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Heating without heat: Thermodynamics of passive energy filters between finite systems
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Passive filters allowing the exchange of particles in a narrow band of energy are currently used in
microrefrigerators and energy transducers. In this Rapid Communication, we analyze their thermal properties
using linear irreversible thermodynamics and kinetic theory, and discuss a striking phenomenon: the possibility
of simultaneously increasing or decreasing the temperatures of two systems without any supply of energy. This
occurs when the filter induces a flow of particles whose energy is between the average energies of the two
systems. Here we show that this selective transfer of particles does not need the action of any sort of Maxwell
demon and can be carried out by passive filters without compromising the second law of thermodynamics. This
phenomenon allows us to design cycles between two reservoirs at temperatures 7; < 7, that are able to reach

temperatures below 7} or above 75.
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Our knowledge on the transfer of energy between physical
systems has experienced considerable growth in recent years.
New fields such as stochastic [1] and quantum thermodynam-
ics [2] extend the concepts of heat and work to fluctuating
microscopic systems both in the classical and the quantum
regime. These recent developments are partly driven by
the possibility to manipulate microscopic systems, such as
colloidal particles in optical traps or single electron boxes.
A technical achievement with profound consequences on
thermodynamics is the construction of passive energy filters
that allow the selective transfer of particles with a specific
energy.

Bandpass energy filters for ballistic electrons based on
resonant tunneling were introduced in the 1990s and can
be implemented in semiconductor superlattices and quantum
dots [3], nanowires [4,5], etc. Some thermodynamic effects
of such filters have already been studied: Pekola used filters
between semiconductors and/or superconductors to build up
novel cooling mechanisms [6]. Humphrey and Linke designed
energy selective electron heat engines based on Brownian
ratchets [7]. Filtering resonant nanostructures have been
proposed to enhance the efficiency of thermoelectric devices
[5,8-10]. Other combinations of filters and nonequilibrium
sources, such as hot photonic reservoirs [11] or ac voltages
[12], have also been explored to find novel and interesting
thermal phenomena with potential applications. From the point
of view of linear irreversible thermodynamics, filters induce
tight coupled fluxes that reach high efficiencies in generic
energy transduction setups [13—-15].

Nevertheless, none of these previous works explored the
thermodynamic consequences of selective particle exchange
between finite systems, i.e., systems which are not reservoirs
and whose temperature and density is affected by the flow
of particles [16]. It is in this context that one can find
effects which, at first sight, seem to defeat fundamental
thermodynamic limitations.

Here we show one of those effects, the simultaneous
increase of temperature of two systems without any external
energy supply. In other words, the possibility of “heating
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without heat.” The opposite, i.e., spontaneous simultaneous
cooling, can also occur. The reason behind these striking
behaviors is that temperature is related to the average energy,
which depends both on the total energy and the total number of
particles. As in evaporative cooling, temperature can decrease
(increase) if particles with high (low) enough energy leave
the system [17]. The combination of this effect and the
selective exchange of particles induces a rich and unexpected
phenomenology.

The aim of this Rapid Communication is first to formulate
a complete and consistent theoretical framework for the
thermodynamics of finite width energy filters connecting arbi-
trary reservoirs and, secondly, to explore the aforementioned
phenomena.

We start by using standard thermodynamics to characterize
the equilibrium state of two systems, 1 and 2, separated by
an adiabatic wall with an ideal filter that allows the exchange
of particles with energy Ey. Since the only transfer of energy
between the two systems is due to the exchange of particles,
the following constraint holds:

dE; = E;dN;, i=1,2, (1)

where E; is the internal energy and N; the number of particles
in each system. The global system is described by four
variables, N,N,,E,E,, but, due to conservation of total
energy (dE| = —d E,) and particles (d Ny = —dN,), together
with (1), only one of those is independent. Choosing N, as
an independent variable and using the three constraints, the
entropy differential reads [7]

E; — E; —
ds — [ ot
T T

where 7; are the respective temperatures of the two systems,
w; the chemical potentials, and A = ) — oy, with o; =
(Et — ;)] T;, is the thermodynamic force conjugate to the
flow of particles. The resulting equilibrium condition is
Aa = 0, which does not necessarily imply that temperatures
and chemical potentials are equal in both subsystems [7-9].
The corresponding phenomenological equation for the flow of

“z}le = AadN,, ()
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particles reads
N | = kKAa, 3)

where k is a transport coefficient which is positive to ensure a
positive entropy production (S = k Aa? > 0).

This simple analysis predicts a nontrivial equilibrium state,
given by Ao = 0, and provides a dynamical equation for the
relaxation toward that equilibrium state. However, the whole
argument relies on meeting the constraint (1), only valid for an
ideal filter. Moreover, for such ideal filter one can suspect that
the exchange of particles is negligible, since the fraction of
particles with an energy exactly equal to Ey is infinitesimally
small. To clarify this issue we need to consider filters with a
finite width A E and perform a kinetic analysis of the exchange
of particles.

Let us assume that the two systems are always in equi-
librium with a well-defined temperature 7; and chemical
potential ;. Then the number of particles ¢;_, ; with energy
in the interval [E,E + dE] going from system i to system
J per unit of time only depends on the energy E and the
thermodynamic state of system i: ¢;_.; = ¢(E; T;,u;)dE.
Under this assumption, for a filter centered at E¢ with width
AE — 0, we have

Ni = [¢p(Er; T, p12) — ¢(Er; Ty, i1)]AE. )

Since Nl =0 when Aa =0 for any value of E, the flow
¢(E¢, T,u) must be a function of Ef and o = (Ef — u)/ T,
hence ¢(E; T,n) = f(E,(E — w)/T).

Consider now a narrow filter of finite width AE, allowing
the transfer of particles with energy between Ef — AE /2 and
E¢ 4+ AE /2. The net flows of particles and energy from system
2 to system 1 read:

‘ E+AE)2

Ny = / dELA(E) — fi(E)]. 5)
E—AE/2

) Er+AE/2

£ = f dE EL/,(E) — fi(E)] ©)
Er—AE/2

with f;(E) = f(E.(E — w)/T)).

For narrow filters, we can expand the functions f;(E) up to
linear terms in (E — Ef). Inserting the expansion in Egs. (5)
and (6) we obtain, up to third-order terms in AE,

Ni = [fo(Ep) — fi(ED)]AE
Y (Er) — f{'(Er)
24

E\ = E[f2(Ep) — fi(ENIAE
1
55 [2BE) + Erf(E) — @ < D]AE + -
®)

The first-order terms in Eqgs. (7) and (8) describe a relaxation
toward fi1(E¢) = f2(Ey), i.e., toward A = 0, which repro-
duces, for Ao small, the phenomenological equation (3) with
K = —0q|y=q, f(Ef,@) AE. On the other hand, the third-order
terms in (7) and (8) correspond to a much slower relaxation.
The evolution can be summarized as follows: for A«
large, there is a comparatively fast relaxation toward Ae = 0
described by Eq. (3), with a decay time of order 1/A E. When

+ AEY +.-- | (7)
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Aa S AE 2 terms of order A E? dominate, inducing a slower
relaxation along the line Aa >~ 0 toward fi1(E) = f2(E) VE,
i.e., to full equilibrium, 7} = 75 and u; = u,, with a decay
time of order 1/AE3.

Equations (5)—(8) and the discussion above are completely
general: the specific nature of the subsystems and the filter en-
ters into the equation through the function f(E,(E — n)/T).
Actually, to apply the equilibrium condition Ae = 0 we only
need the equation of state of the systems, that is, u and T
as functions of N and E. For instance, for two-dimensional
ideal classical gases in a volume V, kT = E/N and u =
kT In(NA?/V), where k is the Boltzmann constant and
A = h/~/2amkT is the thermal wavelength. The equilibrium
condition, Aa =0, in terms of the temperatures and the
numbers of particles, can be written as

ny _ ny  _
e E¢/kT, — e Ef/sz’ (9)

kT, kT,
where n; = N;/V is the particle density in system i.

The precise form of the particle flow f(E,(E —u)/T)
depends on the filter. A reasonable assumption is that the
fraction y(E) of particles in the unit volume that traverse
the filter per unit time only depends on E. Then the flow of
particles leaving the system reads

f(E, E ; “) - y(E)%e_E/kT. (10)

This is the case, e.g., for an effusion filter, where the flow of
particles of mass m through a hole of length L is given by the
effusion rate [18] yer(E) = /2EL?/m.

We now proceed to characterize the pseudoequilibrium state
given by the condition Ao = 0. As already mentioned, this
state exhibits some amusing properties which can be illustrated
in the simple case of classical ideal gases. From here on, we
consider ideal gases confined in a two-dimensional volume V
in order to compare with numerical simulations. In that case,
the equilibrium condition Aa = 0 reduces to Eq. (9), which
has a simple physical interpretation. Each side of Eq. (9),
pi(Ep) = k”—l’;’_e’Ef /¥ is the Maxwellian distribution times the
density of particles, i.e., is the number of particles with energy
E¢ per unit volume in gas i [for simplicity we will refer
to the distribution p;(Ef) as the Maxwellian of gas i]. The
equilibrium condition then requires that the two distributions
intersect at the filter energy Ey [7,8].

Equation (9), together with the state equation k7; = E;/N;
and the constraints N; + N, = N1(0) + N»(0), E1 + E, =
E(0) + E»(0), E; — E1(0) = Ef[N; — N1(0)], can be solved
in terms of the initial number of particles and initial energies.
The solution univocally determines the pseudoequilibrium
state, E; and N;. Here we discuss the temperatures 7; =
E;/(kN;), which exhibit the most striking features.

Figure 1(a) shows the pseudoequilibrium temperatures as
a function of Ey for the hot (upper, red solid line) and cold
(lower, blue solid line) gas with equal initial densities N{(0) =
N,(0) and initial temperatures k77(0) = 1 (blue dashed line)
and k7,(0) = 3 (red dashed line). The figure reveals a rich
and counterintuitive behavior. For either £y < kT7(0) = 1 or
E; > kT>(0) = 3, the temperature of the cold gas increases and
the temperature of the hot gas decreases. On the other hand,
for E; between the average energy of the cold gas, k77(0) = 1,
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FIG. 1. (a) Pseudoequilibrium temperatures, k7 (lower-blue)
and kT, (upper-red), as a function of the energy of the filter Ey,
for initial temperatures and populations k77(0) = 1, k7,(0) = 3, and
N1(0) = N»(0) = 1000. The horizontal dashed lines represent the
initial temperatures. The vertical dotted lines depict the initial average
energies k71(0) = 1, kT,(0) = 3 and the crossing point of the two
Maxwellian distributions E* = 1.8484 ... (b) Initial Maxwellian
distributions p;(E) of two-dimensional gases with k71(0) = 1 and
kT,(0) = 3. Particles move from the gas with the higher value of the
Maxwellian at the energy filter as indicated by the vertical arrow for
a specific case with £y < kT;. Depending on the location of the filter
E¢ both systems simultaneously cool down or heat up.

and E* = 1.8484 ..., both temperatures decrease simultane-
ously. Finally, for E¢ between E* and k7,(0) = 3 the two
gases heat up. These two regimes, simultaneous cooling and
simultaneous heating, are in apparent contradiction with our
most basic thermodynamic intuition. Despite their oddness, the
spontaneous relaxation to all those pseudoequilibrium states
does not violate the second law of therr_nodynamics, since the
evolution, governed by Eq. (3), yields S = k Aa? > 0.

One can get an intuitive picture of the behavior of the two
gases by considering their initial Maxwellian distributions,
p1(E) and po(E) for kT, =3 and kT) = 1 [see Fig. 1(b)].
The plot shows that the point E* separating the region of
simultaneous cooling from the region of simultaneous heating
is precisely the energy where the two Maxwellian distributions
intersect. The location of the filter with respect to this point
E* determines the direction of the net flow of particles in the
system. According to Eqgs. (7) and (10), the flow always goes
from the gas with the higher Maxwellian distribution at E¢, as
sketched by the two circles in the figure. Then, if Ex < E™* the
net flow of particles goes from gas 1 to gas 2, and vice versa.

Now it is clear why both gases increase their temperatures
when kT1(0) < E* < E; < kT»(0): particles with an energy
below the average energy of gas 2 and above the average of
gas 1 are transferred from gas 2 to 1, hence the average of both
gases increase.

At first sight, one could suspect that a Maxwell demon
is needed to carry out this selective transfer of particles.
However, this is not the case: passive energy filters are perfectly
compatible with thermodynamics since they do not break
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FIG. 2. Numerical evolution of the temperatures 7(¢) (blue) and
T»(t) (red) as a function of reduced time ¢ / 1, for a single realization of
two-dimensional gases of hard disks with mass m = 1 and diameter
o = 1. The relaxation time t#; is obtained analytically by expanding
Eq. (5) as Ni@) = [N () — N{l/to+ --- where Nj is the number
of particles in gas 1 in the pseudoequilibrium state. The rest of the
parameters are Er = 2.5, AE =03, k=1, T1(0) =1, T,(0) = 3,
N1(0) = N,(0) = 1000, and L = 200. Solid lines are the solution
of Egs. (5) and (6). (a),(b) Short-time evolution, where the system
relaxes to the pseudoequilibrium state (dashed lines indicate the
pseudoequilibrium temperatures). (¢) Long-time evolution, where the
system relaxes to full equilibrium. Note the difference in time scales.

detailed balance and, as we have already shown, “heating
without heat” is accompanied by an increase of entropy. The
simultaneous cooling can be explained in similar terms.

We can have even richer scenarios if E* is not located in
between kT7(0) and k7>(0) or if the two initial Maxwellians
do not intersect (when the initial densities are different). One
can, e.g., decrease the temperature of the cold gas and increase
that of the hot gas if E* < Ey < kT(0) < kT»(0). Using the
appropriate state equation for the chemical potential, one can
prove that the above results are valid for hard disks at high
density. Recall that, in this case, the temperature is still given
by T; = E;/(kN;).

One of our basic assumptions is to consider the two gases in
thermal equilibrium along the whole process. In real situations,
however, the exchange of particles occurs in certain regions
and could induce inhomogeneities. To study whether these
inhomogeneities could affect our results and analyze the
aforementioned separation of time scales, we have carried out
molecular dynamic simulations of two gases composed by
hard disks, placed in two square compartments of size L x L.
The whole wall separating the two compartments acts as an
effusion filter of energy Er and width AE.

We place N;(0) particles with a Maxwellian velocity
distribution at temperature 7;(0) and implement an event-
driven dynamics: free motion followed by elastic collisions.
When a particle reaches the filter, it can cross it if its energy
is between [Ef — AE/2,Er 4+ AE/2]. While a particle is
crossing the filter, no collisions are allowed. If the energy
is outside the interval, particles undergo elastic collisions with
the wall (adiabatic wall).

Figures 2(a) and 2(b) show a case where both gases heat
up without any energy supply. This happens in the short time
range, where the filter behaves as a perfect one and only the first
term in (7) and (8) describes the dynamics of the system. The
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FIG. 3. (a) Evolution of the temperatures 7; (blue) and 7, (red) as
a function of reduced time 7 / £, for a case where both gases cool down.
Parameters are E; = 1.6, AE =0.1, k=1, T1(0) = 1, T,(0) = 4,
and N;(0) = 4000, N,(0) = 2000, and L = 400. (b) Implementation
of a cycle where, by using an energy filter, we can lower the
temperature of a system (and transfer it to a refrigerator) below the
temperature of both thermal reservoirs without energy consumption
or mechanical device.

long time behavior is presented in Fig. 2(c). The system decays
to a truly thermodynamic equilibrium in a time about three
orders of magnitude longer, in agreement with our previous
analysis. The smooth solid lines depict the exact solutions of
Egs. (5) and (6). The good agreement between simulations and
results from kinetic theory indicates that inhomogeneities are
irrelevant.

The remarkable phenomena discussed in this Rapid Com-
munication could be exploited to design interesting setups
with potential applications. For instance, one can use thermal
reservoirs to reset the systems to their initial temperatures and
densities. Figure 3(b) shows a cycle built upon this idea. The
two systems are represented by black small boxes and the
cycle starts with each of them exchanging particles and energy
with a suitable reservoir. In this step, the exchange is not
restricted by any filter, so each pair system-reservoir reaches
full equilibrium with equal temperatures, 7 and 72, and
chemical potentials, u® and 5. Suppose that the temperature
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and chemical potential of the reservoirs are such that the
two systems equilibrate at the initial state of Fig. 3(a), given

by kT1(0) = kT2 = 1,kT»(0) = kT,p = 4, N,(0) = 4000, and
N>(0) = 2000. Next, the two systems are connected by a filter
centered at Er = 1.6, exactly as in Fig. 3(a), and therefore,
reach temperatures 7, < T2B and 7} < TIB. The cold system
1 can now be used to refrigerate a third system down to
T/ ~ 0.83. Finally, the cycle is closed by connecting again
the two systems with their respective reservoirs. The cycle
is of course irreversible. Nevertheless, it is remarkable that
we obtain an effective reservoir of temperature 77, lower
than the temperature of the two reservoirs 1 and 2. The
cold system at temperature 7} is an effective reservoir since
the cycle can be repeated as often as desired, extracting or
releasing heat but keeping its temperature equal to 7, in
the refrigeration step. Notice that this effective reservoir at
temperature 7| < TlB < T2B is obtained without the need for
any mechanical work.

To conclude, we have shown that the selective exchange
of particles between finite systems induces a rich and coun-
terintuitive thermodynamic behavior. Some of the induced
phenomena seem to defeat our most basic intuitions on how
temperature changes and heat flows in isolated systems. Yet,
they can be understood and analyzed using elementary kinetic
and thermodynamic arguments. Our results are of theoretical
relevance, since they illustrate that equilibrium is not restricted
to the standard repertoire of thermal (equal temperatures),
chemical (equal chemical potentials), and mechanical (equal
pressures) equilibrium. Moreover, the ideas in this Rapid
Communication could be useful to design thermostats and
calorimetric devices, as the one sketched in Fig. 3. However,
in this respect it is worth mentioning two difficulties. First,
simultaneous cooling or heating is much harder to be found in
degenerate Fermi gases (n A? > 1, with d the dimension). The
main reason is that energy is not as sensitive to temperature as it
is in Bose systems or in nondegenerate gases (nA¢ < 1), like
the one analyzed here. Second, to the best of our knowledge,
energy filters for classical particles have not been developed
so far, although there is no fundamental reason to prevent
their existence. Therefore, the implementation of the scenarios
discussed above in real settings, with either electrons or
classical particles, is a particularly challenging endeavour.

R.M.T acknowledges Spanish MINECO Grants No.
FIS2013-40627-P and No. FIS2016-80681-P (AEI/FEDER,
UE), and Generalitat de Catalunya CIRIT 2014-SGR-966.
R.B. and J.M.R.P. acknowledge financial support from
MINECO Grant No. FIS2014-52486-R.

[1] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).

[2] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545
(2016).

[3] E. Capasso, Physics of Quantum Electron Devices (Springer,
New York, 1990).

[4] M. F. O’'Dwyer, T. E. Humphrey, and H. Linke, Nanotechnology
17, S338 (2006).

[5] A. 1. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.
A. Goddard, III, and J. R. Heath, Nature (London) 451, 168
(2008).

[6] E. Giazotto, T. T. Heikkild, A. Luukanen, A. M. Savin, and P.
Pekola, Rev. Mod. Phys. 78, 217 (2006).

[7] T. E. Humphrey, R. Newbury, R. P. Taylor, and H. Linke, Phys.
Rev. Lett. 89, 116801 (2002).

030103-4


https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1088/0957-4484/17/11/S18
https://doi.org/10.1088/0957-4484/17/11/S18
https://doi.org/10.1088/0957-4484/17/11/S18
https://doi.org/10.1088/0957-4484/17/11/S18
https://doi.org/10.1038/nature06458
https://doi.org/10.1038/nature06458
https://doi.org/10.1038/nature06458
https://doi.org/10.1038/nature06458
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/PhysRevLett.89.116801
https://doi.org/10.1103/PhysRevLett.89.116801
https://doi.org/10.1103/PhysRevLett.89.116801
https://doi.org/10.1103/PhysRevLett.89.116801

HEATING WITHOUT HEAT: THERMODYNAMICS OF ...

[8] T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601
(2005).
[9] M. Esposito, K. Lindenberg, and C. van den Broeck, Europhys.
Lett. 85, 60010 (2009).
[10] N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82,
235428 (2010).
[11] B. Cleuren, B. Rutten, and C. Van den Broeck, Phys. Rev. Lett.
108, 120603 (2012).
[12] M. Rey, M. Strass, S. Kohler, P. Hianggi, and F. Sols, Phys.
Rev. B 76, 085337 (2007).
[13] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).
[14] G. Casati, C. Mejia-Monasterio, and T. Prosen, Phys. Rev. Lett.
101, 016601 (2008).
[15] Y. Izumida and K. Okuda, Phys. Rev. Lett. 112, 180603 (2014).

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 96, 030103(R) (2017)

[16] Our results would also apply to infinite systems (N — 00) if
the flow of particles and energy between the two systems were
proportional to N. This situation is rather unlikely. For three-
(two-) dimensional gases the flow is, in most cases, proportional
to the contact area (length) between the two gases, i.e., the flow
is proportional to N2/3 (N'/2). A counterexample, however, is
given by two-dimensional gases exchanging particles through
a two-dimensional film. We prefer to keep the term “finite” to
stress that our results do not apply to reservoirs.

[17] C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in
Atomic Physics: An Overview (World Scientific, Singapore,
2011).

[18] B. Cleuren, C. Van den Broeck, and R. Kawai, Phys. Rev. E 74,
021117 (2006).

030103-5


https://doi.org/10.1103/PhysRevLett.94.096601
https://doi.org/10.1103/PhysRevLett.94.096601
https://doi.org/10.1103/PhysRevLett.94.096601
https://doi.org/10.1103/PhysRevLett.94.096601
https://doi.org/10.1209/0295-5075/85/60010
https://doi.org/10.1209/0295-5075/85/60010
https://doi.org/10.1209/0295-5075/85/60010
https://doi.org/10.1209/0295-5075/85/60010
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevLett.108.120603
https://doi.org/10.1103/PhysRevLett.108.120603
https://doi.org/10.1103/PhysRevLett.108.120603
https://doi.org/10.1103/PhysRevLett.108.120603
https://doi.org/10.1103/PhysRevB.76.085337
https://doi.org/10.1103/PhysRevB.76.085337
https://doi.org/10.1103/PhysRevB.76.085337
https://doi.org/10.1103/PhysRevB.76.085337
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevLett.101.016601
https://doi.org/10.1103/PhysRevLett.101.016601
https://doi.org/10.1103/PhysRevLett.101.016601
https://doi.org/10.1103/PhysRevLett.101.016601
https://doi.org/10.1103/PhysRevLett.112.180603
https://doi.org/10.1103/PhysRevLett.112.180603
https://doi.org/10.1103/PhysRevLett.112.180603
https://doi.org/10.1103/PhysRevLett.112.180603
https://doi.org/10.1103/PhysRevE.74.021117
https://doi.org/10.1103/PhysRevE.74.021117
https://doi.org/10.1103/PhysRevE.74.021117
https://doi.org/10.1103/PhysRevE.74.021117



