note
that the average energies of different states stay the same, only
populations change. The average energy of a water molecule in
the first solvation shell, summed over the four different water
states, can be expressed as

〈ε(φ,θ,ψ)〉h = 1
2

{
ζ (φ,θ,ψ)

[〈uHB〉f h
HB + 〈uS〉f h

S

]
+ 4〈uLJ〉f h

LJ − εSW
}
, (25)

Now we can calculate the partition function of water in the
bulk by treating interactions in averaged way, namely,

qb =
∫∫

dφ dψ

∫ π/3

0
sin θ dθ exp

(
−〈ε〉b + pvb

mol

kT

)

= 8π2 exp

(
−〈ε〉b + pvb

mol

kT

)
, (26)

FIG. 4. Definition of the overlap volume, �v.

where vb
mol is molar volume of bulk water. The partition

function for a water molecule in the first shell around a solute
molecule can be written as

qh =
∫∫

dφ dψ

∫ π/3

0
sin θ dθ exp

(
−〈ε〉h + pvh

mol

kT

)
, (27)

where vh
mol denotes the molar volume of water in first solvation

shell. It is smaller than the vb
mol by the overlap volume �v

(vh
mol = vb

mol − �v) (see Fig. 4) [12]. We compute the Gibbs
free energy of transferring a hydrophobic solute into water
using [43]

�G = −n(σs)kT ln

(
qh

qb

)
, (28)

where n(σs) is the average number of water molecules in the
first solvation shell. In this theory we assumed that n(σs) is
proportional to the solvent surface accessible area of the solute
[12]. Standard thermodynamic relations give the enthalpy and
the entropy of transfer as

�H = n(σs)kT 2 ∂ ln (qh/qb)

∂T
, (29)

T �S = �H − �G. (30)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

f i
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FIG. 5. The computed pairwise bulk populations fj vs tem-
perature, at p∗ = 0.12: (black) HB water population, (orange) LJ
population, (red) NB population, (pink) HB cage population. It shows
the melting out of HB structure with temperature in the bulk, and its
replacement by NB.
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(b)
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ΔG
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T*
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ΔG
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FIG. 6. Transfer free energy, �G∗, into water of solutes of
different radii. (a) Large solutes: σ ∗

S = 0.7 (red), σ ∗
S = 1.5 (blue),

σ ∗
S = 2.0 (green). (b) Smaller solutes: σ ∗

S = 0.3 (black), σ ∗
S = 0.7

(red). Lines show the theory and points show the Monte Carlo results.
The larger solutes are most opposed to dissolving, and this effect
weakens upon heating.

IV. PREDICTIONS OF THE THEORY AND COMPARISONS
TO CORRESPONDING MONTE CARLO SIMULATIONS

In this section, we give the theory’s predictions for how
the hydrophobic effect depends on temperature, pressure, and
solute size. The analytical results are compared with the Monte
Carlo simulation results of 3D MB water by Mohoric et al.
[44,45]. As has been done previously [9–12], we present
our results in dimensionless units, normalized to the strength
of the optimal hydrogen bond εHB and HB separation rHB

(T ∗ = kBT /εHB, uex∗ = uex/εHB, V ∗ = V/r2
HB , and p∗ =

pr2
HB/εHB).

A. Inserting the solute changes the hydrogen bonding of waters
in the first solvation shell relative waters in the bulk

First, we show the four types of water populations (six
water cages, two water H bonded, vdW, and nonbonded) of
pure bulk water, with no solute, as a function of temperature;
see Fig. 5. This figure allows us to establish the approximate
ranges over which the model acts like ice, cold liquid water,
hot liquid water, and vapor. Our main interest here is in
exploring solvation across the range from cold liquid to hot
liquid, where solvation anomalies are most pronounced. This
range of anomalies is best represented in this model by
the supercooled region of the pT phase diagram reported
in previous work [11] where we reported that the 3D MB

0
 0.5

1
 1.5

2
 2.5

3
 3.5

4
 4.5

5
 5.5

6

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

ΔH
*

T*

-1
-0.5

0
 0.5

1
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2
 2.5

3
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4

 0.1  0.15  0.2  0.25  0.3  0.35  0.4
T

* ΔS
*

T*

(a)

(b)

FIG. 7. Transfer enthalpy �H ∗ and entropy T ∗�S∗ into water of
large solutes of different radii, for σ ∗

S = 0.7 (red), σ ∗
S = 1.5 (blue),

σ ∗
S = 2.0 (green). Lines show the theory and points give the Monte

Carlo results. There is substantial enthalpy-entropy compensation.

model exhibits two critical points; the liquid-gas critical point
(C1) at T ∗

C1 = 0.1166, p∗
C1 = 0.0115, ρ∗

C1 = 0.467 and the
liquid-liquid critical point (C2) at T ∗

C2 = 0.0779, p∗
C2 = 0.167,

ρ∗
C2 = 1.295. There exists also a region of pressures between

both critical points where we have only one fluid phase, at
higher pressures we have two liquid phases, and at lower
pressures the liquid and the gas phases. So, while we cannot
draw a precise correspondence with true ambient p and T

values, Fig. 5 shows that we can approximately regard the
model as having icelike behavior below about T ∗ = 0.1, cold
liquid water up to about T ∗ = 0.1–0.15, hot liquid water up to
about T ∗ = 0.15–0.2, and vapor above about T ∗ = 0.25.

Then, in the following sections below, we show that
the analytical model reproduces fairly well the temperature
dependences of the free energy, enthalpy, entropy, and volumes
from the underlying model, as determined by Monte Carlo
simulations. This is just a validation of the analytical theory
against the Monte Carlo simulations. Then, in the last section,
we show how the model’s thermal and volumetric behaviors are
explained by the underlying microscopic water populations.

B. The thermal and volumetric properties of solvation
are captured by the theory

Figure 6 shows the transfer free energy, �G∗, as a function
of temperature for different sizes of hydrophobic particles
(σ ∗

S = σ 22
LJ /rHB). For large solutes see Fig. 6(a); for small

ones, see Fig. 6(b). The symbols represent the results of
the computer simulations, and the lines are the results of
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FIG. 8. Transfer volume, �V ∗, as a function of temperature, for
σ ∗

S = 0.7 (red), σ ∗
S = 1.5 (blue), σ ∗

S = 2.0 (green). Not surprisingly,
larger solutes have larger excess volumes of insertion. Lines show
theoretical results, and points Monte Carlo results.

the analytical theory. In general, the analytical theory gives
good agreement with the simulations. We observe a qualitative
difference between small and large hydrophobes. Bigger pos-
itive transfer free energies on these plots indicates increasing
unfavorability for inserting the solute from vapor into water.
The difference is only for very small solutes (smaller than size
of a water molecule); in that case, inserting a small solute
into hot water is favorable (�G∗ is negative). These results
are in agreement with the experimental observation for the
thermodynamics of hydration of argon [2] and show qualitative
differences from the behavior of �G∗ for larger hydrophobes.
Increasing the solute size increases the unfavorability of

dissolving in water. The analytical theory correctly captures
these subtle differences.

Figure 7 shows the enthalpy and entropy of solute transfer
from vacuum into water, �H ∗, and transfer entropy, T ∗�S∗,
for different solute sizes. Both functions first increase, and
then decrease with temperature, as observed experimentally
[2]. The agreement between the computer simulation results
(symbols) and analytical theory (lines) is quite good in the
whole temperature range studied, even for the large solutes.
Transfer enthalpies are positive for large solutes since solute
insertion into water requires breaking water-water bonds,
and since the interaction with the solute does not contribute
sufficient energy to compensate. For small solutes, transfer
enthalpies are negative since small molecules are inserted into
empty spaces within the water structure and there is no HB
breaking required for insertion. The transfer entropy is most
positive when waters in the first solvation shell have the highest
density. Analytical theory also predict unexpected behavior at
low temperatures where transfer enthalpy and entropy increase
upon decreasing the temperature. Simulation data are not
available in this range due to convergence problems, so we
cannot verify if this is a failure of the theory or not.

Figure 8 shows how the volume �V ∗ of the whole system
(solute plus solvent) changes as a solute is inserted into water
as a function of temperature and for different solute sizes.
The analytical theory gives trends that are consistent with
experiments, showing that for relatively small solutes, �V ∗
increases with temperature [23]. The main contribution to the
transfer volume is the size of the nonpolar solute, then upon
increase of temperature water becomes more gaslike and there
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FIG. 9. How the solute insertion thermodynamics depends on solute radius. (a) Transfer free energy, �G∗, (b) transfer free energy per unit
surface area of the nonpolar solute, (c) transfer enthalpy, �H ∗, and (d) transfer entropy, T ∗�S∗, as a function of hydrophobe size (σ ∗

S ) at two
different temperatures: T ∗ = 0.2 (red) and T ∗ = 0.3 (blue) at p∗ = 0.12. Larger solutes are more expensive to insert for enthalpy reasons, but
are entropically favored in cold water and disfavored in hot water. Points are Monte Carlo results, and lines are theoretical results.
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FIG. 10. Solute insertion thermal properties vs both temperature
and solute radius.

is more empty space around solutes, which gives an additional
increase of transfer volume.

C. The theory gives correct trends of solvation
thermodynamics versus solute size

Figure 9 summarizes the dependence of the solvation free
energy, enthalpy, and entropy on the solute radius. Again,
there is good general consistency with the simulations for
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FIG. 11. Same as Fig. 10, but also showing a plane indicating
linear fits in both variables in warm water.

most solute sizes. The disagreement is bigger for larger
solutes, especially for entropy transfer. The reason might be
in problems within the theory or bad computer simulation
data which authors calculated by Widom’s insertion method,
which is problematic for insertion of large particles. The
solvation free energy for large solutes increases linearly with
area, while for small solutes it increases linearly with volume
[14,17,19]. For small solutes, the entropy contribution to
the change in free energy dominates (T �S > �H ), but for
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FIG. 12. Solute insertion thermal properties per unit surface
area of the nonpolar solute vs both temperature and solute radius.
Increasing temperature makes solute insertion easier. There are two
mechanisms of solvation for small and big solutes.

larger solutes, T �S < �H . Figure 9 shows the transfer free
energy, �G∗, transfer enthalpy, �H ∗, and transfer entropy,
T �S∗, at two different temperatures, T ∗ = 0.2 (red) and
T ∗ = 0.3 (green), as a function of solute size. For all three
thermodynamic functions describing transfer of a hydrophobic
particle, there are clearly two distinct areas of behavior, as
observed experimentally [1,2,22–26,49,50]. In Fig. 10 we
plotted the dependence of the solvation free energy, enthalpy,
and entropy on solute radius and temperature. We can see from
the figure the equivalent behavior of the free energy of transfer
upon increasing the temperature or decreasing the size of the
nonpolar solute. Figure 11 shows 3D plots with the following
temperature- and size-dependent fits through the points:

�G∗ = −7.47906 ∗ T ∗ + 1.20461 ∗ σ ∗
s + 1.45645, (31)

�H ∗ = −4.1216 ∗ T ∗ + 1.02603 ∗ σ ∗
s + 0.4797, (32)

T �S∗ = −15.1371 ∗ T ∗ − 0.102591 ∗ σ ∗
s + 5.11875. (33)
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FIG. 13. Pressure dependences of solute transfer thermal quan-
tities, for solute sizes σ ∗

S = 0.7 (red), σ ∗
S = 1.5 (blue), σ ∗

S = 2.0
(green). Applying pressure squeezes the space available, making so-
lute insertion more difficult. There is enthalpy-entropy compensation.

Figure 12 shows 3D plots with the temperature and size
dependences of solute insertion thermal properties per unit
surface area of the nonpolar solute. Increasing temperature
makes solute insertion easier. There are two mechanisms
of solvation for small and big solutes. The figure clearly
shows that the solvation free energy for large solutes increases
linearly with area, while for small solutes it increases linearly
with volume at all temperatures.
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FIG. 14. Molecular structure properties vs temperature and pressure for (a) p∗ = 0.12 and (b) T ∗ = 0.2. (Top row) Ratio f h
j /fj of

populations of first-shell to bulk waters: (black) HB waters, (orange) LJ waters, (red) NB waters. This shows that the shell has more HB and LJ
bonds than the bulk, and that shell hydrogen bonds melt out faster with increasing temperature than bulk ones do. It shows that the first shell
is better packed (fewer NB waters). (Middle row) 〈r〉 is the average separation between waters. Heating warm water increases the water-water
separations. At all temperatures, pressure pushes waters closer together. (Bottom row) 〈(1 − cos θ )2〉 is the variance in HB angles, a measure
of “bending flexibility.” Heating increases this variance, while pressure decreases it.

D. The theory predicts how nonpolar solvation
depends on pressure

Figure 13 shows (a) the predicted pressure dependences
of the transfer free energy, �G∗, (b) the transfer enthalpy,
�H ∗, and (c) the transfer entropy, T ∗�S∗, for different sizes
of hydrophobes. Such quantities are notoriously difficult to
obtain from simulations of most atomistic models, particularly
at high pressures, where it is difficult to obtain reliable results
from the Widom insertion method, while our theory can easily
calculate these properties. The theory predicts that the free
energy of solvation for small solutes becomes linearly more
unfavorable with pressure, while the enthalpy and entropy
of solvation exhibit very little pressure dependence for small
solutes, consistent with experiments [51–53] and theory [54].
For bigger solutes, the situation is different. The free energy
of solvation increases more strongly with increased pressure,
while the entropy and enthalpy show nonmonotonic behavior,
but both effects compensate.

The results above show that the present theory reproduces
the thermal, volumetric, and solute-size dependences of the
solvation properties of nonpolar solutes rather well, compared
to Monte Carlo simulations of the same model [44,45],
and both the theory and simulations give the experimentally
observed trends. Disagreement becomes bigger at large solute
sizes and low temperatures, which might be either a problem
of the theory or incomplete convergence of the simulation
data.

E. The solvation properties can be interpreted in terms
of first-shell and bulk water bonding fractions

In this section, we give a more microscopic explanation of
these properties based on the different bonding populations.
Figure 14(a) shows the temperature dependence of the ratio,
f h

j /fj , of the population of waters forming hydrogen bonds
in the first shell around a solute, relative to the population
of waters forming hydrogen bonds in the bulk. Note that we
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omitted ratios of caged populations from the figure since, in
most of the ranges, the individual cage population is very close
to zero and numerical uncertainty is high when dividing with
numbers close to zero. In the following, we interpret these
results with increasing temperature, starting from very cold
water, to cold water, to hot water.

(1) Very cold water. The theory shows that in very cold
water, the first-shell solvating waters differ from bulk waters
in having more hydrogen bonds, more vdW bonds, and less
empty space, and those waters are well-packed (〈r〉 ≈ 1) and
have low-variance, well-defined HB angles [Fig. 14(e)]. These
first-shell waters are better structured than waters in the bulk.
We are seeing a sort of stochastic version of the “iceberg” idea
first proposed by Frank and Evans in 1945 [55]. The reason for
this structuring is clear from the model. Hydrogen bonding is
a driver of water structure. More hydrogen bonds are formed
in first shells than in the bulk because the solute restricts the
HB angle options more than in the bulk.

(2) Cold water. Increasing the temperature from very
cold (T ∗ = 0.16) to just cold water (T ∗ = 0.2) melts out
vdW interactions, slightly loosening up the water structure,
supporting an increase in hydrogen bonds.

(3) Hot water. Increasing the temperature further leads to
melting out first-shell water hydrogen bonds and vdW interac-
tions, increasing the average water spacings and increasing the
variance in HB angles. Correspondingly, Fig. 14(b) shows how
applied pressure affects water molecules in the solvation shell
relative to the bulk. Applying pressure has the following effects
on solvation-shell waters, relative to bulk waters: pressure
squeezes vdW-bonded water molecules together in the first
shell, it squeezes out empty spaces, and it reduces the average
water-water spacings in the first shell. At the same time,
applying pressure increasingly breaks first-shell hydrogen

bonds, reducing the excess structure there, and reduces the
HB angle variance.

V. CONCLUSIONS

In this work, we have developed a theory for the hydration
thermodynamics of a spherical hydrophobe in 3D MB-like
water. The results for transfer free energy, transfer enthalpy,
transfer entropy, and transfer volume obtained by the analytical
theory show good agreement with the computer simulation
results for the same model for all parameters studied. The
results under these conditions are consistent with the existing
experimental and theoretical results. In addition, the analytical
theory enabled us to study the thermodynamics of solvation
under the conditions where the computer simulation results
were unreliable due to the large statistical uncertainty, namely,
at high pressures, low temperatures, and large solutes. Theory
can easily calculate solvation properties in the supercooled
region of phase space since we do not have problems with
crystallization. This theory describes only liquid properties
of the 3D MB water model. The present work demonstrates
that that general anomalies of the hydrophobic effect—which
are regarded as arising from the cagelike or networklike
properties of water—can be captured in a simple theory in
which water-water interactions are only treated up through
two-body nearest-neighbor effects and cooperative effects.
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