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Our paper [Phys. Rev. E 93, 052227 (2016)], proposing an integrable model for the propagation of ultrashort
pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)] about a possible
flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is
neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing
with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar
approximation has to be performed in deriving the same integrable equation as explained in the Comment.
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With the significant progress of laser technology in the past
two decades, the study of ultrashort optical pulses has attracted
much attention [1]. However, the mathematical description of
such ultrashort optical pulses requires a new approach beyond
the conventional slowing varying envelope approximation [2].
As a matter of fact, some works have been performed in
the literature, and several mathematical models have been
proposed and studied [3–7]. Especially, a short-pulse equation
was proposed by Schäfer and Wayne [8], which turns out to be
integrable and admits Lax pairs [9] and multisoliton solutions
[10,11]. Recently, an integrable complex short-pulse equation
was proposed in Refs. [12,13] and, separately, was generalized
to including the defocusing case [14].

The main criticism by Youssoufa et al. in the preceding
Comment [15] concerns the approximation used in our papers
[14]. To address their criticism, let us first reconfirm our
derivation briefly here. Starting from the Maxwell equation and
assuming an instantaneous Kerr effect, we obtain the following
normalized equation (Eq. (21) in Ref. [14]):

Ezz − Ett = ±E + (|E|2E)t t . (1)

It is noted that the same equation with a positive sign before
E has been derived earlier in Refs. [4–6,12]. This equation
is considered as a full wave equation to model the ultrashort
optical pulses with a few cycles and has been investigated in
Refs. [5,6]. In seeking a right-moving wave packet, we assume
a multiple scales ansatz,

E(z,t) = εE0(τ,z1,z2, . . .) + ε2E1(τ,z1,z2, . . .) + · · · ,

(2)

where ε is a small parameter and τ and zn are the scaled
variables defined by

τ = t − z

ε
, zn = εnz. (3)
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As a result we obtain the following partial differential equation
for E0 at the order O(ε):

−2
∂2E0

∂τ ∂z1
= ±E0 + 2

∂

∂τ

(
|E0|2 ∂E0

∂τ

)
. (4)

As pointed out in Ref. [14], a term E2
0E

∗
0,τ (misprinted

by E2
0E0,τ in Ref. [14]) is neglected for the purpose of

obtaining an integrable nonlinear wave equation. Otherwise,
an intermediate equation, which is nonintegrable, turns out to
be

−2
∂2E0

∂τ ∂z1
= ±E0 + 2

∂2

∂τ 2
(|E0|2E0). (5)

Furthermore, by scale transformations,

x = 1√
2
τ, t = 1√

2
z1, q =

√
2E0, (6)

we arrive at

qxt ± q + 1
2 (|q|2qx)x = 0, (7)

qxt ± q + 1
2 (|q|2q)xx = 0, (8)

respectively, from (4) and (5).
Thus, we disagree with the claim in the statement [15] that

a term (Eq. (17) in Ref. [15]) is missing since we explicitly
have stated this neglected term in our paper [14]. Furthermore,
to verify the validation of the approximation, in Ref. [14], we
first compare the one-soliton solution for the focusing complex
short-pulse equation with the ones for the normalized Maxwell
equation (1) with the positive sign, the nonlinear Schrödinger
(NLS) equation, and the higher-order NLS equation. The
results are shown in Fig. 1 in Ref. [14]. For the defocusing
case, we also compared the one-soliton solution with the one
for the normalized Maxwell equation (1) with the negative
sign. The result is Fig. 2 in Ref. [14].

From the above comparisons, it can be seen that the solitary
wave solutions for both the focusing and the defocusing
complex short-pulse equations is consistent with the ones for
the normalized Maxwell equation.
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The physical background underlining the approach by
Kuetche et al. [13] and the preceding Comment [15] mainly
is based on the research performed by Kozlov and co-workers
[16–19]. In Refs. [13,15], the nonlinear part of the electric
polarization PNL is

∂tPNL = α|E|2Et + βE × (E × Et ). (9)

As mentioned in Ref. [18], if a cubic nonlinearity PNL =
χ |E|2E is considered due to the Kerr effect, then

∂tPNL = 3χ |E|2Et + 2χE × (E × Et ). (10)

In Refs. [3,19], the nonlinear contribution to the refractive
index was studied in more detail. By considering the contribu-
tion due to the electronic-vibrational nonlinearity beside the
electronic nonlinearity, a more general expression for ∂tPNL

takes the form of Eq. (9).
It was pointed out in Ref. [3], α = 3

2β for purely elec-
tronic nonlinearity, and some difference can be brought in a
correlation between α and β by the electronic-vibrational
mechanism of nonlinearity. However, the case of β = 0 is too
special, which may not be true physically. In other words, an
alternative approximation similar to our approach in Ref. [14]

is used in deriving an integrable complex short-pulse equation
(Eq. (27) in Ref. [15]). Without this approximation, the
derivation will lead to a nonintegrable complex short-pulse
equation (8).

To summarize, the integrable complex short-pulse equa-
tion (7) can be derived to model the propagation of an
ultrashort pulse in nonlinear media, either from our approach
or from the approach by Youssoufa et al. [15] by certain
approximations. The integrability of this model equation
allows us to obtain more mathematical properties and various
exact solutions [20,21]. Meanwhile, a nonintegrable complex
short-pulse equation (8) can also be used to describe the
ultrashort pulses. To conclude, we argue that the criticism
in the Comment [15] is incorrect and Youssoufa et al. used
an alternative but similar approximation in deriving the same
complex short-pulse equation.
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