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Predictability of escape for a stochastic saddle-node bifurcation: When rare events are typical
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Transitions between multiple stable states of nonlinear systems are ubiquitous in physics, chemistry, and
beyond. Two types of behaviors are usually seen as mutually exclusive: unpredictable noise-induced transitions
and predictable bifurcations of the underlying vector field. Here, we report a different situation, corresponding
to a fluctuating system approaching a bifurcation, where both effects collaborate. We show that the problem
can be reduced to a single control parameter governing the competition between deterministic and stochastic
effects. Two asymptotic regimes are identified: When the control parameter is small (e.g., small noise), deviations
from the deterministic case are well described by the Freidlin-Wentzell theory. In particular, escapes over the
potential barrier are very rare events. When the parameter is large (e.g., large noise), such events become typical.
Unlike pure noise-induced transitions, the distribution of the escape time is peaked around a value which is
asymptotically predicted by an adiabatic approximation. We show that the two regimes are characterized by
qualitatively different reacting trajectories with algebraic and exponential divergences, respectively.
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Introduction. Abrupt transitions between distinct statisti-
cally steady states are generic features of complex dynamical
systems. Although usually very rare, such events are extremely
important because the qualitative behavior of the system may
change radically. For instance, abrupt and dramatic transitions
frequently are encountered in climate dynamics, from the
global Neoproterozoic glaciations (snowball Earth events) [1]
to glacial-interglacial cycles (see Fig. 1) of the Pleistocene
[2–4] to the rapid Dansgaard-Oeschger events [5–7]. The tim-
ing and amplitude of the transitions rule out the possibility of
a linear response to an external forcing. Like in many physical
systems, such as bistable lasers [8] or ferromagnets [9,10],
these transitions may instead be due to a parameter crossing
a critical threshold, resulting in structural modifications in the
internal dynamics, i.e., a bifurcation. Indeed, mechanisms ac-
counting for multistability and hysteresis in the climate system
have been evidenced in a wide variety of contexts [11–14]. On
the other hand, intrinsic variability, represented as noise acting
on the variable of interest, may be responsible for spontaneous
transitions on very long time scales, in much the same way as
diffusion-controlled chemical reactions [15–18], tunneling in
quantum mechanical systems [19,20], or transitions in hydro-
dynamic [21,22] or magnetohydrodynamic [23] turbulence.
The problem of noise-activated transitions in a time-varying
potential is therefore of broad interest with many practical
applications across various fields of physics. For instance,
ramping up or modulating periodically a bifurcation parameter
is a widely used technique to probe small systems subjected
to noise—e.g., thermal noise in Josephson junctions [24]
or, more generally, out-of-equilibrium nonlinear oscillators
[25,26].

Motivated by the possibility to predict the approach
of a tipping point, many earlier studies have focused on
early warnings, i.e., features of a time series which change
before the transition occurs. In that framework, deterministic
bifurcations are announced by phenomena, such as increasing
autocorrelation or variance, which are absent in noise-induced
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transitions [27–29]. Here, we adopt a different point of view
and study the universal statistical and dynamical features of
transitions occurring under the joint effect of loss of stability
and stochastic forcing. In the classical noise-induced case,
transitions are completely random (they follow a Poisson
distribution), the reaction rate satisfies the Arrhenius law
[30], and typical reacting trajectories follow the optimal path
minimizing the action as predicted by Freidlin-Wentzell theory
[31]. On the other hand, the transition is governed completely
by the deterministic behavior in the bifurcation scenario. In
this Rapid Communication, we study when and how the
transition occurs under a sweeping of the bifurcation parameter
in time in the presence of noise. An important motivation is to
understand how much can be learned about the transition from
observations of trajectories, such as those represented in Fig. 1.
What is the parameter governing the competition between
deterministic and stochastic behaviors? Can we distinguish
trajectories corresponding to these two regimes? We show
that the transition time in a system approaching loss of
stability is controlled by a single parameter and is always
more predictable than the static noise-induced case. When
the noise is small, the behavior is close to deterministic,
and the particle escapes slightly after the bifurcation and
follows a universal trajectory with algebraic divergence. In
the large-noise regime, the escape time is determined by
a balance between deterministic (lowering of the potential
barrier) and stochastic effects, similar to stochastic resonance
[33,34]. We show that the probability distribution of the escape
time reaches a peak well before the bifurcation time and can
be predicted by an adiabatic approximation, corresponding
to an Eyring-Kramers’ (EK) regime [16,17]. Typical reacting
trajectories leave the attractor in an exponential manner, and
they show no imprint of the saddle node, unlike the standard
time-independent case.

The model. Let us consider an overdamped Langevin
particle in a time-dependent potential V (x,t), undergoing a
saddle-node bifurcation at t = 0. The system is described by
the stochastic differential equation,

dxt = −∂xV (xt ,t)dt +
√

2σdWt, (1)
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FIG. 1. Paleoclimatic oxygen isotopic record (a proxy for tem-
perature) from the North Greenland Ice Core Project [32], zoomed on
the last termination. Do such trajectories have universal properties?

where Wt is the standard Brownian motion. The most sim-
ple such potential has the form V (x,t) = −a3x3/3 − aωtx

where the spatial scale a and the time-dependent bifurcation
parameter ωt determine the height of the potential barrier
�V = 4(−ωt)3/2/3 and the width of the potential well√

−3ωt/a1/3. By a proper choice of units, all the relevant
parameters (geometry of the potential, speed of approach of the
bifurcation, and noise amplitude) can be absorbed into a single
nondimensional parameter ε = σ/(a2/3√ω). With the rescaled
variables, the potential now reads V (x,t) = −x3/3 − tx, and
the stochastic differential equation is the normal form for the
saddle-node bifurcation (with a time-dependent bifurcation
parameter) perturbed by noise: dxt = (x2

t + t)dt + √
2εdWt .

We should keep in mind that the universality of the saddle-
node normal form is only valid close to the bifurcation.
Therefore, we expect our results to be universal for slow
enough bifurcation parameter drift for arbitrary potentials.
We will denote by x±(t) = ±√−t the fixed points for the
stationary problem, which exist for t < 0 only. The particle,
initially lying in the stable state [x0 = x−(t0)], may escape
over the potential barrier under the influence of noise or
simply follow the deterministic dynamics and escape after
the potential barrier has been removed by the bifurcation (see
Fig. 2) [35–38].

The single control parameter ε governs the competition
between stochastic and deterministic effects. It decreases with

FIG. 2. Potential V (x,t) undergoing a saddle-node bifurcation
and sample trajectories for the stochastic process described by Eq. (1):
deterministic attractor (thick purple curve), small-noise trajectory
(ε = 0.1, red) exiting near the bifurcation, and escape over the
potential barrier (ε = 10, green). The dashed curve indicates the
position of the saddle-point x+(t).

FIG. 3. Standardized PDF of the first-passage time τM (M = 20)
for different values of ε, obtained by Monte Carlo simulations
(symbols) and the numerical solution of the Fokker-Planck equation
(lines). The dashed black line is the standard normal distribution.

the speed of the bifurcation and the potential stiffness and
increases with noise.

To give a precise meaning to the notion of escape, we will
compute the probability distribution of the first-passage time,
defined by

τM (x0,t0) = inf{t � t0|xt � M}. (2)

Given the shape of the potential, the results do not depend on
M for M large enough. For homogeneous Markov processes,
a closed set of equations for the moments E[τn

M ] may be
obtained, which leads to an explicit quadrature formula for
the mean first-passage time for a one-dimensional system
[39,40]. Since the stochastic process defined by Eq. (1) is
not time homogeneous, these theoretical results do not apply
here. We will discuss the behavior of the random variable
τM using numerical results obtained with standard Monte
Carlo simulations and numerical solutions of the Fokker-
Planck equation associated with Eq. (1) as well as theoretical
arguments in the two limiting regimes ε � 1 and ε � 1.

Deterministic and small-noise behav-
ior. In the deterministic case (ε = 0), we
have the dynamical saddle-node bifurcation,
for which an analytical solution for the trajectory
x(t ; x0,t0) with initial conditions x0,t0 can be
found in terms of Airy functions. In particular, the
attractor x̄(t) = limt0→−∞ x(t ; x−(t0),t0) simply reads
x̄(t) = Ai′(−t)/Ai(−t). When −t is large, it follows the
stationary solution x−(t) = −√−t . At a time of order one
before the bifurcation (t = 0), the trajectory detaches and
diverges to infinity after the bifurcation (see Fig. 2). The
singularity occurs at a time t� ≈ 2.338, which is the opposite of
the largest root of the Ai function. The divergence is algebraic:
x̄(t) ∼ (t� − t)−1, and the deterministic first-passage time is
easily related to the singularity: τ̄M = t� − 1/M + o(1/M).

When the noise amplitude ε is small, escapes over the po-
tential barrier have such a low (albeit nonvanishing) probability
that the behavior of the system is dominated by escapes after
the bifurcation occurs [35–38]. This regime is close to the
deterministic behavior.

The probability density function (PDF) of the first-passage
time τM , computed numerically, is shown in Fig. 3. When
ε is small, the PDF is close to Gaussian. As ε increases,
the PDF becomes more and more skewed, and heavy tails
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FIG. 4. Mean first-passage time 〈τM〉 (M = 20), subtracted from
the deterministic value τ̄M , obtained by Monte Carlo simulations
(stars), by large deviation theory (thin purple curve), and by the
adiabatic Eyring-Kramers ansatz (thick red curve). The horizontal
dashed line corresponds to the bifurcation time t = 0. The other
dashed curve corresponds to the times such that �V (t) = ε. The
inset: standard deviation.

develop on the left due to the presence of early exits. This
can be interpreted in the framework of large deviation theory
[31]. Let us assume that the PDF of τM satisfies a large
deviation principle: pM (τ ) � e−IM (τ )/ε for ε → 0. If the rate
function IM possesses a single zero τ� (also a global minimum),
then the Gaussian behavior of τM corresponds to a quadratic
approximation around τ�. Besides, the integral defining the
mean first-passage time E[τM ] can be evaluated with a saddle-
point approximation. At first order, we expect the deterministic
first-passage time τ̄M , and the error associated with the
approximation is linear in ε [41]: E[τM ] = τ̄M [1 + O(ε)].
Based on similar considerations, the asymptotic behavior of the

standard deviation is expected to be
√
E[[τ 2

M ]] ∼ √
ε. These

provide a good fit of numerical results as shown in Fig. 4.
In the limit M → ∞, Ref. [38] provides an exact

result which shows that the random variable τ∞ (the
time at which the trajectory becomes unbounded) satis-
fies a large deviation principle with rate function I∞(τ ) =
Ai2(−τ )/[4π2Bi2(−τ )

∫ T

−∞ Ai4(−t)dt] when τ lies in the
range between the first two zeros of Bi. In this interval, the
only root of I∞ is t�, and the above reasoning applies with
E[τ∞] → t�.

More generally, the large deviation property for pM can
be understood at a formal level by writing the probability
of fluctuations within the path integral formalism, following
the pioneering work of Onsager and Machlup [42]. In the
ε � 1 regime, the probability of a path x(t) satisfies P [x] �
e−A[x]/ε , introducing the Freidlin-Wentzell action functional
A[x] = 1

4

∫
dt(ẋ + V ′(x,t))2 [31]. This probability distribu-

tion is dominated by the deterministic attractor x̄(t) for which
A[x̄] = 0. By contraction, the probability to reach M at time
τ is dominated by another action minimizer x�

M,τ (t) such
that A[x�

M,τ ] = AM (τ ) ≡ infx{A[x]|x(t0) = x0,x(τ ) = M}.
As we will see below, such optimal paths follow the de-

terministic attractor as long as possible, at no cost in the
action functional, then detach from the deterministic trajectory
in a monotonously increasing manner. The monotonicity of
the action minimizers can be proved directly by writing the
Hamilton equations associated with the variational problem,

ẋ = x2 + t + 2p, ṗ = −2xp. (3)

As a consequence, there is no optimal path which reaches M

more than once because of the cost in the action functional
associated with climbing the gradient of the potential. Hence,
the trajectories x�

M,τ (t) dominate the PDF of the first-passage
time τM , which satisfies a large deviation principle with rate
function IM (τ ) = AM (τ ). Then, the Gaussian behavior of τM

corresponds to a quadratic approximation of AM (τ ) around its
minimum τ̄M .

In fact, although the PDF of τM already exhibits substantial
deviation from Gaussianity for ε > 0.1 (see Fig. 3), the above
approach describes accurately the first two moments up to
order one values of ε. For these low-order statistics, a sharp
transition between the asymptotic regimes ε � 1 and ε � 1
occurs near ε = 20 (see Fig. 4). On average, the transition
always happens before the deterministic case. It happens
before the bifurcation for ε > εc ≈ 4 and after for ε < εc.
The discrepancies seen in Fig. 4 for the mean first-passage
time at very small ε are due to numerical errors.

Adiabatic approximation in the large-noise regime. When
the noise amplitude is high, the range of times for which the
escape rate is not too small is long enough for those events
to dominate the distribution of the first-passage time. In this
regime, escapes over the potential barrier, which are usually
rare events, become the typical events. However, that range
is also short enough for the distribution of the first-passage
time to be peaked around a given value (Fig. 5), determined by
the competition between stochastic and deterministic effects.
This is very different from the classical Kramers’ problem
for which the first-passage time is distributed according to an
exponential law [30].

Because the relaxation time scale is much shorter than the
scale at which the potential evolves, this case can be treated

FIG. 5. PDF of the first-passage time in the large noise regime,
computed with Monte Carlo simulations (symbols), numerical so-
lution of the Fokker-Planck equation (solid curves), and compared
with the theoretical curve obtained with the adiabatic approximation
and the Eyring-Kramers ansatz (dashed curves), for ε = 100 and
ε = 10. The vertical dotted lines indicate escapes occurring at the
bifurcation time (τM = 0). The ε = 10 curves are shifted downwards
by a factor of 10 for clarity.
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with an adiabatic approximation. We introduce the transi-
tion probability P (x,t |x0,t0), which satisfies the (forward)
Fokker-Planck equation with initial condition P (x,t0|x0,t0) =
δ(x − x0). With a reflecting boundary condition on the
left and an absorbing boundary condition at a fixed value
of M > x+(t0), G(x0,t0; M,t) = ∫ M

−∞ dx P (x,t |x0,t0) is the
probability that a particle initially at x0 has not reached M

at time t . In other words, Prob(τM > t) = G(x0,t0; M,t). G

always satisfies a backward Fokker-Planck equation. For
homogeneous Markov processes, because ∂tG = −∂t0G, this
partial differential equation allows for computing explicitly
the moments of the first-passage time [39]. Besides, when
the potential barrier height �V is high (�V � ε), transition
times form a Poisson process with a transition rate given by the
Eyring-Kramers’ formula: λ = √

V ′′(xa)V ′′(xs)/(2π )e−�V/ε ,
where xa is the position of the attractor and xs is that of
the saddle point [43]. Here, since the potential variations are
adiabatic, the transition rate at each time t is well approximated
by the Eyring-Kramers’ formula for the “frozen” poten-
tial at fixed t : ∂tG(x0,t0; M,t) = −λEK (t)G(x0,t0; M,t) with
λEK (t) =

√−t

π
exp ( − �V (t)/ε), where �V (t) = 4(−t)3/2/3.

This formula is expected to be valid for times t � −ε2/3 and
initial conditions close to the attractor.

An explicit formula is obtained for the PDF of the first-
passage time in this regime,

EEK[δ(τM − t)] =
√−t

π
e−4(−t)3/2/(3ε)

× exp
[
− ε

2π
e−4(−t)3/2/(3ε)

]
. (4)

We show in Fig. 5 that this approximation indeed provides a
very good fit of the numerically computed PDF of the first-
passage time τM when ε is large enough (here ε = 100). From
Eq. (4), we deduce the asymptotic behavior of the moments of
the first-passage time: When ε → +∞,

EEK
[
τn
M

] ∼ (−1)n

2π

(
3ε ln ε

4

)2n/3

. (5)

The mean first-passage time and its standard deviation are
shown in Fig. 4; again, the theoretical result fits very well with
the numerical simulations above a critical ε approximately
equal to 20. Besides, for the adiabatic approximation to be
self-consistent, we need EEK[τM ] � −ε2/3. This condition is
verified asymptotically, but this is only due to the logarithmic
corrections in Eq. (5). Hence, the adiabatic approximation
converges relatively slowly. This explains why the theoretical
result is not very accurate for ε = 10, for instance (see
Fig. 5). For such moderate values of the control parameter,
the approximation slightly overestimates early escapes and
makes a dramatic error on escapes occurring later than the
average time. Indeed, for such regimes, escapes after the bi-
furcation occurs, which make no sense in the Eyring-Kramers’
approximation, are already relatively probable events (about
one or two standard deviations away from the mean). Although
such events are still unaccounted for at larger ε, they are then
so improbable that it does not hamper the accuracy of the
approximation for low-order moments.

Predictability of the reacting trajectory. Now, we consider
the statistics of the escape dynamics.

FIG. 6. Average trajectory E[xt |τM ] (solid blue curve) and
standard deviation (shading) for the trajectories conditioned on the
first-passage time (τM = 2) for M = 20 and ε = 0.1, compared with
the instanton (dashed red curve). The deterministic attractor x̄(t)
(dashed-dotted purple curve) has a different τM but the same shape
as the reacting trajectories. The thin black lines indicate an error of
order

√
ε.

For small ε, the particle typically escapes after the bifur-
cation, and the dynamics is then essentially deterministic.
Hence, all the reacting trajectories have the same shape
as the deterministic attractor, even though escape typically
occurs slightly before. This can be illustrated by conditioning
trajectories on the first-passage time. Figure 6 shows that,
when conditioning on a typical value for the first-passage time
(less than one standard deviation away from the mean), apart
from fluctuations of order

√
ε, the reacting trajectories remain

close to a trajectory with the same shape as the deterministic
attractor x̄(t). That trajectory can be predicted as an instanton:
It is a minimizer of the action A[x] with fixed initial and
final points. In particular, it has an algebraic divergence of the
form x(t) ∼ (t ′� − t)−1, where t ′� = τM + 1/M for trajectories
conditioned on τM . Even rare transitions look similar to the
deterministic attractor and are hardly distinguishable.

The situation is more complex in the large ε case. In the
classical case of time-independent potential barrier activation
(e.g., the Kramers’ problem), the instanton is degenerated:
It takes an infinite time to leave the attractor and an infinite
time to reach the saddle point [44]. The time spent by reactive
trajectories in the vicinity of the saddle point is distributed
according to a Gumbel law and scales with ln ε. This is why
pure noise-induced transition times are unpredictable. Here,
it is very different (Fig. 7): The degeneracy of the instanton
(starting from the attractor at t → −∞) is lifted because of
the time dependence. Nevertheless, compared to stochastic

FIG. 7. The same as in Fig. 6 for ε = 100. Conditioning on τM =
−40.
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trajectories, the instanton triggers slightly before (shifting it in
time describes correctly the dynamics away from the saddle
point) and still takes a longer time to pass the saddle point.
This is because the amplitude of typical fluctuations is large
enough to smooth the instanton slowdown at the saddle point.
As a consequence, some trajectories remain in the vicinity of
the saddle point for a short time, but the majority of them swing
directly to the other side of the potential. This can also be seen
as a consequence of the cost in terms of the action functional
associated with staying at the position of the saddle node,
which is not a deterministic solution of the time-dependent
problem. Finally, let us note that, because ε � 1, we are no
longer in the large deviation regime for P [x] and there is
a priori no reason for the statistics of observables, such as
reacting trajectories to be dominated by an action-minimizing
path. This also holds when considering the appropriate action
for finite ε, A′ = A − ε/2

∫
dt ∂2

xV [45]. Hence, in the ε � 1
regime, typical reacting trajectories are more predictable than
the instanton in the sense that there is no imprint from the
saddle node, unlike the standard stationary case but similar
to the glacial-interglacial transitions (Fig. 1). We have chosen
a typical value for τM in Fig. 7, but the conclusions remain
true for values which deviate significantly from the mean first-
passage time.

Conclusion. We have given a global picture of the possible
scenarios for transitions in a noisy system undergoing loss
of stability and the associated predictability. We have shown
that there exist two regimes characterized by a single control
parameter ε. When ε is small, the escape time only deviates
from the deterministic value in a Gaussian manner, and the
reacting trajectories have a universal shape with an algebraic
divergence. On the contrary, when ε is large, escapes over
the potential barrier become typical, but they are different
from the standard Kramers’ problem: Their PDF is peaked
and can be predicted by an adiabatic approach consistent with
large deviation theory. Reacting trajectories leave the attractor
exponentially fast and do not stick to the saddle point. Such
trajectories are not described by large deviation theory. These
results open new prospects for the analysis of time series
exhibiting abrupt transitions, such as those encountered in
climate dynamics.
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