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Obtaining structural information from tomographic images of porous materials is a critical component of
porous media research. Extracting pore networks is particularly valuable since it enables pore network modeling
simulations which can be useful for a host of tasks from predicting transport properties to simulating performance
of entire devices. This work reports an efficient algorithm for extracting networks using only standard image
analysis techniques. The algorithm was applied to several standard porous materials ranging from sandstone to
fibrous mats, and in all cases agreed very well with established or known values for pore and throat sizes, capillary
pressure curves, and permeability. In the case of sandstone, the present algorithm was compared to the network
obtained using the current state-of-the-art algorithm, and very good agreement was achieved. Most importantly,
the network extracted from an image of fibrous media correctly predicted the anisotropic permeability tensor,
demonstrating the critical ability to detect key structural features. The highly efficient algorithm allows extraction
on fairly large images of 5003 voxels in just over 200 s. The ability for one algorithm to match materials as varied
as sandstone with 20% porosity and fibrous media with 75% porosity is a significant advancement. The source
code for this algorithm is provided.
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I. INTRODUCTION

Porous materials play a vital role in many technologies
and industries. Naturally occurring porous media such as rock
and soil have been the subject of intense study in the context
of oil recovery and aquifer management [1]. Engineered or
manufactured porous materials have enabled breakthroughs in
many fields such as electrodes [2–4], membranes [5], biomed-
ical applications [6], and more [7]. Designing porous materials
represents a classic optimization problem: The presence of the
solid is necessary to provide some key function such as reactive
surface area, but it also creates obstacles to flow and transport.
A defining feature of all porous materials is that the pore struc-
ture can have an overriding impact on the transport processes.
Two materials with the same porosity will have dramatically
different transport properties depending on how the pores are
spatially distributed, how they are connected, their shapes, size
distribution, and so on. Because of this strong dependence
on pore structure, visualization is a major component of
porous media analysis. High-resolution x-ray tomography is
particularly useful as it allows views of the internal structure
[8]. Benchtop x-ray tomography scanners are now widely
available that can produce images with 1-μm voxel resolution,
and the latest generation can obtain images with 100-nm
resolution or lower [9,10]. Extracting the vast amount of
information found in such images is an active pursuit [11–16].

In conjunction with this explosion in imaging capacity has
been the relentless growth of computational power. It is now
technically possible to use these images as a computational
mesh and perform simulations of flow or diffusion directly
inside the pore structure, often referred to as direct numerical
simulation (DNS) [17,18]. Although this approach is feasible,
it requires enormous computational resources to simulate
domains of any significant size. An alternative to DNS is pore
network modeling (PNM), which offers several important
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advantages, albeit by making assumptions and simplifications.
The main advantage of PNMs is that they can accomplish
simulations on many millions of pores rather than hundreds of
pores currently manageable with DNS. A second advantage
of PNMs is that multiphase flow can be simulated with ease.
Percolation theory describes the sequence and pattern of an
invading phase, which can be incorporated into the network
transport calculations. Taken together, this means that PNMs
can be used to study complex multiphase flow problems in
large domains, such as entire catalyst pellets [19], electrodes
[20], and paper [21]. Developing faithful pore network models
of materials is thus essential for the study and advancement
of many technologies.

One of the most important structural metrics of a porous
material is the connectivity of the pore space, or the so-called
pore network. This has bearing on the diffusive tortuosity,
percolation of immiscible fluids, relative permeability, and so
on. To this end, researchers are highly motivated to extract pore
networks from tomographic images. This task is substantially
more complicated than obtaining other metrics such as the
chord length distribution or the two-point correlation function,
which are straightforward applications of basic image analysis
tools [22]. As made abundantly clear by Bhattad et al. [23] in
their excellent review article comparing network extraction
techniques, the main challenge is the unclear definition of
a pore and throat, and identifying where one pore ends and
another begins, especially in three dimensions (3D). The
currently favored method for extracting pore networks from
images is based on the maximal ball algorithm proposed by
Silin and Patzek [24], and refined by Blunt and co-workers
[25,26]. Another widely used approach is based on finding the
branch points of the medial axis of the pore space [27–31].
Rounding out the methods is the watershed segmentation of
the pore space, that was originally investigated by Thompson
et al. [32] and Sheppard et al. [33] over a decade ago,
but has received surprisingly little attention until recently
[34,35]. The common thread running through the existing
network extraction algorithms is that they are essentially
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FIG. 1. Illustration of marker-based watershed segmentation procedure on simple images of cubic packings of spheres. (a),(c) Distance
transform of void space. (b),(d) Segmented pore space resulting from the marker-based watershed segmentation. (e) Segmentation results on
3D body-centered-cubic packing showing a slice of the sphere locations.

optimized for rock and soil, due to the importance of these
media in oil recovery and aquifer management. Other porous
materials, such as paper and felt, bone and biomaterials, foam,
filters, and so on have been less studied. An example of
this geology-centric view is the recent work by Yang et al.
[36] who developed a unique network extraction algorithm
based on progressively dilating the solid phase and monitoring
the void space for the appearance of isolated regions, which
corresponds to pores being pinched off from the network.
Despite its ingenious simplicity, this method is unsuitable for
highly porous materials where the pinching of the solid phase
would require far too much dilation.

In this work, an algorithm is presented that can extract
the pore network from high-porosity materials based on the
watershed segmentation approach mentioned above. It is an
improvement on the recently reported algorithm of Rabbani
et al. [34], whose focus was on sandstones; it was not directly
applicable to high-porosity media. The main issue is that for
high-porosity materials, the distance transform contains not
only peaks at each pore center, but also many ridges and
plateaus that appear as local maxima, which leads to a highly
oversegmented image. Rabbani et al. [34] did not completely
account for these artifacts, so the present algorithm includes
steps to manage the spurious local maxima that give rise to
the oversegmentation. The result is an algorithm that actually
applies to both classes of materials. The algorithm begins by
finding all the peaks that would lead to an oversegmented
watershed, then progressively reducing the number of local
maxima by ruling out several classes of peaks, producing
a subnetwork of the oversegmented watershed (SNOW).
Agaesse et al. [35] have presented a rough outline of a similar
extraction algorithm applied to fibrous media, but they only
explored two alternative methods for removing spurious peaks
and the results were not scrutinized. The SNOW algorithm,
meanwhile, uses different methods, and combines several of
them to arrive at a more complete solution that is validated
against several well-studied materials. The entire algorithm is
less than 60 lines long and is developed entirely in PYTHON

using only open-source and freely available tools. The source
code is provided in the Supplemental Material [37] of this
work. It takes just a few minutes to process a 5003 image on a
normal personal computer.

II. ALGORITHM

Watershed segmentation has tremendous potential for
extracting pore networks from tomography images, since one
could argue that the definition of a pore basically corresponds
to a catchment basin on a contour map [38,39]. Figure 1
illustrates the process on several basic, “well-behaved” struc-
tures. The interstitial space between four disks represents a
pore, and the constriction between two disks represents a throat
connecting two pores. The color scale in Figs. 1(a) and 1(c)
is the Euclidean distance (transform or distance map of the
void space, where brighter spots correspond to regions further
from the solid). Local brightness peaks occur at pore centers
as marked with small white dots. These peaks are found by
applying a maximum filter with a spherical structuring element
of radius R, then finding where the values in the filtered image
are equal to the distance map. The peaks are then passed as
“markers” to a marker-based watershed algorithm that finds the
basins of the distance map, yielding the segmentation of each
pore region as shown in Figs. 1(b) and 1(d). For this idealized
geometry, even for the 3D image shown in Fig. 1(e), the process
is trivial since the pore bodies and throat constrictions are so
uniform and well defined.

In more realistic, random media things become challenging.
Figure 2 shows a two-dimensional (2D) image of randomly
placed overlapping disks with a relatively high porosity of
60%. The image is 400 × 400 and the disks are 10 pixels
in radius. Though simplistic, this geometry is sufficient to
illustrate the problems with the basic watershed approach that
are addressed by the present algorithm. When performing the
steps outlined above, the results are not acceptable. Although
peaks have been found at all the correct locations (i.e., visually
identifiable pore centers such as the peaks marked A), the
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FIG. 2. Illustration of marker-based watershed segmentation pro-
cedure on a simple 2D image of overlapping disks. Peaks in the
distance transform are identified as locations where a maximum
filter with a structuring element of radius R > 1 is equal to the
distance transform. Without intervention it is clear that the image
is oversegmented due to the identification of many spurious peaks
that are not true local maxima resulting in many incorrect basins.

image also includes erroneous peaks, generally falling along
the ridges in the distance transform. This problem occurs
because it is difficult to distinguish between a true peak and a
ridge or saddle point, which appear locally maximal since none
of the nearby neighboring points are higher. Elimination of the
spurious peaks is the main problem that must be surmounted
to achieve segmentation of such images into pores. Figure 2
includes labels pointing to the various types of erroneous
peaks. The peak marked C lies on a plateau of constant values,
despite having higher distance values located to its right, which
were out of the range of the structuring element used in the
maximum filter. Peaks marked D lie on saddles in the distance
map, with higher values on both sides for the same reason. The
peaks marked with E are also problematic, and lie on plateaus
or saddles, but they arise from the limited resolution of the
image. Finally, occasionally two legitimate peaks lie very near
each other, such as those labeled B, which should rightfully
be considered a single large pore. The algorithm outlined in
the present work produces a subset of the oversegmented
watershed that results from direct application as outlined
above, by removing spurious peaks using a set of common
and custom image analysis routines.

A. Detailed description of the SNOW algorithm

The SNOW algorithm proceeds in four main steps:
prefiltering the distance map, eliminating peaks on saddles
and plateaus, merging peaks that are too near each other,
then assigning void voxels to the appropriate pore using a
marker-based watershed. These are explained in detail in the
following subsections. The code is provided as SNOW.py
in the Supplemental Material [37] and is implemented in
PYTHON relying heavily on the SCIPY [40] stack.

1. Preparing image

The first step is to obtain the distance transform or distance
map of the pore space [41]. Many software packages offer this
function, including MATLAB’s IMAGE PROCESSING TOOLBOX,
SCIPY’s NDIMAGE module [42], and IMAGEJ [43]. The voxelated
nature of the binary image creates some artifacts in the distance
map. The main problem is that solid walls that are in reality
curved appear instead as flat surfaces. When this happens in
throat constrictions, the solid faces running parallel to each
other create plateaus in the distance map that are misidentified
as peaks. Although the objective of the present algorithm is to
remove spurious peaks, it is much easier if they are minimized
to start with. For this purpose, it is advantageous to run some
sort of filter on the distance map to smooth the image and
remove or at least minimize the occurrence of such plateaus.
Rabbani et al. [34] used a median filter for this purpose, but
in the present work it was found that a Gaussian blur filter
gave much better results since it literally smoothed ridges by
incorporating information about the local neighborhood. The
median filter is actually recommended when preserving edges
is desired, which is not the case here. Agaesse et al. [35]
applied a gray-scale reconstruction, sometimes referred to as
an H-minima filter, that converts peaks to plateaus to remove
small local peaks [44]. As discussed below, however, plateaus
are also problematic and should be avoided. Figures 3(a) and
3(c) show the peaks obtained before and after applying the
Gaussian filter to the distance map, and Figs. 3(b) and 3(d)
show the resulting watershed segmentation. The sigma or
standard deviation of the convolution kernel is an adjustable
parameter, and its impact on the results is explored in Fig. 4
(left). The number of local maxima found in the image
(explained in the next section) drops dramatically above sigma
of 0.2 indicating this level of smoothing dramatically reduces
the spurious peaks. The result is nearly independent of sigma
until above 0.4 when the number of peaks starts to decline,
indicating that information is being lost by oversmoothing. A
sigma value of 0.35 was therefore used throughout this work.

2. Identification of peaks in the distance map

The algorithm proceeds by identifying peaks in the
smoothed distance map using a maximum filter with a spherical
structuring element of radius R. A maximum filter replaces
each voxel in the image with the maximum value found within
its neighborhood defined by the structuring element. Local
peaks retain their value while all other voxels are overwritten
with a larger value. Peaks can then be found by locating voxels
in the filtered image that are equal to the distance map, resulting
in a Boolean mask containing true values at the peaks. It is at
this stage of the processing where the difficulties arise, as it is
not trivial to find actual local maxima. When R is small, many
spurious maxima are found, typically on plateaus and ridges
because the neighborhood does not extend beyond the plateau.
If R is too large, then some maxima are missed, particularly
in pores that are much smaller than the structuring element.
Figure 4 (right) shows the number of peaks identified in the
image as a function of the radius of the structuring element
used in the maximum filter. There is a precipitous drop below
R = 5, but there is no clear plateau. To ensure no information
is lost, an R of 5 provides a good balance of finding all true
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FIG. 3. Illustration of the SNOW algorithm to remove spurious peaks. The top row shows the peaks of the distance transform at each step,
and the bottom row shows the resulting segmentation of the pore space. The progressive elimination of spurious peaks can be seen from left
to right. The Gaussian blur of the distance transform produces the most striking improvement [column 2 (c),(d)]. The elimination of saddle
points removes thin regions between pores [column 3 (e),(f)]. Merging peaks that are near each other prevent the bisection of large continuous
regions [column 4 (g),(h)].

maxima without too many spurious peaks. Also shown in
Fig. 4 (right) is the impact of prefiltering the distance map
with different levels of Gaussian filter. With no filter, there
are always extra peaks, while with sigma of 0.25 or 0.5 the
results are essentially identical. Note that the suggested values
of R = 5 and sigma = 0.35 in the Gaussian blur might not
translate to images with lower resolution or smaller pores, but
this is not explored further here.

3. Removing peaks on saddles

Once a set of peaks has been found, the next step is
eliminating the spurious peaks that lie on saddles and plateaus

of the distance map. These peaks were erroneously identified
in the previous step because they are surrounded by several
voxels of the same distance value, but are ultimately connected
to voxels with higher values as the ridge extends out into the
open pore space; this is illustrated in Figs. 5(a) and 5(b). A
custom procedure was developed to identify these peaks as
shown in Figs. 5(c)–5(e). Each peak is analyzed individually
using the following iterative procedure: In step (i), the peak
is dilated with minimal cubic structuring element (3N−dim)
voxels. This dilated peak is then flooded by the maximum
value in the underlying distance map as shown in step (ii).
Lastly, the flooded dilation is compared to the distance map,
and all voxels that are equal in these two images are considered

FIG. 4. (Left) Impact of Gaussian filter parameter sigma on the number of local maxima in the image. (Right) Impact of structuring element
size on number of final peaks found after applying a maximum filter.
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FIG. 5. Schematic diagram showing saddle finding method. (a)
Shows a 3D view of the saddle contour, (b) shows a distance map,
and (c-i)–(c-iii) show the progression of steps that determine if the
peak lies on a saddle.

the new peak(s) (iii). Before repeating the above steps, the
new peaks are compared to the old peaks. If the old peaks
are a subset of the new peak(s), as shown in Figs. 5(c-iii) and
5(d-iii), then steps (i)–(iii) are repeated. If they are the same,
then this peak is a true local maximum and the search stops.
If the old peaks are not a subset of the new peaks, as shown
in Fig. 5(e-iii), then a saddle point was found, also ending
the search. These peaks are then removed from the original
peaks image as shown in Fig. 3(e). Removal of these peaks
generally leads to the elimination of thin regions spanning
between solids as shown in Fig. 3(f).

4. Merging nearby peaks

In high-porosity materials, the pores are usually large
compared to the solid features, and these large pore spaces
can lead to peaks that are quite near each other as depicted by
the peaks labeled B in Fig. 2. Spheres centered on these nearby
peaks would overlap each other significantly, so generally only
one of these peaks should be kept.

Algorithmically, these peaks are identified by finding (a)
the distance between each pair of peaks, and (b) the distance
of each peak from the solid. When pairs of peaks are found that
are closer to each other than the solid, the one furthest from the
solid is kept. Finding the distance of each peak to the solid is a
simple matter of checking the value of the distance transform
at its location. Finding the distance between markers is done by
computing a distance matrix between peaks. If an image has
N peaks, then the distance matrix is an N × N matrix with the
distance between peaks i and j stored in element (i, j ). Thus,
for peak i, it is possible to identify peaks that meet the criteria
by searching row i for distance values lower than the distance
map value for peak i. Figures 3(g) and 3(h) show the result of
removing these peaks. Two key results occurred from this step.
Firstly, as anticipated, large pores that were previously bisected
are now treated as single large pores. This behavior is important
since it will alter the size distribution of the network to make
it more representative of the real material. Despite Bhattad
et al. [23] showing that this has surprisingly little impact on

the transport properties of the network, researchers will expect
physically representative size distributions for comparison to
other measurements. The second benefit of this step is that
several thin regions that were not caught by the saddle point
check are removed.

5. Segmenting the image into pore regions

The above steps create a set of markers, which must then
be passed to a marker-based watershed algorithm to obtain
a segmented image similar to Fig. 3(f). There are several
implementations of the watershed algorithm, and not all accept
markers as input. The version used here is available in the
SCIKIT-IMAGE package (aka SKIMAGE) and is a marker-based
implementation [45]. There are a few other technical pitfalls
that must be avoided, such as not deleting markers on the
edge of the image. The code for the algorithm is provided as
SNOW.py in the Supplemental Material [37] so such details
can be seen.

B. Obtaining pore network information

The watershed segmentation produces an image with inte-
ger values indicating which pore regions (drainage basin) each
belongs to, so some additional effort is required to convert this
information into an actual pore network model. The following
sections describe the type of information that is extracted,
and briefly outlines how it is achieved. GETNET.py in the
Supplemental Material [37] is PYTHON code that performs
these steps and outputs the data in a format suitable for
importing into OPENPNM [46]. It should be stressed that the
following interpretation of pore and throat size information
represents only the most general approach, and much more
sophisticated analyses could be brought to bear [47,48].

1. Connectivity

Determining which pores are connected to each other is
the foundation of creating a pore network. The watershed
segmentation makes this trivially easy. Each region in the
watershed corresponds to a pore and each region is adjacent to
its neighboring regions, so finding connectivity is just a matter
of scanning which labels are found in the layer or shell of
voxels adjacent to each region. This can be accomplished by
isolating each region, dilating it, and then inspecting which
labels in the watershed image are overlapped, as shown in
Fig. 6(a). In this figure, the dilation of pore 7 overlaps
voxels labeled 11, 64, and 67; hence these three pores are
its neighbors.

2. Pore and throat geometric properties

Table I gives a brief description of how each pore and
throat property was found. To determine the size, volume,
location, etc., of pore i is only a matter of isolating the region
of the watershed image with voxels labeled i, and analyzing
the region’s properties, as illustrated in Figs. 6(b)–6(d). In
general, the needed size information is obtained by looking at
the corresponding set of voxels in the distance map.

The method used to scan for neighboring pores can also be
used to determine throat properties. The overlap of the dilated
pore region with its neighbors cuts through the cross section
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FIG. 6. Illustration of connectivity and size determination for a
pore in 2D. (a) The labeled pore regions with pore 6 as the pore of
interest, and neighboring pores 14, 28, and 66. The throat regions
are found by dilating region 6 and identifying overlapping regions,
shown by pale-colored pixels. (b) The distance transform of the image
is used to determine the pore and throat size information from the
peak values indicated by black boxes. (c) Using the global distance
map results in the pore diameter extending into the neighboring pore.
(d) Using the distance map obtained within the pore only results in
the inscribed pore diameter and a more geometrically consistent pore
centroid.

of the throat connecting these two pores. The key difference
between the pore and throat calculations is that the throats are
2D surfaces embedded in 3D space, so some of the definitions
must be reduced by one dimension (i.e., surface area becomes
perimeter).

The actual details of the steps for extracting geometrical
information can be altered for different media as needed.
GETNET.py in the Supplemental Material [37] is PYTHON

code for accomplishing these steps given a distance transform
of the pore space and the watershed segmentation produced
by the SNOW algorithm. The validity of the extracted pore
network is analyzed in detail in Sec. III.

C. Performance

X-ray tomography devices routinely produce images of
10003 voxels or more, so any algorithm must be able to
analyze such massive datasets in a reasonable time. It is
also desirable that standard computational resources such as
desktop workstations can accomplish the job, rather than re-
lying on supercomputers. Ensuring good performance was an
important criterion when developing the SNOW algorithm. At
its core, SNOW relies heavily on standard image analysis tools,
specifically the distance transform, maximum filter, Gaussian
blur, and the marker-based watershed segmentation. These
are available in any environment that offers comprehensive

image analysis tools, including IMAGEJ, PYTHON (via SCIPY

and SKIMAGE), and MATLAB. In the present work, the algorithm
is implemented in PYTHON using NUMPY to accelerate array
operations by vectorization, as well as SCIPY’s NDIMAGE

module and the SKIMAGE library, which are both built on
NUMPY. Figure 7 shows the run times for the key image analysis
routines as a function of image size, ranging from 1003 to 8003.
All the functions scale approximately linearly. The marker-
based watershed is clearly the slowest step, but the distance
transform and maximum filter require non-negligible times.
At present, these libraries are not universally parallelized.
It could be well worth the effort to implement SNOW in a
programming language that offers parallelized implementa-
tions. For instance, the distance transform function in IMAGEJ

is significantly faster than the SCIPY.NDIMAGE version.
Not shown in Fig. 7 is the time required to analyze the

segmented image to extract the pore and throat information,
which takes about half as long as the watershed step. This
function, as implemented in GETNET.py in the Supplemental
Material [37], scans each pore region in isolation to extract size
information. This for-loop could easily be done in a parallel
manner by assigning a fraction of the pores to each available
core, using PARFOR in MATLAB or JOBLIB in PYTHON, for
instance. Despite the possible speed improvements, the overall
time required for the SNOW algorithm is quite decent. On a
laptop with an i7-6700HQ processor and 16 GB of RAM, the
entire network extraction process on a 4003 image takes 142 s.

Although it is fairly light on computational resources, the
SNOW algorithm can require a machine with a large amount of
RAM. This is unavoidable based on the size of the images (i.e.,
billions of voxels) coupled with the fact that numerous copies
of the image must be stored. This problem could be addressed
by reducing the precision of the images, but in general, a
machine with 16 GB of RAM is sufficient for an image of
4003 voxels. A 10003 image was extracted in less than 1 h, but
it required more than 50 GB of RAM.

III. VALIDATION

In this section, the SNOW algorithm is applied to a variety
of different images of porous materials, and the results are
compared to known accepted values. Capillary pressure curves
and permeability calculations were performed using OPENPNM,
an open-source pore network modeling tool [46].

A. Voronoi cells

The Voronoi graph has been used by several pore network
modelers as a proxy for a random fibrous medium [21,49,50].
With this approach the edges of the Voronoi graph represent
fibers, the Voronoi cells define pores, and the facets between
cells are the throat constrictions. The Voronoi graph provides
an excellent test case for a network extraction algorithm, since
(a) once the Voronoi graph is constructed all the topological
and geometric information is known, and (b) it is possible
to construct a 3D voxel image of the Voronoi edges to run
the extraction algorithm on. The properties of the network
extracted from the image can then be compared to the
properties of the generated Voronoi network, providing a very
direct validation. On the downside, despite being random, a
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TABLE I. Description of geometric properties for pores and throats extracted from the images.

Pore properties Description

Volume The volume of a region can be easily found by summing the number of voxels in the region [i.e., all the black
voxels in Figure 6(a)]. This value is not the same as the volume of the pore body that lies in the region,
which can be found using the diameter and the appropriate geometric formula.

Extended diameter This value is found as the maximum value of the global distance map lying within each pore region. As
shown in Fig. 6(c) this definition means that the pore diameter can extend into neighboring pores. These
extended pores tend to overlap each other, which creates inconsistencies such as negative throat lengths
and double counting of pore volume.

Inscribed diameter This is obtained in the same manner as the extended diameter, but a local distance map of just the pore region
is used. This confines the pore body entirely inside its region as shown in Fig. 6(d). Unless otherwise
stated, this value is used as the pore diameter in all calculations.

Surface area Calculation of area is quite difficult in voxel images. It is simple to count the number of voxels on the surface
of a volume, but it is not at all simple to know how much area that represents. The number of surface
voxels is found as the number of voxels in the local distance transform that have a value of 1. Following
Dong and Blunt [25] the area is estimated as the number of voxels on the surface multiplied by the area of
one voxel face.

Solid area This is found as the number of voxels in the global distance transform with a value of 1. This means that
voxels lying in a throat are not counted since in the global distance map they are far from the solid.

Coordinates The pore coordinates can be taken as the location of the peak in the global or local distance map, or the
centroid of the region. The latter was used here since finding peaks in the distance map is a complex issue,
as outlined above. This choice means that the pore diameter value does not necessarily correspond with the
pore center location, but the shift is small.

Throat properties Description
Inscribed diameter As shown in Fig. 6(b) it is possible to identify the diameter of the throat from the maxima of the global

distance transform.

Circumscribed diameter This value is not of direct use in calculations, but it could be used to gauge the noncircularity of a throat. It is
found by calculating a distance matrix between all voxels in the throat, then finding the largest value in this
matrix, which gives the distance between the two most separated voxels.

Equivalent diameter This value is defined as the diameter of a circle with the same area as the throat cross section. Finding the
throat cross-sectional area faces the same challenges as for the pore surface area described above, namely,
how to convert the number of voxels into an area. The same approach is taken here, by counting the
number of voxels in the throat and multiplying by the area of one voxel face.

Perimeter This is found by counting the number of voxels in the throat with a distance transform value of 1, then
multiplying this by the voxel length.

Centroid This is found as the location of the maximum value in the distance map. A center of mass calculation, as done
for the pore body, is not reliable here since the throat is a 2D surface and likely curved, so the center of
mass could potentially lie outside it.

Total length The total length between two pores is calculated as the Euclidean distance between the two pores’ centroids
passing through the throat centroid.

Direct length This is calculated in the same manner of the total length, but without passing through the throat centroid. This
is the approach used by Dong and Blunt [25] so is included here.

Length This is the actual throat length used in transport calculations and it is equal to the total length minus the radius
of each neighboring pore.

Voronoi image is not the most challenging to extract since the
pore bodies and throats are all clearly defined by the convex
hulls of the Voronoi graph.

Figure 8 shows a Voronoi graph that has been converted
to a fibrous image by drawing 1-voxel-thick lines between
each Voronoi vertex, then dilating them to make thicker fibers
(in this case 9 voxels). If the voxels are taken to be 1 μm3

then the fiber diameter is 9 μm, the domain is 0.20 × 0.40 ×
0.40mm3, and the porosity is 85%. Overlaid in this figure is
the network as extracted by the SNOW algorithm with spheres
indicating pores proportional to the inscribed diameter, and

thin white lines for each throat connection. Visual inspection
suggests that a decent qualitative match was achieved as the
pore network lies approximately where it should, but additional
validation is required.

The number of pores (NP ) and throats (NT ) in the generated
Voronoi network was [NP ,NT ] = [500,2180], while the ex-
tracted network had [NP ,NT ] = [493,2282], using a sigma of
0.4 in the Gaussian filter and R = 5 in the maximum filter. The
missing pores are either due to small regions being neglected
or large neighboring regions being combined. The additional
throats are probably due to the way connectivity is found by
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FIG. 7. Performance of the key image analysis routines used
in the SNOW algorithm as a function of image size. Tests were
performed on a Dell Precision 7550 Workstation with a Xeon E2660
Processor (12 cores) and 72 GB of RAM. The largest size corresponds
to an 8003 image.

dilating the pore region, which may have created overlaps at
the Voronoi vertices which are shared by many pores. Though
not perfect, the differences represent a small percentage error
in the total number of pores and throats.

The validity of the extracted network can be more deeply
analyzed by comparing size information. Figure 9 shows the
capillary pressure curves obtained from both the generated
and extracted network. Additionally, the capillary pressure
curve obtained using morphological image opening [49,51] is
shown. The agreement between all three is quite good. It has
previously been shown that the generated Voronoi agrees well
with the morphological image opening result [49] when the
throat capillary pressure is calculated using the diameter of

FIG. 8. Generated Voronoi graph to represent fibers (blue voxels)
with the extracted network overlaid. The pores are represented by
spheres that are smaller than actual size to improve visualization.

an inscribed circle, which was used here as well. The image
analysis approach shows a slower approach to full saturation
at high capillary pressures as the invading phase inflates to fill
corners and small features that are not captured by either pore
network. At the low-pressure range, the extracted network rises
slightly later and faster, which suggests that the surface pores
are not being extracted as faithfully as possible. Overall, the
ability of the extracted network to match the generated network
so closely is a strong indication that the correct throat sizes and
connectivity have been captured. This can be more explicitly
confirmed by comparing the size distributions directly, as
shown in the inset of Fig. 9. The distributions for pore
and throat diameter both agree very well. The pore-to-pore
distance as measured through the centroid of the connecting
throat is also in close accord. This particular metric indicates
that the topology of the extracted network is valid since
both the pore and throat centers were found correctly. Finally,
the coordination number shows a similar distribution, but
with a few higher values for the extracted network. This is
clearly related to the fact that additional throats were found
in the extracted network, probably due to the dilation method
creating additional overlaps at the vertices. Despite some small
discrepancies, the geometrical and topological metrics are in
excellent agreement.

Finally, the permeability coefficient was calculated for both
the networks. Because fibrous media are so open and the pores
are essentially open space, the hydraulic conductance was
calculated by assuming no pressure drop in the pores. This
means that the throat length was equal to the center-to-center
distance between pores, less the radius of each neighboring
pore, which was found from the size of an inscribed sphere.
The hydraulic conductance between pores j and k is thus
controlled only by the properties of the throat between them,
as

gH,j−k = gH,t = π

128μ

(
D4

t

Lt

)
, (1)

where Dt is the diameter of the throat, Lt is the length of the
throat, and μ is the viscosity of the flowing phase. The flow
rate between pores j and k is found from

qj−k = π

128μ

(
D4

t

Lt

)
(Pj − Pk) = gH,t�Pj−k, (2)

where P is the pressure in the pore and q is the flow rate
between them.

This yielded K = 16.82 × 10−12 and K = 19.26 × 10−12,
for the generated and extracted networks, respectively (all
in units of m2), when using the inscribed diameter for Dt .
The Voronoi network was not generated with any anisotropy
so these values were nearly the same in each direction as
expected. The impact of anisotropy will be considered in detail
in Sec. III C when the SNOW algorithm is applied to images
of real fibrous media. The permeability coefficients of the two
networks were within 10% of each other, which is more than
acceptable. In principle, the actual permeability of the voxel
image could be obtained using a direct numerical simulation
such as the lattice-Boltzmann method. As a simpler alternative
there are many correlations that can predict the permeability
of a randomly oriented arrays of fibers [52,53]. Jackson and
James [52] proposed the following as a general fit to a large
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FIG. 9. Comparison of generated Voronoi pore network (blue) with the network extracted from a voxel image of its vertices (red). Mercury
intrusion was simulated in both networks as well as using morphological image opening of the Voronoi image (green), yielding very consistent
results. Inset: Various size distributions of the generated and extracted networks.

data set:

K = 3d2
f

80(1 − ε)
[− ln (1 − ε) − 0.931], (3)

where K is the permeability coefficient in m2, ε is the porosity,
and df is the fiber diameter in meters. This equation predicts
a permeability coefficient of 19.6 × 10−12 m2, which is in
excellent agreement with both model predictions. This match
was achieved without using a shape factor for the pore network
conductance values, but the pressure drop in the pore bodies
was assumed to be zero.

Given the ease of predicting permeability values using the
above correlation, a further check of the SNOW algorithm was
performed by dilating the fibers in the Voronoi image with a
spherical structuring element of size R = 3. This effectively
increased the fiber diameter by 6 voxels to 15 μm and reduced
the image porosity to 0.68. Inserting these values in the
correlation gives K = 5.01 × 10−12 m2, while reapplying the
SNOW algorithm to the altered image produced a network
with an average permeability of K = 5.34 × 10−12 m2. Such
a close match provides a strong validation of the SNOW
algorithm, especially given the subtleness of changing fiber
thickness and porosity which does not affect topology.

B. Berea sandstone

As another test case, the SNOW algorithm was applied
to Berea sandstone, which is a standard material used in
geoscience studies. Pore network extraction algorithms have
been applied to Berea since the earliest attempts by Silin and

Patzek [24], Dong and Blunt [25], and others [29,30]. For this
validation, the network extracted by the SNOW algorithm was
compared to that of Dong and Blunt [25] since they provide
their extracted network as well as the tomography image for
other users to compare [54]. Moreover, their implementation
of the maximal ball algorithm is in wide use so it is important
to ensure the SNOW algorithm agrees.

The first comparison is to note that the number
of pores and throats in the maximal ball network is
[NP ,NT ] = [6004,12067], while the SNOW extraction has
only [NP ,NT ] = [4181,8431]. This substantial difference is
analyzed in more detail below. The results of the extraction
can be seen in Figs. 10(a) and 10(b), and the pores appear to
be located in the correct locations which is encouraging but
not conclusive. Figures 10(c) and 10(d) compare the stick-
and-ball representation of the maximal ball and the SNOW
networks, respectively. Opposite to expectation, the SNOW
network appears to have a higher density of pores, but this is
an illusion for two reasons. Firstly, the pores in the SNOW
network are larger, so their red spheres appear to the eye to
be more prevalent. Secondly, the SNOW network has lower
pore and throat density, so the provided view is actually deeper
into the network revealing more red spheres. Despite the first
appearances, these networks are actually quite similar in terms
of topology, spatial distribution, throat orientation, spacing,
and pore and throat sizes, which again is encouraging but not
conclusive.

The inset of Fig. 11 compares geometric properties of the
network extracted by the SNOW algorithm to those determined
by the maximal ball algorithm. The maximal ball values were
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FIG. 10. Views of the Berea sandstone sample. (a) The voxel
image showing the solid in gold and the SNOW extracted network
overlaid; (b) same as (a) but with some of the solid cut away. (c) The
stick and ball representation of the maximal ball extraction, and (d)
the stick and ball representation of the SNOW extraction.

obtained by importing the data files provided by the Blunt
group into OPENPNM, which has the ability to import the
“statoil” format. The agreement between the pore and throat
size and the network topology is generally good, but the SNOW
extraction has consistently larger pore and throat sizes. This
suggests that the SNOW algorithm divides the pore space into
larger pieces, which also explains why the SNOW algorithm
found fewer pores and throats. The most direct evidence of
this is the pore-to-pore spacing, where the distribution for
the maximal ball network is uniformly shifted to shorter
values indicating that pores are generally closer together. The
discrepancy in the number of pores and throats between the
two extracted network all stem from the tendency of the SNOW
algorithm to identify fewer, larger pores. Determining which
division of space is more appropriate or whether it makes any
difference can be decided by looking at other network metrics
and simulation results.

Figure 11 shows the capillary pressure curves for the
maximal ball and SNOW extractions (both using inscribed
diameter), along with the morphological image opening result.
If the image-based approach is taken as correct, then the
SNOW extraction seems to have produced a more faithful
representation of the network. The smaller throat sizes of the
maximal ball manifest as higher entry pressures that shift the
drainage curve to the right. This is consistent with the fact
that the maximal ball divides the void space into smaller
pores, which naturally have smaller throats between them.
The original paper outlining the maximal ball method does not
compute capillary pressure curves, so it is difficult to speculate
further on this discrepancy. It should be conceded however,
that image-based capillary curves are generally shifted to the
right compared to experimental data because throat invasion

is controlled by the inscribed diameter, which is smaller
than the effective diameter when throats are not symmetrical
(i.e., flattened). The capillary pressure curve for the SNOW
network matched the image-based curve because it too used
the inscribed diameter, but both of these would be higher
than actual experimental data. This is explored further when
discussing fibrous media in Sec. III C.

Another way to compare the extracted networks is the
permeability coefficient, but this is complicated by the various
shape factors and segmentation coefficients that were used in
the original works. Direct computation using only the pore and
throat sizes, assuming cylindrical throats and spherical pores,
gives K = 0.0685 × 10−12 m2 for the maximal ball network
and K = 0.0801 × 10−12 m2 for the SNOW network, which is
remarkably similar given the differences in the size and density
of the pores and throats. This surprising behavior was noted by
Bhattad et al. [23] and attributed to the increase in the number
of flow conduits offsetting the smaller pores. Both of these
values are much too low: Dong and Blunt give the experimental
value for Berea as K = 0.650 × 10−12, which is nearly 10×
higher than the model prediction, and the permeability of
the image was calculated using the lattice-Boltzmann method
as K = 1.286 × 10−12, yet another factor of 2 higher. Dong
and Blunt [25] attribute the differences to the throats not
being cylindrical and invoke a shape factor to account for
the deviations. Instead of using the shape factor, which they
define using terms specific to the maximal ball extraction, it
is also possible to use the more general equivalent diameter
described in Sec. II B. The equivalent diameter is larger than
the inscribed diameter so it accounts for the additional area for
flow. Using this value to calculate the hydraulic conductance,
and assuming no pressure loss in the pore bodies, the SNOW
network permeability rose to K = 1.13 × 10−12 m2, which is
acceptably close to the lattice-Boltzmann value for the image,
and is almost identical to the permeability reported by Dong
and Blunt [25] using maximal ball with shape factors.

C. Fibrous media

Extracting pore networks from fibrous media was the
ultimate motivation for this work. The high porosity, lack
of clearly defined pores and throats, and high coordination
numbers (>10) present a significant challenge to existing
extraction algorithms that have been optimized for sandstone.
Moreover, the anisotropy of fibrous materials adds an addi-
tional level of complexity since the length and orientation of
voids must somehow be reflected in the extracted network.
The SNOW algorithm does not explicitly analyze pore shapes
and orientations, but this information is incorporated into
the network structure via the throat length calculation. As
mentioned in Sec. II B, the throat length is found as the distance
between two pore centers, passing through the throat centroid,
minus the radius of each pore. Thus a pore region that is
elongated in the X direction will have longer X-direction
throats compared to other directions since the pore is treated
as a sphere. Depending on the morphology and topology of
the network, this can create anisotropy in different ways. If
the throats are large, they will act as straight, low-tortuosity
pathways through the network, while small throats would
represent obstructions to flow. In addition, if most of the throats
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FIG. 11. Comparison of Berea network extracted by the SNOW algorithm (blue) to the maximal ball extraction (red). Mercury intrusion
was simulated in both networks as well as using morphological image opening of the Berea image (green), yielding very consistent results.
Inset: Various size distributions of the extracted networks.

are oriented in the X direction then flow in other directions
could become quite tortuous.

The SNOW algorithm was applied to an image of Toray
120 with no PTFE, used in previous studies [55,56]. This
material has a porosity of 75% [57], a thickness of 360 microns,
fiber diameter around 10 microns, and a permeability coef-
ficient tensor [58] of approximately [KX,KY ,KZ] = [15 ×
10−12, 15 × 10−12, 9 × 10−12], where Z is the through-plane
direction (i.e., perpendicular to the fibers). The image itself
measured 1500 × 1500 × 221 voxels with a resolution of 1.33
microns. The surfaces of the image have been trimmed to
provide a clear and flat boundary for the extraction. About
30 microns were trimmed from each face, which amounts
to about—one to two layers of pores. The surface regions
tend to have higher porosity than the internal core, so their
removal reduced the porosity to 67%. Figure 12(a) shows the
voxel image overlaid with the SNOW network. The image was
trimmed to 600 × 600 × 221 to improve this visualization.
The locations of the pore network generally align with the
image, with the largest pores (red) lying in the largest openings,
and the smallest pores (cyan) can also be seen filling the smaller
gaps. The most striking views are given in Figs. 12(b) and
12(c) where the high degree of throat alignment in the in-plane
direction is clearly visible. This feature was expected due to
the strong anisotropy exhibited by the fibrous media.

Figure 13 shows capillary pressure curves obtained using
several different methods. The image-based analysis and the
SNOW extraction using the inscribed throat diameter are
in close agreement as has been the case for the materials
studied above. This is because throat invasions in the image-

based approach are controlled by the inscribed diameter, so
it is a further validation of the SNOW algorithm that a
drainage simulation using the inscribed diameter matches.
Neither of these curves agree with the experimental mercury
intrusion porosimetry (MIP) data, however. In MIP, invasion is
controlled by an effective throat shape. Consider the definition
of curvature for a simple ellipsoidal curved surface:

Pc

σ
= 2H = 1

R1
+ 1

R2
, (4)

where R1 and R2 are the radii in perpendicular directions.
In symmetrical throats R1 = R2, but for flattened throats R2

would be larger, thereby lowering H and PC . This problem
can be remedied by using an alternative means of calculating

FIG. 12. Views of the fibrous sample Toray 120A (no PTFE)
trimmed to 600 × 600 × 221 for easier visualization. (a) SNOW
extracted network overlaid with the fiber image (dark gray); (b),(c)
are top and side views of the SNOW extracted network, showing the
notable amount of in-plane throat alignment.

023307-11



JEFF T. GOSTICK PHYSICAL REVIEW E 96, 023307 (2017)

FIG. 13. Capillary pressure curves for Toray 120A (no PTFE) produced by image analysis (green), mercury porosimetry (black), and the
SNOW network using either inscribed or equivalent throat diameter. Inset: Various size distributions of the extracted network.

the throat size, such as the equivalent diameter. For throats
this means the diameter of a circle with the same area as the
throat cross section. This value is difficult to determine due to
the voxelated nature of the image, but can be approximated as
discussed in Sec. II B. Figure 13 also shows the results of using
the approximated value of effective diameter; the capillary
pressure curve shifts left and is in better agreement with the
MIP data. The size distributions shown in Fig. 13 are in good
agreement with accepted values for similar materials [59–62].

The true test of the extraction is matching the known
permeability tensor, which is anisotropic. Applying the
standard permeability calculation that was used for the
Voronoi network in Sec. III A above yielded [KX,KY ,KZ] =
[3.96 × 10−12, 4.05 × 10−12, 2.04 × 10−12]. Although these
values are about 4× lower than the experimental values,
they show the expected anisotropy ratio which is a very
encouraging result. As with the Berea comparison above,
these low permeability values are due to using the inscribed
diameter rather than the equivalent diameter. Repeating the
simulation with the equivalent diameter in the hydraulic
conductance yielded [KX,KY ,KZ] = [12.4 × 10−12, 12.2 ×
10−12, 4.54 × 10−12]. The agreement with the experimental
values is better, and importantly it still includes the expected
anisotropy ratio. Although this agreement is good, these values
are still somewhat lower than the experimental values. This is
likely because the high-porosity surface regions were trimmed
from the image, so the overall porosity was notably lower
than the full samples on which the experimental measurements
were taken. In other words, the predicted permeability values
are even closer to the permeability of the image than this
comparison suggests.

It is not clear why the equivalent diameter was appropriate
for matching the Toray 120 network with the experimental
data, while the inscribed diameter gave a better match for the
Voronoi network and the correlation. This is most likely due to
the anisotropy of the Toray 120 material leading to throats that
are quite flattened and thus poorly represented by the inscribed
diameter.

IV. CONCLUSIONS

The main motivation for this work was to develop a
robust method for extracting pore networks from 3D voxel
images of atypical porous materials such as fibrous media,
foams, membranes, and so forth. These materials present new
challenges that are not well addressed by existing extraction
methods, which generally do not attempt to account for high
porosity and minimal throat constrictions.

The present algorithm was built upon the idea of using the
watershed segmentation of the distance transform proposed
by Thompson et al. [32] and Sheppard et al. [33], and
recently revisited by Rabbani et al. [34] These works were
developed for sandstones, and are not directly applicable to
other materials because they do not account for artifacts that
arise in high-porosity images with minimal throat constric-
tions, namely, the presence of spurious peaks in the distance
transform. These lead to a highly oversegmented result with
many unrealistically small and misshapen pores. The present
algorithm altered their procedure to produce a subnetwork
of the oversegmented watershed (SNOW) by removing the
problematic spurious peaks. Three simple steps were taken:
filtering the distance transform with a Gaussian blur to reduce
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TABLE II. Network properties obtained by the SNOW algorithm for each image compared to accepted or known values.

Value Voronoi (df = 9) Voronoi (df = 15) Berea Toray 120A

Image properties
Dimensions [voxels] 400 × 400 × 200 400 × 400 × 200 400 × 400 × 400 1500 × 1500 × 221
Resolution (μm/voxel) 1 1 5.345 1.33
Porosity 85.0 67.5 19.5 67.6

Network properties
Generated—NP ,NT 500, 2180
SNOW—NP ,NT 493, 2282 521, 1857 4181, 8431 25338, 79254
MaxBall—NP ,NT 6004, 12067

Permeability [×10−12]
Experimental 0.650 [15,15,9]
Image analysis 1.29
Correlation 19.6 5.02
Generated 16.2
MaxBall (inscribed) 0.0685
MaxBall (+shape factor) 1.11
SNOW (inscribed) 19.3 5.34 0.0801 [3.71, 3.27, 1.25]
SNOW (equivalent) 40.5 12.9 1.15 [11.5, 10.0, 3.22]

the number of bad peaks, removing peaks that actually fell on
plateaus and saddles in the distance transform, and removing
peaks that were too near another peak. When applied together
these steps removed the vast majority of spurious peaks and led
to a very satisfactory partitioning of the image into pore regions
using a marker-based watershed algorithm. The present work
also outlined how to convert this segmented image into a
pore network by extracting the pertinent information such
as connectivity, pore sizes, and throat sizes. This process of
calculating network properties from the watershed image was
by no means the final word on the matter [47,48,63], and many
improvements could be made such as finding surface area [64]
and perimeter more rigorously.

The networks extracted using the SNOW algorithm were
compared to several known materials (see Table II). A Voronoi
network was generated using OPENPNM, along with a voxel
image of the Voronoi edges. The size distributions and
permeability of the extracted network agreed very well with the
generated Voronoi network. Berea sandstone was also studied,
and compared to the network extracted by Dong and Blunt
using the maximal ball algorithm [25]. The size distributions
showed some differences, with the maximal ball network
possessing a larger number of smaller pores. Nonetheless,
the permeability values of the maximal ball and the SNOW
networks were in excellent agreement with each other, but
were 20× lower than the known value for the image. The
maximal ball network includes shape factors which bring the

predicted permeability in line with the known values, but these
are quite complicated to determine from the image. The SNOW
algorithm was able to match the known values by simply using
the equivalent throat diameter and neglecting pressure drop in
the pore bodies. Additionally, the SNOW network produced
capillary pressure curves that were in better agreement with
the morphological image opening result than the maximum
ball network, which showed higher entry pressures due to
its smaller throats. This suggests that the network identified
by the SNOW algorithm was closer to reality. Finally, the
SNOW algorithm was applied to a fibrous material typically
used in fuel cell electrodes. Using the equivalent diameter and
neglecting pressure drop in the pores resulted in permeability
that matched experimental values very closely. Importantly,
the SNOW network included the anisotropy ratio of the
material.

The provided algorithm is simple, using mostly standard
image analysis functions with a few additional custom
functions to trim extraneous points. The code is quite fast,
completing the extraction on a 4003 image in just 142 s.
The processing time scales approximately linearly with the
total number of voxels in the image. For very large images
(10003) the process takes less than 1 h, but does require
a substantial amount of RAM (>50 GB). Importantly, the
SNOW algorithm was able to extract reliable networks from
both low-porosity sandstone and high-porosity fibrous media;
thus it represents a versatile tool.
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