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Patch-planting spin-glass solution for benchmarking
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We introduce an algorithm to generate (not solve) spin-glass instances with planted solutions of arbitrary
size and structure. First, a set of small problem patches with open boundaries is solved either exactly or with a
heuristic, and then the individual patches are stitched together to create a large problem with a known planted
solution. Because in these problems frustration is typically smaller than in random problems, we first assess
the typical computational complexity of the individual patches using population annealing Monte Carlo, and
introduce an approach that allows one to fine-tune the typical computational complexity of the patch-planted
system. The scaling of the typical computational complexity of these planted instances with various numbers of
patches and patch sizes is investigated and compared to random instances.
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I. INTRODUCTION

Many optimization problems belong to the NP-hard com-
plexity class, for which it is believed that no algorithms exist to
solve them in polynomial time. Spin-glass problems without
biases and on nonplanar topologies, such as the Edward-
Anderson (EA) model [1], represent a subclass of the NP-hard
class. Because spin glasses are the simplest models with both
disorder and frustration that fall into the NP-hard class, they
represent the ideal model systems to benchmark algorithms, as
well as novel computing architectures. A number of heuristics,
as well as exhaustive search methods, have been designed and
developed to minimize spin-glass Hamiltonians as efficiently
as possible. These method also include simulated annealing
[2], parallel tempering Monte Carlo [3–6], population an-
nealing Monte Carlo [7–10], and genetic algorithms [11,12],
as well as branch-and-cut [13] algorithms, to name a few.
Many of these optimization algorithms use only local updates
during the minimization procedure. However, in many cases,
the use of cluster algorithms with nonlocal updates can greatly
enhance the searching process when the energy landscape has
many metastable states with small overlap [14–16]. In the
last two decades, quantum heuristics have been proposed as
an alternative to classical heuristics, due to their potential to
exploit quantum superposition and quantum tunneling effects.
Among quantum approaches, adiabatic quantum optimization
(AQO) is widely used [17–30] and likely the method most
amenable to hardware implementations [31]. Current state-of-
the-art AQO hardware is manufactured by D-Wave System
Inc., whose latest chip allows for the quantum optimization
of problems of approximately up to 2000 variables. However,
whether AQO can be more efficient than classical algorithms
for certain problems is still controversial [32–34].

Given the importance of comparing optimization tech-
niques across disciplines, it is necessary to have benchmark
problems that are (1) representative of the hardness of a typical
NP-hard problem, (2) scalable for large systems, and for which
(3) the ground state is known a priori. While it is easy to fulfill

criteria (1) and (2), it is challenging to have large problems
with known solutions.

There have been previous approaches to plant solutions
for benchmarking purposes. For example, Ref. [35] used an
approach based on constraint satisfaction problems. Although
these problems are tunable in hardness, there is little control
when selecting the coupler values between the individual
variables. For analog machines with finite precision, such as
the D-Wave quantum annealers, this could be an unnecessary
restriction. Other approaches [36] start from a random coupler
configuration and then stochastically update the values of the
couplers with a penalty that directly correlates to the time-
to-solution of a given solver. However, this approach has two
shortcomings: Fist, it assumes that the typical computational
hardness [37] of a problem for a given algorithm will carry over
to other optimization techniques. Second, for extremely large
problems, the stochastic approach will take sizable resources
to thermalize and thus will not be practical.

The method we propose here and which we call “patch
planting” (see Fig. 1), where we solve small problems
(patches) with open boundaries and then stitch these together to
plant an arbitrarily large solution to an instance, does not suffer
from these shortcomings: First, arbitrarily large problems can
be generated. Second, by assessing the typical complexity
using the entropic family size of population annealing Monte
Carlo, a metric that characterizes the landscape of the problem
and not the algorithmic complexity, we do not depend on the
behavior of a particular algorithm when assessing the typical
time to solution for a particular instance. Finally, the method
poses no restrictions to coupler values, biases (field terms), or
lattice topologies.

The paper is structured as follows. In Sec. II we introduce
the benchmark problem, as well the patch-planting algorithm.
In Sec. III we use simulated annealing, population annealing
Monte Carlo, as well as experiments on the D-Wave 2X
quantum annealer to illustrate how patch planting can produce
computational problems that are typically hard. Concluding
remarks are presented in Sec. IV.
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FIG. 1. Schematic diagram of the patch-planting method for
a two-dimensional lattice. First, the ground state for each (easily
solvable) patch (A–D) is computed using free boundary conditions.
Then a ground state configuration of each patch is selected. Edge
spins between the patches are represented by empty and full circles.
Couplers between the edge spins between adjacent patches are added
under the condition that all interactions are satisfied, i.e., if two
spins have the same value (i.e., both full or both empty circles), a
ferromagnetic coupler (straight blue line) is added. If, however, two
adjacent spins are different, then an antiferromagnetic coupler (red
wiggly line) is added. The direct product of the ground state of the
patches A–D is then the ground state of the large planted system.

II. PATCH PLANTING

The patch-planting heuristic can be described via the
following steps:

(1) Find the ground state of patches using free boundary
conditions.
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FIG. 2. Distribution of R[defined in Eq. (3)] for various system
sizes [L = 4 (a), 8 (b), 12 (c), 16 (d), and 20 (e)] in three space
dimensions. For increasing system size, the typical complexity of the
problems grows, which is mirrored by the distributions of Rshifting
to the right.

(2) For each patch, choose an arbitrary ground-state con-
figuration.

(3) Connect the patches with couplers between the free
boundary spins ensuring that all couplings are satisfied.

Note that the patches can be chosen arbitrarily, as long as they
can be glued together to form the desired problem or topology
with the edges to be stitched together having free boundaries.
In addition, the individual patches can be solved with any
available optimization technique. As demonstrated below, it
is important to solve as large patches as possible, because
this will result in problems of comparable computational
complexity to purely random problems. In some cases, the
breakup of a problem might result in a patch that can be solved
exactly, i.e., in polynomial time. Finally, when stitching the
patches together, as shown in Fig. 1, it is important to “satisfy”
the interaction between two spins of different patches. This
means that the coupler has to be chosen as to minimize the
dimer’s energy. Knowing the minimizing configuration of the
individual patches and assigning the stitching couplers as to
satisfy the interactions between spins of neighboring patches
then results in a larger planted solution [38].

As described in Sec. III in more detail, the typical computa-
tional complexity of the patched problem can be tuned by either
changing the patch size (the larger, the harder) or using hard
patches (the harder the patch, the harder the compound prob-
lem), e.g., by measuring the entropic family size via population
annealing Monte Carlo. This metric can be measured with
little numerical effort and gives a good representation of the
typical computational complexity of a problem. Therefore, by
postselecting individual patches, problems of different typical
computational complexity can be generated.

Note that in the description of the patch-planting procedure
no details of the problem to be studied have been mentioned,
because the approach is agnostic to the choice of couplers
and topologies. We thus emphasize that the patch-planting
approach can be used for problems of arbitrary topology and
for an arbitrary set of coupler values and biases. As such,
solutions for arbitrary problems can be planted. This is of much
importance when attempting to generate problem sets with
particular features, such as synthetic application problems, that
are known to have a specific nonrandom structure, or problems
where the minimum energy gap is fixed (and large) to mitigate
the effects of noise on analog optimization machines [39,40].

III. EXPERIMENTS

A. Benchmark problem

To test the properties of patch planting, we use the Edward-
Anderson (EA) Ising spin-glass model [1], initially in three
space dimensions. Later, we perform experiments on the
D-Wave 2X quantum annealer using the native topology of the
machine [41]. The EA spin glass is defined by the following
Hamiltonian:

H = −
∑

ij

Jij SiSj −
∑

i

hiSi , (1)

where Si ∈ {±1} are Ising spins and the first sum is over
spin-spin interactions. For a three-dimensional lattice, the sum
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TABLE I. Simulation parameters for the three-dimensional EA
model experiments using population annealing Monte Carlo. Here
L0 is the patch size, L is the linear system size, R is the number of
replicas used in the simulation, T0 = 1/β0 is the lowest temperature
simulated, NT is the number of temperature steps (evenly spaced in
β) in the annealing schedule, BC is the type of boundary condition
[either periodic boundary condition (PBC) or free boundary condition
(FBC)], and Nsa is the number of disorder realizations studied. For
each replica, NS = 10 Monte Carlo sweeps are performed at each
temperature during the anneal. Data for PBC with L = 8 are taken
from Ref. [9].

L0 L R T0 NT BC Nsa

4 4 4 × 103 0.2 101 FBC 345 600
4 8 104 0.2 101 FBC 5000
4 12 5 × 104 0.2 201 FBC 5120
4 16 2 × 105 0.2 301 FBC 1877
4 20 106 0.2 401 FBC 194
5 5 104 0.2 101 FBC 345 600
5 10 105 0.2 201 FBC 5000
6 6 2 × 104 0.2 101 FBC 41 472
6 12 105 0.2 201 FBC 1752
8 8 5 × 104 0.2 201 FBC 23 358
8 16 106 0.2 301 FBC 624
10 10 106 0.2 301 FBC 8000
10 20 2 × 106 0.2 401 FBC 260
8 8 105 0.2 101 PBC 5099
12 12 106 0.2 201 PBC 3812

is over nearest neighbors on a cubic lattice. For simplicity,
all the local magnetic fields are set to zero, i.e., hi = 0. We
do emphasize, however, that patch planting also works with
external biases. The spin-spin interactions Jij are chosen from
a normal distribution with zero mean and unit variance. A set
of the couplings defines an “instance.”

Given the hardware limitations of the D-Wave quantum
chips, instances for the D-Wave 2X have been created by
planting and patching together K44 unit cells following the
two-dimensional logical structure of the Chimera graph. The
couplers are randomly drawn from the Sidon set {±5,±6,±7}
[40]. In both cases, we use free boundary conditions (FBCs)
for the patches to plant larger instances. We also compare our
patched instances with free boundary conditions to random
instances with periodic boundary conditions (PBCs).

B. Simulation details

We use the entropic family size of population annealing
Monte Carlo ρs [10] to characterize the hardness of the
instances. All simulation parameters for the three-dimensional
Edwards-Anderson model are listed in Table I. For the Chimera
graph studies on the D-Wave 2X machine, we find the ground
state of the patches using R = 2 × 105 population members,
NT = 301 temperature steps, NS = 10 Monte Carlo sweeps,
and T0 = 0.1 the lowest temperature of the anneal. The
simulation for random problems are done with the same
parameters, except R = 106.

Experiments on the D-Wave 2X quantum annealer have
been performed using a chip with N = 1097 working qubits.
For the Chimera graph, we used all available qubits and

patched the system using either two, three, or four patches,
respectively. That is, if the system has 12 × 12 K44 cells of
eight qubits each, we divide the whole lattice into two patches
of 6 × 12 K44 cells, three patches of 4 × 12 K44 cells, or four
patches of 3 × 12 K44 cells. For the experiments, we used an
annealing time of 20 μs, 100 gauges, and 1000 readouts for
each gauge.

C. Correlation between typical hardness and the entropic
family size

The first crucial step in investigating the hardness of
instances is to find a good metric that reliably characterizes the
typical problem complexity, yet is easy to measure with little
computational cost. One approach would be to use the success
probability of simulated annealing as a proxy. However, even
for medium-size systems, this metric becomes unreliable and
computationally expensive. Another possibility consists in us-
ing specialized classical algorithms [36], such as the Hamze–
de Freitas–Selby heuristic [42,43]. However, in this case the
typical computational complexity depends on a chosen algo-
rithm and not on the intrinsic properties of the problem’s en-
ergy landscape. The latter can be mapped out well for random
problems using parallel tempering Monte Carlo [39], however,
at sizable computational cost for large patches. Therefore, in
this work we infer the typical hardness of instances through the
entropic family size ρs of population annealing Monte Carlo.

Population annealing (PA) Monte Carlo [7,44] is closely
related to simulated annealing (SA), except that it uses a
population of R replicas and the population is resampled at
each temperature anneal step to maintain thermal equilibrium.
At each simulation step, replicas are duplicated accordingly
to the ratio between the Boltzmann factors computed after
and before updating the temperature. This means that replicas
with lower (higher) energy tend to be duplicated (eliminated),
ensuring the correct representation of the Boltzmann distri-
bution. Therefore, PA improves the probability to find the
lowest energy state over SA by more efficiently sampling
phase space. We choose to normalize our replicas so that
the population size stays approximately the same. Similar
to SA, Metropolis sweeps are applied to each replica at the
new temperature. At low temperatures, most of the original
population is eliminated in the resampling steps and the
final population is a descendant from a small subset of the
initial population. Let ni be the fraction of the population from
family i in the initial population, then

ρs = lim
R→∞

R × e

∑
i

ni log ni

. (2)

Here ρs represents the characteristic survival family size. The
larger ρs is, the less surviving families, i.e., the more rugged
the energy landscape. Moreover, ρs correlates strongly with the
integrated autocorrelation time of parallel tempering, which is
also a proxy towards the roughness of the energy landscape
[10]. Note that ρs converges quickly in population size and
is easily estimated with simulations. See Ref. [10] for more
details on population annealing. Because ρs is approximately
log-normal distributed (see Fig. 2), let us define the logarithm
of ρs as

R= log10(ρs). (3)
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FIG. 3. Correlation of the probability to find the ground state
of simulated annealing pSA and the log of entropic family size of
population annealing Rfor three-dimensional systems with L = 4
and L = 6 at β = 5 (data taken from Refs. [45] and [9]). When R
is larger, it is also more difficult to find the ground state, i.e., pSA is
smaller. Note that pSA drops very rapidly as L increases, while it is
easier to measure R.

Figure 3 shows the correlation between the probability to
find the ground state for SA, pSA at inverse temperature
β = 1/T = 5 and R(data taken from Refs. [9,45]). As
expected, the probability of success decreases by increasing

R. Indeed, SA struggles more to find the ground state when
the energy landscape is more rugged. Therefore, Rrepresents
a good metric to estimate the typical hardness of optimization
problems. In this work, because we study large patched system
sizes in three dimensions, we have used Rat β = 3, which is
still a low temperature compared to the spin-glass transition
temperature for this model [46]. For the Chimera graph, where
there is no phase transition, we have used Rat a considerably
lower temperature β = 10.

D. Results in three space dimensions

We first focus on the scaling properties of Rfor patch-
planted instances by either varying the patch sizes L0 or the
system size L. In addition, we also demonstrate that harder
patches can be used to patch harder instances.

Let M = (L/L0)3 the number of patches of size L0.
For random instances, ρs grows exponentially with L [10].
Because one would expect that ρs for a problem of size L

by patching M patches of size L0 cannot be larger than the
product of ρs of the individual patches, the patched instance
complexity is bounded,

R(M,L0) � M R(L0), (4)

where R(M,L0) is Rof the patched instance of M patches of
size L0 and R(1,L0) ≡ R(L0) is Rof a patch. In Fig. 4 we
show the scaling of Rby varying the number of patches M

and a power-law fit of the form

R(M,L0) = R(L0)Mα, (5)

where 0 < α < 1. Rscales sublinearly with M with an
exponent α = 0.31(3). This proves that the patch-planted
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FIG. 4. Scaling of the logarithm of the entropic family size R=
log10 ρs by varying the number of patches M (triangles, labeled with
“PP”). The line is a power-law fit of the form R(L0)Mα , where R(L0)
is Rof a single patch. From the fit, we obtain α = 0.31(3). We also
compare to random problems on a three-dimensional lattice (circles).
In this case a power-law fit results in α′ = 0.37(4), i.e., the two classes
scale similarly, yet with two different exponents.

instances become harder by increasing the system size via
the number of patches. Therefore, it is guaranteed that,
for a sufficiently large number of patches, patch-planted
instances can become arbitrarily hard in the thermodynamic
limit. Figure 5 shows the scaling of the exponent α by
increasing the size of the patches L0, while keeping the
number of patches fixed to M = 8. As one can see from
the figure, α remains roughly constant for a wide range
of L0 values, implying that α is a characteristic constant
for patch-planted problems. It is interesting to compare the
scaling with random instances by defining an effective number
of blocks as M = (L/L0)3, also shown in Fig. 4. We find
that both random and patch-planted instances have a similar
scaling form, although the random class has a larger exponent
α′ = 0.37(4), as expected. Therefore, ρs for patched instances
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FIG. 5. Scaling exponent α ( R∼ Mα; see Fig. 4), by varying the
patch size L0 but keeping the number of patches fixed to M = 8.
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FIG. 6. Comparison of the distribution of Rfor L = 16 in three
space dimensions, but with different patch sizes L0 = 4 (a) and 8 (b).
There is a noticeable shift in the distributions of R. Therefore, to patch
harder instances, one should use as large patch sizes as possible.

also approximately scales exponentially with system size L,
as is the case for random instances. Note that α and α′ likely
depend on the characteristics of the problem to be studied.

One may also expect to have some benefit by using either
larger or harder patches. Indeed, in both cases, this results in
having a larger value of R. In Fig. 6 we show the effects of
having larger patches by analyzing the distribution of Rat
fixed size of the system, L = 16, using two different patch
sizes, L0 = 4 [Fig. 6(a)] and L0 = 8 [Fig. 6(b)]. As one can
see, patched instances are consistently harder by using larger
patches for a fixed system size. Similarly, in Fig. 7 we show the
distribution of Rby patching instances with M = 8 patches of
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FIG. 7. Distributions of Rfor M = 8 (L = 12) patches of size
L0 = 6 using either easy patches (a) or hard patches (b). As expected,
the distribution shifts to the right when harder patches are used.
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FIG. 8. Comparison of the typical complexity of the patched
instances with random instances. The patched instances shown in
panels (b), (d), and (e) are generally computationally easier than their
random counterparts shown in panels (a) and (c), for a given system
size. Note the overlap between the distributions, i.e., by mining the
data one can obtain very hard patched problems.

size L0 = 6 by either using easy [Fig. 7(a)] or hard [Fig. 7(b)]
patches. We defined easy patches as the 8000 patches with
the smallest Rand hard patches as the 8000 patches with the

(a) (b)

(c) (d)

FIG. 9. Sketch of the different patch geometries used on the
D-Wave 2X quantum annealer chip. Each gray block represents a
K44 call with 8 sites. (a) A zoom of such cell. (a–d) The shading
represents the different patches used from M = 1 (a) to M = 4 (d).
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largest Rfrom the 41 472 patches randomly generated. From
these, 1000 easy and 1000 hard instances are then generated.

Patch-planted instances generated using hard patches are
consistently harder than patch-planted instances assembled
from easy patches with the mean value of Rfor both cases
being 3.214(5) and 2.957(4), respectively. We note that the
approach pioneered in Ref. [36] applied to the production of
patches could be combined with patch planting to generate un-
usually hard planted problems. It is also interesting to compare
the complexity of the patched instances with random instances.
We show the distribution of Rfor L = 8 [Figs. 8(a) and 8(b)]
and L = 12 [Figs. 8(c)–8(e)] with different patch sizes and ran-
dom instances. One can see that while the patched instances are
generally easier than the random instances, they are not neces-
sarily trivial. There is clear overlap between the distributions,
i.e., by mining the data one can obtain problems of comparable
typical complexity. Note also that the typical complexity grows
with increasing patch size for a fixed system size.

Finally, we comment on the performance of parallel
tempering (PT) on patched instances. Because population
annealing and parallel tempering have a similar performance
in both thermal sampling and optimization, and given that the
entropic family size correlates strongly with the integrated
autocorrelation time (characteristic measure of hardness of
parallel tempering) [10], it is natural to expect the proposed
patch-planted instances to be hard also for PT. To this end,
it is noteworthy to mention recent results that analyze the
performance of PT with isoenergetic cluster moves (ICMs)
(see Ref. [16]) in solving patch-planted instances [47]. PT
combined with ICMs has been found to be one of the best
classical heuristics in solving hard optimization problems
[33]. However, Ref. [47] clearly show that PT is not able
to efficiently solve patch-planted instances (see Figs. 8–10).
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FIG. 10. Distributions of Ron a chimera graph with N = 1097
for random instances and patched instances with different number of
patches M . There are 1000 instances each, and the patched instances
were chosen from the hardest ones out of 104 instances in each class.
Note that the patched problems with M = 2 (b) and random (a) are
comparable. Panels (c) and (d) show that problems become easier for
smaller patches, i.e., a larger number of patches.
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FIG. 11. Sorted probabilities to find the ground state psucc from
experiments with the D-Wave 2X quantum annealer for N = 1097
sites and different number of patches M . As in Fig. 10, random
instances and instances with M = 2 are comparable.

E. Experiments on the D-Wave quantum annealer

We complement the numerical studies on three-dimensional
spin glasses by experiments on the D-Wave 2X quantum
annealer. For this purpose, we patch plant problems on the
native topology of the machine and measure the probabilities
to find the ground state psucc over multiple runs. In addition,
we compare to random problems and show correlation plots
between the success probabilities and R.

The topology of the machine with N = 1097 working
qubits is cut into two, three, and four patches; see Fig. 9 for
a graphical representation. For each experiment, we study 103

instances. For the patch-planted instances, we first generate
104 patch-planted problems from random patches and then
use Rto select the 103 hardest ones. The distributions of R
for the problems studied is shown in Fig. 10. One can see that
for an increasing number of patches M the problems become
computationally easier. However, again by mining the data as
done above results in hard problems. Figure 11 shows the
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FIG. 12. Correlation of Rand psucc for experiments on the
D-Wave machine with N = 1097. Data for random instances, as well
as instances with different numbers of patches M .
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TABLE II. Statistics of the D-Wave 2X quantum annealer success
probability psucc in Fig. 11 for random instances and patched instances
with different number of patches M . There are 103 instances each,
and the patched instances were chosen from the hardest ones out of
104 instances in each class. pmin, pmax, and pave are the minimum,
maximum, and average values of psucc, respectively, and f is the
fraction of instances with psucc = 0.

Random M = 2 M = 3 M = 4

pmin 0 0 0 0
pmax 0.00240(32) 0.00137(59) 0.0326(32) 0.173(9)
pave 0.0000204(46) 0.0000129(24) 0.00115(10) 0.0127(7)
f 0.831(12) 0.775(13) 0.185(12) 0.011(3)

sorted success probabilities for the 1000 problems studied
for different number of patches. One can see that problems
with M = 4 are computationally much easier. It remains to
be tested if changing the shape of the patch could make
the problems harder. For example, the four patches could be
chosen to be comprised of 6 × 6 K44 cells. Finally, Fig. 12
shows a correlation plot between success probabilities and R.
As can be seen, there is a good correlation between these
two quantities, especially for larger patches. Experiments (not
shown) suggest that the correlation becomes more pronounced
for larger system sizes. With some data mining and only a
10-fold overhead, instances with two patches M = 2 have
approximately the same complexity as the random ones, which
are harder than instances with three patches and four patches.
Statistics of the success probabilities are shown in Table II.

IV. SUMMARY

We have introduced the concept of patch planting to
create planted solutions to Ising-type optimization problems

for arbitrarily large systems. The method does not restrict
the values of the couplers and works for any topology that
can be decomposed into patches. We studied in detail the
scaling of the typical complexity of the patched instances
and compared this to random instances using population
annealing Monte Carlo and the D-Wave 2X machine. From
our results it is clear that one should use as large patches as
possible to more faithfully reproduce the hardness of random
problems. Patch planting is easy to implement and could be
used to generate benchmark instances for future generations
of quantum devices, as well as classical algorithms and any
other novel hardware. The approach is generic in that solutions
could also be planted for other paradigmatic optimization
problems (e.g., the traveling salesman problem) with only
minor modifications.
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[20] G. Santoro, E. Martoňák, R. Tosatti, and R. Car, Theory of
quantum annealing of an Ising spin glass, Science 295, 2427
(2002).

[21] J. Roland and N. J. Cerf, Quantum search by local adiabatic
evolution, Phys. Rev. A 65, 042308 (2002).

[22] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and
D. A. Lidar, Experimental signature of programmable quantum
annealing, Nat. Commun. 4, 2067 (2013).

[23] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A.
Lidar, J. M. Martinis, and M. Troyer, Evidence for quantum
annealing with more than one hundred qubits, Nat. Phys. 10,
218 (2014).

[24] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D.
Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining
and detecting quantum speedup, Science 345, 420 (2014).

[25] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M.
Dykman, V. S. Denchev, M. H. Amin, A. Y. Smirnov, M.
Mohseni, and H. Neven, Computational multiqubit tunneling in
programmable quantum annealers, Nat. Comm. 7, 10327 (2016).

[26] K. L. Pudenz, T. Albash, and D. A. Lidar, Quantum annealing
correction for random Ising problems, Phys. Rev. A 91, 042302
(2015).

[27] A. Perdomo-Ortiz, B. O’Gorman, J. Fluegemann, R. Biswas, and
V. N. Smelyanskiy, Determination and correction of persistent
biases in quantum annealers, arXiv:1503.05679 [quant-phys].

[28] W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Li-
dar, Quantum annealing correction with minor embedding,
Phys. Rev. A 92, 042310 (2015).

[29] S. Mandrà, G. G. Guerreschi, and A. Aspuru-Guzik, Adiabatic
quantum optimization in the presence of discrete noise: Re-
ducing the problem dimensionality, Phys. Rev. A 92, 062320
(2015).

[30] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas,
and V. Smelyanskiy, Quantum optimization of fully connected
spin glasses, Phys. Rev. X 5, 031040 (2015).

[31] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F.
Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson,
P. Bunyk et al., Quantum annealing with manufactured spins,
Nature (London) 473, 194 (2011).

[32] B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, Quantum
versus classical annealing of Ising spin glasses, Science 348,
215 (2015).

[33] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, and H. G.
Katzgraber, Strengths and weaknesses of weak-strong cluster
problems: A detailed overview of state-of-the-art classical

heuristics versus quantum approaches, Phys. Rev. A 94, 022337
(2016).

[34] S. Mandrà, Z. Zhu, and H. G. Katzgraber, Exponentially Biased
Ground-State Sampling of Quantum Annealing Machines with
Transverse-Field Driving Hamiltonians, Phys. Rev. Lett. 118,
070502 (2017).

[35] I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, and D. A.
Lidar, Probing for quantum speedup in spin-glass problems with
planted solutions, Phys. Rev. A 92, 042325 (2015).

[36] J. Marshall, V. Martin-Mayor, and I. Hen, Practical engineering
of hard spin-glass instances, Phys. Rev. A 94, 012320 (2016).

[37] In practical applications of optimization techniques, the worst-
case complexity of a problem is not representative for the
behavior of a finite subset of instances. For example, a problem
could fall into the NP-hard optimization class with only having
one extremely hard instance and all others being solvable in
polynomial time. While this extreme case is likely unrealistic,
it does highlight the importance of the typical computational
complexity, i.e., the median time needed to solve a finite set of
problems for a given instance class.

[38] The idea of patch planting is inspired by patchwork approaches
to compute ground states of Ising spin glasses [48]. However, in
this case the goal is to plant a solution and not find one.

[39] H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, and H. Munoz-
Bauza, Seeking Quantum Speedup Through Spin Glasses: The
Good, the Bad, and the Ugly, Phys. Rev. X 5, 031026 (2015).

[40] Z. Zhu, A. J. Ochoa, S. Schnabel, F. Hamze, and H. G.
Katzgraber, Best-case performance of quantum annealers on
native spin-glass benchmarks: How chaos can affect success
probabilities, Phys. Rev. A 93, 012317 (2016).

[41] P. Bunyk, E. Hoskinson, M. W. Johnson, E. Tolkacheva, F.
Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting,
and J. Whittaker, Architectural considerations in the design of
a superconducting quantum annealing processor, IEEE Trans.
Appl. Supercond. 24, 1 (2014).

[42] F. Hamze and N. de Freitas, in Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (AUAI
Press, Arlington, VA, 2004), p. 243.

[43] A. Selby, Efficient subgraph-based sampling of Ising-type mod-
els with frustration, arXiv:1409.3934 [cond-mat.stat-mech].

[44] J. Machta, Population annealing with weighted averages:
A Monte Carlo method for rough free-energy landscapes,
Phys. Rev. E 82, 026704 (2010).

[45] W. Wang, J. Machta, and H. G. Katzgraber, Evidence against
a mean-field description of short-range spin glasses revealed
through thermal boundary conditions, Phys. Rev. B 90, 184412
(2014).

[46] H. G. Katzgraber, M. Körner, and A. P. Young, Universality
in three-dimensional Ising spin glasses: A Monte Carlo study,
Phys. Rev. B 73, 224432 (2006).

[47] H. Karimi, G. Rosenberg, and H. G. Katzgraber, Effective
optimization using sample persistence: A case study on quantum
annealers and various Monte Carlo optimization methods,
arXiv:1706.07826.

[48] C. K. Thomas, O. L. White, and A. A. Middleton, Persis-
tence and memory in patchwork dynamics for glassy models,
Phys. Rev. B 77, 092415 (2008).

023312-8

http://arxiv.org/abs/arXiv:1605.09399
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1103/PhysRevA.91.042302
http://arxiv.org/abs/arXiv:1503.05679
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.92.062320
https://doi.org/10.1103/PhysRevA.92.062320
https://doi.org/10.1103/PhysRevA.92.062320
https://doi.org/10.1103/PhysRevA.92.062320
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.94.012320
https://doi.org/10.1103/PhysRevA.94.012320
https://doi.org/10.1103/PhysRevA.94.012320
https://doi.org/10.1103/PhysRevA.94.012320
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevA.93.012317
https://doi.org/10.1103/PhysRevA.93.012317
https://doi.org/10.1103/PhysRevA.93.012317
https://doi.org/10.1103/PhysRevA.93.012317
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
http://arxiv.org/abs/arXiv:1409.3934
https://doi.org/10.1103/PhysRevE.82.026704
https://doi.org/10.1103/PhysRevE.82.026704
https://doi.org/10.1103/PhysRevE.82.026704
https://doi.org/10.1103/PhysRevE.82.026704
https://doi.org/10.1103/PhysRevB.90.184412
https://doi.org/10.1103/PhysRevB.90.184412
https://doi.org/10.1103/PhysRevB.90.184412
https://doi.org/10.1103/PhysRevB.90.184412
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
http://arxiv.org/abs/arXiv:1706.07826
https://doi.org/10.1103/PhysRevB.77.092415
https://doi.org/10.1103/PhysRevB.77.092415
https://doi.org/10.1103/PhysRevB.77.092415
https://doi.org/10.1103/PhysRevB.77.092415



