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Random matrices and the New York City subway system
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We analyze subway arrival times in the New York City subway system. We find regimes where the gaps
between trains are well modeled by (unitarily invariant) random matrix statistics and Poisson statistics. The
departure from random matrix statistics is captured by the value of the Coulomb potential along the subway
route. This departure becomes more pronounced as trains make more stops.

DOI: 10.1103/PhysRevE.96.030101

Random matrix statistics are expected to occur in a
wide variety of interacting particle systems (see Ref. [1]
for a review) and (1 + 1)-dimensional transportation models
[2–6] are an important class of such systems. In Ref. [6],
following the classical experimental result of Refs. [7,8], the
authors proposed a mechanism for random matrix statistics
in bus systems. In this Rapid Communication, we examine
whether or not the New York City subway system (MTA) is
well modeled by these statistics.

The bus system in Cuernavaca, Mexico in the late 1990’s has
become a canonical example of a system that is well modeled
by random matrix theory (RMT) [7–10]. This bus system has a
built-in, yet naturally arising, mechanism to prevent buses from
arriving in rapid succession. This mechanism arises due to
mutual competition from the drivers. Without this interaction,
and mutual competition, one should expect that bus arrivals
would be Poissonian [11]. Unlike these settings, the MTA has
a globally controlled mechanism to space trains and eliminate
collisions [12], which would suggest the significance of long-
range effects. Nevertheless, the system is largely run manually
[12] and it is thus natural to expect that the dynamics of the
system is locally governed by interparticle interactions.

A natural signature of random matrix statistics is whether or
not the spacing between particles at a given site obeys a Wigner
surmise-type law. Consider the times T between successive
train arrivals at a given station, and consider the normalized
spacing τ = T/〈T 〉. Assuming that the system is well modeled
by RMT statistics, one expects the spacing to satisfy

#{s ∈ τ : s � t}
#τ

≈
∫ t

0
ρ(s)ds,ρ(s) = 32

π2
s2e− 4

π
s2
, (1)

where 〈·〉 represents the sample mean, the function ρ(s) is
known as the (β = 2) Wigner surmise (WS) [13], and #S gives
the cardinality of the set S. This is the approximation of Wigner
for the asymptotic (N → ∞) gap distribution for successive
eigenvalues in the bulk of an N × N Gaussian unitary ensem-
ble (GUE) matrix [14]. This is computed by considering the
2 × 2 case. This approximation of Wigner agrees surprisingly
well with the true limiting distribution as N → ∞ [15].

Another natural statistic to consider is the number variance.
Fix a time T0 and consider the time interval [T0,T ] for T0 �
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T � T1. Let n(T ) be the number of trains that arrive in this time
interval. Once one has made many statistically independent
observations of n(T ), the number variance is computed by

N (t) = 〈(n(T ) − 〈n(T )〉)2〉, T = T1〈n(T1)〉−1t. (2)

This normalization is made so that 〈n(T )〉 ≈ t . The asymptotic
prediction from RMT is

N (t) ≈ 1

π2
(ln 2πt + γ + 1), (3)

where γ is the Euler constant [13].
Here, we observe that (1) and (3) hold on a subset of the

MTA system. We also find Poisson statistics within the MTA
(which are also found in Puebla, Mexico [9]). For example,
the southbound No. 1 train in northern Manhattan is well
modeled by RMT statistics but the northbound No. 6 train
is well modeled by Poisson statistics in the middle of its route.
We also show that the train gap statistics tend to deviate more
from RMT statistics as more stops are made. To quantitatively
determine Poisson statistics versus RMT statistics we make
the following ansatz for the (normalized to mean one) gap
density function for u ∈ [0,1],

p(s; u) :=
∫ s

0

ρ(x/(1 − u))
1 − u

e(x−s)/u

u
dx.

This is the density for the convex combination of an indepen-
dent exponential and a WS random variable. A similar ansatz
was used in Ref. [16] for an analysis of car spacing statistics.
Using the Kolmogorov-Smirnov (KS) statistic we choose u to
fit this distribution to the data. A small value of u, combined
with a small KS value, indicates RMT statistics. A value of u

near unity, and a small KS value, indicate Poisson statistics.
We note that this transition (from RMT to Poisson) is also seen
within RMT as the bandwidth of a Hermitian random matrix
shrinks [17].

Data collection. Our data are obtained from the MTA
real-time data feeds [18] that allow the user to obtain real-time
train arrival times for many stations in the MTA system. Thus,
our analysis has an advantage over that in Ref. [7] because
the statistics of every station in the data feed can be analyzed.
The stations can then be classified into those close to RMT
statistics, Poisson statistics, or neither. Using the latitude and
longitude coordinates of each station, which the MTA also
provides, we can estimate the arclength of the subway track
and analyze spatial distances. This is a component in our
Coulombic analysis below.
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We analyze the arrival times for the No. 1 and No. 6 trains.
These trains operate on separate lines. The No. 1 train runs
both northbound and southbound between Manhattan and the
Bronx on the west side. The No. 6 train runs both northbound
and southbound, also between Manhattan and the Bronx except
on the east side. The stations at which the No. 1 train stops
are labeled with integers between 101 and 140 [19], increasing
from north to south. The same is true of the stations for the
No. 6 train with integers ranging between 601 and 640.

We chose the No. 1 and No. 6 trains for the following
reason. The MTA data feed provides data only for the lines
No. 1–No. 6 and the midtown shuttle line. The shuttle line
only has two stops, so we ignore it. The No. 1, No. 2, and
No. 3 trains service a similar corridor in Manhattan. The first
train is the “local” line in Manhattan and the second two are
“express” lines and extend to Brooklyn. Similarly, the No. 4,
No. 5, and No. 6 trains service a similar corridor in Manhattan,
with the No. 6 train being the “local” line, and No. 4 and
No. 5 being the “express” lines, which also run through to
Brooklyn. Thus we choose the No. 1 and No. 6 as they are
both “local” trains and run, to some extent, parallel to each
other. It would be interesting to perform a similar analysis
for the express trains, though we do not pursue this direction
here.

Our data set consists of No. 1 and No. 6 train arrival times
in seconds at all stations obtained on 48 days (39 weekdays)
during the summer and fall of 2016. As we imagine that the
working day hours, including “rush hours,” are most relevant
to most subway users, we only consider arrivals that occur
between 8:00 A.M. and 6:00 P.M. on weekdays. For each station
we have approximately 3500 arrivals. The MTA system keeps
a minimum spacing between trains. To account for this, we
subtract 90 s from every train gap. This number could be
treated as a fitting parameter, but we keep it fixed. This leads
to a small number of negative gaps. Then if T is the collection
of observed gaps (in seconds), define τ = (T − 90)/〈T − 90〉
to be the normalized train gaps.

The Kolmogorov-Smirnov test. Define the KS statistic [20]

KS(u,τ ) := sup
t∈R

∣∣∣∣#{s ∈ τ : s � t}
#τ

−
∫ t

0
p(s; u)ds

∣∣∣∣.

For u = 0, the null hypothesis is that the normalized gaps
are distributed according the WS, and for u = 1, the null
hypothesis is that the gaps are exponentially distributed. The
KS test supposes that the samples are independent. From
our data we obtain successive gaps which contain repeated
data from the same train and are clearly not independent.
To approximate independence, we only retain every fifth gap
(approximately 30 min between samples) and we perform the
KS test with approximately 700 samples. We consider the
significance levels α = 0.01,0.05,0.1 (low, moderate, and high
significance, respectively). It follows from Refs. [21,22] that
the null hypothesis cannot be rejected if (u = 0,1)

√
#τKS(u,τ ) < 1.62 when α = 0.01,

√
#τKS(u,τ ) < 1.35 when α = 0.05,

√
#τKS(u,τ ) < 1.22 when α = 0.10.
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FIG. 1. The KS test for the No. 1 train (a) [u = 0] and the
No. 6 train (b) [u = 1]. Circles and triangles represent southbound
and northbound trains, respectively. The dashed lines in order of
decreasing height represent the significance levels α = 0.01,0.05,0.1.
Stations that lie below a line pass the associated KS test.

In Fig. 1, we plot this scaled KS test statistic for every
station on the northbound and southbound No. 1 and No. 6
trains. In particular, we find with high statistical significance
(α = 0.10) that six stations (107, 108, 109, 110, 111, 112)
for the southbound No. 1 train pass the u = 0 KS test. If
α is reduced, more stations pass the test. Similarly, for the
northbound No. 6 train, one station passes the u = 1 KS test
with high significance (619) and a total of three (615, 616,
619) stations pass the same test with moderate significance.

We emphasize that these tests are only suggestive of the
underlying statistics. To illustrate this, consider the following
experiment. Generate 2000 samples directly from the WS
distribution. Then fit a (mean one) beta distribution [density
proportional to xα−1(1 − x)β−1, then normalized to mean one]
to the data by tuning the parameters α,β to minimize the
KS statistic. Our experiments reveal that the data, with 2000
samples, are fit better by this tuned distribution than the WS
distribution. So, one can never rule out such a beta distribution.
Nonetheless, the KS statistic can be used to rule out Gamma
distributions and the β = 1,4 Wigner surmises.
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FIG. 2. The KS fit for the No. 1 train (a) [u = 0] and the No.
6 train (b) [u = 1]. Circles and triangles represent southbound and
northbound trains, respectively. The dashed lines give the u∗ = 0.43
and the u∗ = 0.94 thresholds. Values of u∗ above 0.94 indicate
Poisson statistics and values of u∗ below 0.43 indicate RMT-like
statistics.

A Kolmogorov-Smirnov fit. The value of u∗ of u that fits the
data best is given by

u∗ := argmin
0�u�1

KS(u,τ ).

For every collection of normalized gaps τ this gives an optimal
value u∗. Recalling that our sample sizes are approximately
700, we find that for u < 0.43 the KS test with moderate
significance (comparing with u = 0) is passed. For u > 0.94
we find that the KS test with moderate significance is passed
when comparing with u = 1. Stations with u∗ < 0.43 are
considered to exhibit RMT-like statistics and stations with
u∗ > 0.94 are considered to exhibit Poissonian statistics. The
values of u∗ for each station and train are given in Fig. 2. These
results should be compared with Fig. 1 to ensure significance.
This presents further evidence that train gaps on the No. 1 train
are RMT-like and those on the No. 6 train are Poissonian.

We choose station 112 and station 619 to examine in more
detail. We display the normalized train gap histogram for both
northbound and southbound trains at station 112 in Fig. 3.
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FIG. 3. The normalized train gap histograms for the northbound
(bottom) and southbound (middle) No. 1 trains at station 112. The
solid curves give the exponential and WS density. The triangles
represent the best-fit density p(s; u∗). The southbound train exhibits
(highly significant) RMT statistics and our ansatz that determined
p(s; u∗) is not sufficient to capture the behavior of northbound
trains.

It is clear (and indeed highly statistically significant) that
the southbound train gaps exhibit RMT-like statistics. But, in
contrast, the northbound train appears to exhibit neither type
of statistics. In Fig. 4, we display the normalized train gap
histogram for northbound trains at station 619 which exhibits
(with high statistical significance) Poissonian statistics.

Number variance. In order to compare with previous work,
we also consider the number variance. As we are most
interested in the RMT regime, we focus on the No. 1 train
in stations that exhibit RMT statistics. To compute the number
variance (2), we must obtain independent samples of the
number of trains that arrive in a given time window. We record
the arrivals of southbound No. 1 trains at stations 116 and 117
between 9:00 A.M. and 9:20 A.M. on weekdays. Our data limit
us to 39 samples of n(T ). We plot the number variance against
the theoretical prediction (3) in Fig. 5. While our agreement is
not as good as that in Ref. [7], station 117 has good agreement
for small values of t .
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FIG. 4. The normalized train gap histograms for the northbound
No. 6 trains at station 619. The solid curves give the exponential and
WS density. The triangles represent the best-fit density p(s; u∗). This
station exhibits (highly significant) Poissonian statistics.

The Coulomb potential. The stationary distribution for
an appropriately scaled (β = 2) Dyson Brownian motion is
the distribution on the eigenvalues λ1 < λ2 < · · · < λN of
a GUE matrix [23]. The Hamiltonian H (λ) := 1

2

∑
k λ2

k −
1
N

∑
j<k ln |λk − λj | is approximately conserved by the Dyson

Brownian motion dynamics—the particle system λ fluctuates
near the minimum of this functional. The first term is
referred to as the confining potential. Given the comprehensive
information our data set gives us about the MTA system, we
can plot many train trajectories simultaneously. Each train is
represented by a function λj (	) of the distance 	 the train
has traveled down the track. The value of λj (	) is the time at
which the train is a distance 	 from its starting location. This is
feasible using the latitude and longitude coordinates provided
by the MTA for each station. The functional H , in a local
sense, favors points that are regularly spaced. The minimizer
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FIG. 5. The empirical number variance for southbound No. 1
trains at stations 116 (dots), 117 (triangles), and 112 (crosses) plotted
against the theoretical curve (3). Agreement appears particularly good
for station 117 for small values of t . Agreement is not as good for
station 112.

of the functional is called the equilibrium measure and it is
well studied in the literature [24]. It is natural to evaluate the
functional to detect regularly spaced trains and a departure
from random matrix statistics.

Each weekday, we monitor ten successive southbound No.
1 trains λj (	), j = 1,2, . . . ,10, 0 � 	 � L, starting with the
first train (j = 1) that arrives at station 103 after 8:00 A.M.
Each train is tracked until it reaches station 139. For each
realization of these ten trains define

μj (	) = λj (	) − 90j − 〈λ(L) − λ(0)〉j 	

L
,

where the sample average 〈·〉j is taken over j . This is used
to estimate the “velocity” of the trains. Define the modified
Coulomb potential

C[μ(	)] = −
∑
j<k

ln |μk(	) − μj (	)|. (4)

Here, we drop the confining potential. We assume we are
viewing the particle system on a microscopic scale and
this potential is effectively constant. In Fig. 6 we plot the
trajectories of μj (	) as a function of 	 to demonstrate that
the trains undergo nonintersecting motion. In Fig. 7 we plot
the averaged Coulomb potential 〈C[μ(	)]〉, averaging over
29 weekdays [25]. The plot shows that the increase in the
Coulomb potential is highly correlated with a larger scaled KS
statistic. We can conjecture where the train statistics might be
given by RMT based on the value of the Coulomb potential,
presenting yet another connection to RMT.

It is worth pointing out in Fig. 7 that stations at a small
distance fail the KS test but have a small Coulomb potential.
This is largely from the fact that the fluctuations of the gaps
are too concentrated about their means to agree with the
WS. The trains start out at regularly spaced time intervals,
nearly deterministic. As the trains progress down the track,
larger fluctuations are introduced, giving rise to random matrix
statistics while maintaining a small value of the averaged
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FIG. 6. Trajectories of the shifted southbound No. 1 trains μj (	),
j = 1,2, . . . ,10. The horizontal axis represents the distance the train
has traveled (measured from stop 103). Theses shifted trajectories
are qualitatively similar to that of nonintersecting Dyson Brownian
motion, at least for short distances.
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FIG. 7. The averaged Coulomb potential (4) for southbound No.
1 trains plotted as a function of distance from station 103. The
scaled KS distance from WS is also plotted to show that when
the Coulomb potential increases, so does the scaled KS statistic,
indicating increased deviation from RMT statistics.

Coulomb potential. At some point, the external effects on the
subway (such as passengers holding doors open) cause the
system to depart from random matrix statistics, increasing the
value of the averaged Coulomb potential. Thus the Coulomb
potential, specifically its increase in value, is a mechanism for
detecting less regularly spaced trains.

Directions for further study. The foregoing analysis focused
on the behavior of “local” routes, as opposed to “express”
routes. It would be interesting to explore if the statistical
behavior of the trains exhibits variability between these
choices. Furthermore, given the limited size of this data set,

it would be of real interest to perform a similar analysis after
observing the train systems on much longer time scales, such
as for a year or longer. And if RMT-like statistics are desirable,
the mechanism for their deterioration in the southbound No. 1
train should be investigated. Additionally, the nonappearance
of RMT-like statistics in the No. 6 train is curious.

Conclusion. In summary, we have provided significant
statistical evidence that the train gaps in the NYC MTA
system exhibit RMT-like statistics. In addition, regimes exists
where train arrivals are Poissonian. In this sense the MTA is a
concrete physical system that exhibits both RMT and Poisson
statistics. We have also used detailed spatial information to
gain increased insight into the train correlations, treating their
trajectories as those of a particle system. While we make
no conjectures about the physical mechanisms behind the
transition from RMT-like statistics to Poissonian statistics,
RMT-like statistics do appear to be destroyed as the train makes
more and more stops. But if one takes RMT-like statistics for
train arrivals to be a hallmark of efficiency, as could be argued
from the Cuernavaca, Mexico case study, this type of analysis
may prove fruitful as a guide to understand and improve the
performance of a subway system. The main conclusion of
this Rapid Communication is that the “noise” of the subway
system coming from train traffic and passengers can deteriorate
purportedly beneficial statistical properties of the system. It is
important to ask if the introduction of global computer control
to the MTA will alleviate this issue.
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