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Recognition of an obstacle in a flow using artificial neural networks
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In this work a series of artificial neural networks (ANNs) has been developed with the capacity to estimate
the size and location of an obstacle obstructing the flow in a pipe. The ANNs learn the size and location of the
obstacle by reading the profiles of the dynamic pressure q or the x component of the velocity vx of the fluid at
a certain distance from the obstacle. Data to train the ANN were generated using numerical simulations with a
two-dimensional lattice Boltzmann code. We analyzed various cases varying both the diameter and the position
of the obstacle on the y axis, obtaining good estimations using the R2 coefficient for the cases under study.
Although the ANN showed problems with the classification of very small obstacles, the general results show a
very good capacity for prediction.
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I. INTRODUCTION

Obstructions in tubes transporting fluids are a problem
of high impact in modern society, as they are present in
people’s daily lives as well as in urban pipe networks [1],
public health facilities[2], and industrial engineering [3]. On
one hand, the accelerated urban and industrial growth in
modern cities implies that obstructions in pipe networks are a
very common problem, requiring a prompt reaction to solve
it. These blockages can be caused by chemical or physical
residues, as well as by structural defects of different kinds.
Pipes are one of the most common ways of transporting fluids
in the energy [4], chemical [5], manufacturing [6,7], and water
[8] industries, as well as in houses, buildings, and sewage
systems [9–11]. Clearly, in all these cases, the requirements of
obstructed fluid delivery are crucial.

On the other hand, in the health-care sector, medical prob-
lems due to obstructions and/or blockages in the innumerable
conduits that transport biological flows around the human body
are very frequent and, in many cases, can be fatal. In biological
conduits, blockages can be caused by previous surgeries,
foreign bodies, infections, and deformations, among many
other factors. Thus, cases such as obstructions in the digestive
system [12,13] or in the cardiovascular system [14,15] are
related to medical emergencies, which in many cases may
involve the use of invasive clinical procedures, and therefore
they require prompt attention.

All these scenarios motivate the scientific interest in the
detection and comprehension of the shape and location of
objects blocking or obstructing flows [16]. In this work, we
use artificial neural networks (ANNs) as a flow pattern catego-
rization in order to recognize these obstructions to fluid flow
in a two-dimensional (2D) conduit. In this context, research
studies such as [17–19] have proposed different methodologies
to identify obstacles, leaks, or defects inside industrial or urban
pipes. In particular, ANNs as machine learning methods have
been applied to problems of fluid dynamics mainly in flow
phase pattern identification, for example, in [20] and [21]. They
have also been used as a tool for faster computational fluid
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simulations and turbulence prediction [22–24] or for defect
classification in tubular structures using images [25].

With this motivation, the objective of this work is to
recognize the shape and location of an obstacle obstructing
a pipe, whose dimensions were chosen considering pipes
and networks that transport fluids for use in industrial and
urban systems. For this, we have trained ANNs using physical
information from the flow as input data. To that end, we have
developed a generic 2D lattice Boltzmann numerical code
[26,27], to simulate the flow of a fluid around an obstacle,
contrasting the numerical solution with the benchmark [28].
Our problem takes into account different scenarios: changing
the diameter and location of the obstacle, viscosity, and initial
flow velocity and obtaining relevant physical information such
as the velocity, vorticity, and dynamic pressure of the fluid
along the numerical domain. In particular, we have considered
the x component of the velocity field of the fluid (vx) or the
dynamic pressure (q) as the fundamental information to be
analyzed by the ANN. We chose a ratio between the width of
the pipe and the width of the immersed obstacle from 1/80 to
almost a value of 1; this is relevant in physical scenarios where
the flow is disrupted by obstructions that can range from small
blockages up to complete blockage of the pipe.

The content of the article is as follows: in Sec. II we present a
detailed description of the problem of blockage in simulations
with the lattice Boltzmann method (LBM). In Sec. III we
explain the methodology followed in the cases under study,
describing the results obtained in Sec. IV. Finally, in Sec. V
we present our conclusions and directions for future work.

II. NUMERICAL SIMULATIONS

The simulation of 2D flow around an obstacle was per-
formed by constructing a numerical code based on the lattice
Boltzmann method as in Ref. [29]. The LBM is very popular
because it is easy to implement and it has a high capacity
to perform computational simulations in a wide variety of
physical problems [30–32], mainly applied in computational
fluid dynamics [33,34].

For our cases under study, we consider a cylindrical
obstacle immersed in an infinite medium (free flow), with flow
moving in the positive x direction. The cylindrical obstacle is
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FIG. 1. Magnitude of vx for the flow around a cylindrical obstacle with an incoming Poisseuille flow with vc = 1.5 m/s. The obstacle is
fixed at x = 0.6 m and the fluid flows over the x-positive direction along the pipe. Note that the vortices form after the obstacle is driven along
the direction of the flow, generating the characteristic Karman vortex street.

perpendicular to the x-y plane and, therefore, is represented by
a circle in the 2D simulation. We impose boundary conditions
at the outlet of the flow far enough such that the characteristic
flow parameters are not affected by the internal calculations
[35]. For the solid walls of the pipe and obstacle, we employed
a full bounce-back boundary condition [26]. The boundary
condition representing the incoming fluid was set up with a
given velocity profile as input for the numerical modeling,
such that the flow after the obstacle presents a pattern related
to the input velocity profile, the diameter of the obstacle, and
its location.

We define β as the value of the ratio of the diameter of
the cylindrical obstacle to the width of the pipeline. The
diameter of the obstacle is changed for values of β ranging
from β = 0.0122, representing small blocking elements, up
to values close to β = 1, representing obstructions of almost
the total size of the diameter of the pipe. For the domain
of the simulation, a mesh of 165 × 1000 nodes was used.
Although the LBM code has dimensionless units, the system
has been adapted to physical dimensions following Ref. [28].
We have chosen the physical units such that the numerical
domain corresponds to a total length of Ly = 0.41 m in the
vertical direction and Lx = 2.5 m along the horizontal. We
considered a Poiseuille incoming fluid flow in a stationary
regime with a density of ρ = 103 kg/m3 and a kinematic
viscosity of ν = 10−3 m2/s, as used in Ref. [29]. The location
of all the studied obstacles is at x = 0.6 m of the pipe, and their
position on the y axis is described in the following section.

We performed a large number of different numerical
simulations, considering as free input parameters the inlet
velocity profile, the diameter of the obstacle (changing the
values of β), and the position of the obstacle with respect to

the y axis. An example of a numerical simulation is shown in
Fig. 1, with an obstacle of size β = 0.244 and a Poiseuille flow
with a characteristic velocity of vc = 1.5 m/s. The numerical
simulations were stopped until the system reached a neutral
stability, which occurred before the completion of 30 000
iterations, or in a physical time of approximately 16 s.

III. METHODOLOGY

In this work, we estimate the size and location of an
obstacle by measuring vx and q after the obstacle. On this
matter, one could propose the simplest case: considering a
single sensor and applying a linear regression between the
obstacle diameter and the flow velocity at the location of the
sensor. Although the linear regression is as good as the ANN
in this case, the analyses in other scenarios show that the
ANN outperforms the linear regression, and that is why we
present only the ANN results. Moreover, the intention is to
provide the first step of a methodology capable of estimating
multiple and more complex obstacles or morphologies with
nonsymmetrical shapes. For this, we have defined a target
region around the area where the obstacle is immersed. In this
region the size and position of the obstacle are estimated in
terms of the proportion of the obstacle and fluid surrounding
it. We have also set different numerical sensors across the pipe
at distinct measuring sites along the x axis; a schematic of
this is shown in Fig. 2. The measurement sites are located at
x = 1.75, 2.10, and 2.45 m, which we refer to as A, B, and C,
respectively.

With this in mind, the ANNs were selected because they are
flexible in terms of input data and they are easy to implement,
outperforming linear regressions. In possible future work, we

FIG. 2. Schematic of the 2D pipe, the cylindrical obstacle, and different measuring sites across the pipe, located at A = 1.75 m, B = 2.10 m,
and C = 2.45 m, shown by dashed lines. The region within the dotted rectangle is the area used as target for the ANN.
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would like to increase the complexity of the problem, trying
other, more sophisticated machine learning methods.

In the next subsections we describe the cases under study,
the structure of the ANN, and the methodology used for the
input and target data, as well as the selection of the training and
validation sets, which are used to adjust the ANN parameters,
and the prediction set, for which the results are shown.

A. Database constructions and cases under study

The ability of the ANNs to predict the size and location of
the obstacles is tested in three major cases:

(1) We perform 80 different numerical simulations for a
2D cylindrical obstacle immersed in the flow, located in the
center of the y axis, i.e., at half the pipe diameter. We simulate
obstacles with diameters ranging from d = 0.005 m to d =
0.395 m in steps of 0.005 m, i.e., values of β ranging from
β = 0.012 to β = 0.964 in steps of 0.0122, plus a tiny obstacle
of 0.001 m. From these cases, we select as the prediction set
those obstacles with diameters ranging from d = 0.02 m to
d = 0.395 m at intervals of �d = 0.025 m. Meanwhile, the
validation set consists of the obstacles from d = 0.025 m to
d = 0.375 m, with �d = 0.025 m also. The rest of the 49
obstacles are used as the training set. This case is divided into
three subcases:

(a) The profile of vx or q at t = 16 s, at the end of
the numerical evolution, is considered the input vector. For
simplicity in terms of the ANN structure, the information
was extracted from only 83 of the 165 nodes of the
numerical mesh. This approach is examined to study
whether extracting the physical data, such as vx or q,
available at a fixed time and distance is enough to give
a proper estimation of the obstacle’s size.

(b) The time evolution of vx or q over 300 time steps,
from t = 0 to t = 16 s, measured at a single sensor at the
center of the pipe, i.e., y = 0.210 m, is considered the input
for the ANN, using the symmetry of the conduit. With this,
we inspect the limits of the predictions considering the
smallest number of sensors possible, with the advantage
that several measurements are made over a lapse of time.

TABLE I. Parameters used in simulations for the cases studied.
The column “Obstacles” lists the number of different diameters of
the obstacles. The column “y positions” lists the number of different
locations of the center of the obstacles along the y axis. The column
“Flow velocities” refers to the number of different incoming flow
velocities used in scenario 3. Meanwhile, the column “Space” is
related to the number of equidistant sensors implemented along a
measurement site. Finally, the column “Time” lists the number of
time steps extracted in the numerical evolution performed on each
considered numerical sensor.

Case Obstacles y positions Flow velocities Space Time

1a 80 1 1 83 1
1b 80 1 1 1 300
1c 80 1 1 3 300
2a 4 43 1 83 1
2b 4 43 1 1 300
2c 4 43 1 3 300
3 11 1 12 10 1

TABLE II. Database for diameters, incoming flow velocities, and
sensor locations used in case 3. The last column lists the locations of
the 10 sensors on the y axis on the LBM mesh; in parentheses are
listed their equivalent values in physical units. The values for vx and
q were extracted from these numerical sensors at both x = 0 m and
x = 2.10 m on the pipe; the latter corresponds to measurement site
B.

β Velocity Sensor
(m/s) location

0.0122 0.15 11 (0.025 m)
0.0976 0.30 27 (0.065 m)
0.1952 0.45 43 (0.105 m)
0.2928 0.60 59 (0.145 m)
0.3904 0.75 75 (0.185 m)
0.4880 0.90 91 (0.225 m)
0.5856 1.05 107 (0.265 m)
0.6832 1.20 123 (0.305 m)
0.7808 1.35 147 (0.365 m)
0.8784 1.5 163 (0.405 m)
0.9638 1.65

1.8

(c) This is the same procedure as case 1, but in addition,
we add two equidistant sensors, i.e., we have three sensors,
located at y = 0.105, 0.210, and 0.315 m. In this case, we
study whether increasing the number of sensors, compared
with the previous one, increases the prediction’s accuracy.
(2) In contrast with case 1, we consider only three obstacle

sizes, with values of β = 0.122, 0.244, and 0.488, that is,
d = 0.05, 0.1, and 0.2 m. In every simulation, we change the
position of the obstacle among 43 positions on the y axis, such
that the obstacle can be either near the center of the pipe or
near its walls, providing a total of 139 simulations. For each
obstacle size we select 22 simulations for the training and
validation sets, and the remaining 21 simulations, which are
equally spaced on the y axis, are used for the prediction set.
In order to prove the capacity of the ANNs for the estimation
of a completely unknown obstruction size we include in the
prediction set 21 simulations equally spaced on the y axis for
with an obstacle diameter of β = 0.366. This scenario was also
divided into three subcases following the same descriptions as
in cases 1a, 1b, and 1c.

(3) In this case, we analyze a situation similar to case 1
where the obstacle is again located at y = 0.210 m and x =
0.6 m, with the difference that we change the characteristic
velocity of the incoming flow from vc = 1.5 m/s, used in
cases 1 and 2, to different values ranging from vc = 0.15 m/s
to vc = 1.8 m/s, in steps of �vc = 0.15 m/s. This analysis is
performed to examine an extension of case 1, for different input
flow velocities and 11 obstacle sizes as listed in Table II. In
addition, we also explore the behavior of the network by adding
more information about the incoming fluid and fewer sensors
than in case 1. For simplicity, we consider 10 equidistant values
on the y axis of vx or q before the obstacle, at x = 0 according
to the schematics in Fig. 2, and another 10 equidistant values
of vx or q at measurement site B, analogously as in case 1.
With these arguments, the input data for the ANNs consist of
20 values for each of the 132 simulations produced. In order
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to explore the performance of the network and its dependence
on the choice of the sample sets for training, validation, and
prediction, we now select the patterns randomly. The validation
and prediction sets have 20 patterns each, while the training
set has 92.

All the study cases simulated are summarized in Tables I
and II.

B. Target region

As we use ANNs trained with supervised learning, we need
to provide targets related to the true obstacle’s size, shape,
and location. For this, we define a region inside the pipe
containing the obstacle and its immediate surroundings as the
target region. However, if we consider each one of the nodes in
the LBM simulation in the target region to be the objective for
the ANN, as illustrated in Fig. 2, it will have a huge number
of outputs, making it computationally expensive. Therefore,
as the first approach we propose considering a target region
consisting of a fixed mesh of 40 × 20 cells, where each cell
consists of 64 nodes of the numerical mesh. Henceforth we
refer to the target region as the target grid.

In addition, we assign a numerical value to each cell,
depending on the relation of nodes that represent fluid or solid
elements in the numerical mesh. This means that the proportion
of target cells occupied by the obstacle is represented by the
number of solid nodes divided by the total number of nodes in
the numerical mesh contained in that cell. In other words, we
have defined an occupation index for each cell in the target grid,
where the solid-liquid ratio in the cell was calculated, meaning
that a value of 1 represents a cell containing only solid elements
of the obstacle and a value of 0 implies that there is only fluid
in the cell. From now on, we call this index the solid-liquid
ratio index (SLRI). An example of the transformation from
the LBM simulation of the numerical mesh to the target grid
for an obstacle of size 0.2 m is presented in Fig. 3, where
the dark tones refer to cells mostly occupied by the obstacle
(high SLRI), whereas clearer tones indicate cells containing a
greater proportion of fluid elements (low SLRI).

C. Neural network structure

Let us recall that for case 1a, only half of the spatial nodes
in the y direction of the lattice are selected as inputs for the
ANN, reducing the number of points at which the vector fields
are measured from 165 to 83, simplifying the input data and
the structure of the ANN, and speeding up the computations.
Therefore the input vector consists of 83 neurons related to
the profile of the fluid at the corresponding measurement site.
For example, if we consider the vx values at the sensors at any
measurement site, the input pattern is

I = {vx1 ,vx3 , . . . ,vxi
, . . . ,vx165}, (1)

where i = 1,3, . . . ,165 indexes the down-sampling from 165
to 83 for nodes in the LBM simulation mesh. For case 1,
the input vector is defined by the time series of vx or q at
y = 0.21 m during 300 time steps represented by the index
(t); for example, for vx this is

I = {vx85,t1 ,vx85,t2 , . . . ,vx85,t300}, (2)
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FIG. 3. (a) Plot representing the solid and fluid elements in the
LBM mesh simulation; (b) plot representing the transformation from
the simulation to the target grid. The lower number of cells used in
the target grid in comparison with the LBM mesh causes a loss of
resolution in the grid. The color box represents the solid-liquid ratio
index (SLRI), where a 0 value means that a cell is composed of only
fluid elements and 1 represents a cell fully occupied by solid elements.
The grid lines shown are for reference only and do not represent the
size of a target cell.

where vx85,t labels the value of vx at node 85 of the simulation
where y = 0.210 m, i.e., at the middle of the pipe at a certain
time t . For case 1c, the inputs of the ANN consist of the values
of 300 time steps for vx or q at the positions y = 0.105, 0.210,
and 0.315 m, at the considered measurement site. In Fig. 4 we
present the time series evolution for vx at measurement site B.
The inputs corresponding to this scenario are

I = {vx43,t1 ,vx85,t1 ,vx127,t1 , . . . ,vx43,t300 ,vx85,t300 ,vx127,t300}. (3)

In the second scenario, the inputs are the same as described
in Eqs. (1)–(3). In case 3, let us recall that 10 values at each
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FIG. 4. Time series of the x component of the flow velocity at
y = 0.105 m (solid curve), 0.210 m (dashed curve), and 0.315 m
(dash-dotted curve) at measurement site B, for an obstacle of β =
0.488 centered at y = 0.21 m.
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of x = 0 and x = 2.1 m (measurement site B) are considered
as the input pattern. For example, following Table II, an input
pattern using vx is defined as

I = {vx11 (x = 0),vx27 (x = 0), . . . ,vx163 (x = 0), . . . ,

vx11 (x = 2.1 m), . . . ,vx163 (x = 2.1 m)}. (4)

The same set of Eqs. (1)–(4) is applied when the dynamic
pressure q is used instead of vx as input data for the network.

The internal structure of the ANN can differ internally in
each case, i.e., the number of inputs and hidden neurons, but
the number of outputs is constant for all the cases, since the
objective is the same: approximate the shape of an obstacle
blocking flow. Recall that the region where the obstacle is
located is described by 40 × 20 cells, which means that the
target and the prediction have 800 elements. In a vectorized
form, for an input pattern I , the result computed by the ANN
is �O = [O1,O2, . . . ,O800], and the kth element of this vector
is calculated by

Ok = F2

⎛
⎝ J∑

j=1

σjkF1

(
I∑

i=1

σ̃ij Ĩi + σ̃0j

)
+ σ0k

⎞
⎠, (5)

where 1 � k � 800 refers to the cells of the target grid, Ĩi

is the ith element of the input vector, and J is the number
of hidden neurons. F1 and F2 are the activation functions for
the hidden and output layers, respectively; σ̃jk and σ̃0j are the
weights and bias terms between the input and the hidden layer;
and σjk and σ0k are the weights and bias terms between the
hidden and the output layers.

The numerical implementation of the ANNs was developed
from scratch using Fortran 90. Instead of using open source
codes, we decided to use our own implementation to have full
control of the details in the code, searching different structures
and parameters in the learning process. On one hand, the
selection of the ANN structure was done considering that it
should be kept as simple as possible, in order to maintain
the computational advantage, and complex enough for its
adaptation to unknown patterns. In our cases we found that
ANNs with an input layer as defined in Eqs. (1)–(4), i.e., one
hidden layer with 20 neurons and an output layer with 800
neurons, were complex enough to give good results without
loss of performance in all the cases under study. All the ANNs
used have hidden and output layers with sigmoid activation
functions. On the other hand, the ANNs were trained using
a backpropagation algorithm [36]. In this work, we use this
method to minimize the mean square error function, using a
learning rate of 0.001, with a maximum of 15 000 iterations in
training, and using a cross-validation technique as the stopping
criteria. For clarity, all the results reported here correspond to
the prediction set. For more details about supervised training
and the backpropagation algorithm the reader can consult [37]
and [38].

IV. RESULTS

In order to estimate the ANN prediction accuracy in each of
the cases analyzed in the test set, we employ the R2 coefficient.
The calculation of R2 was performed over the target and
predicted grids, considering the real and predicted SLRI. R2
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FIG. 5. R2 coefficient for predictions produced by the ANN for
obstacles located at the center of the pipe with different diameters.
The ANN is trained with data extracted with a sensor located over the
line in B and tested with measurements at A, B, and C. (a) The red
curve with crosses shows the results using vx , and q is represented
by the black curve with X’s at site A. (b) Input data were extracted
at measurement site B, and the blue curve with asterisks and the
green curve with squares represent R2 using the profiles vx and q,
respectively. (c) The red curve with triangles and the magenta curve
with circles correspond to the results for vx and q at measurement
site C, respectively. All R2 coefficients are above 0.6, which can be
interpreted as a good correlation between the prediction and the target.
Note how the results are independent of the measurement location.

is defined as

R2 = 1 −
∑

i=1(Oi − 〈T 〉)2∑800
i=1(Ti − 〈T 〉)2

, (6)

where Ti and Oi are the ith target and the ANN output,
respectively, and 〈T 〉 is the average of the SLRI for the target
vectors:

〈T 〉 = 1

800

800∑
i=1

Ti. (7)

This means that the R2 coefficient range is (−∞,1], where a
value of R2 = 1 implies a perfect match term by term, between
the target and the ANN prediction, while R2 → 0 means that
the prediction approaches 〈T 〉.

Let us recall that the measurements of the fluid flow consist
of one snapshot of the profile of the vx or q of the fluid, at the
time when the system reaches neutral stability. For case 1, we
present the results obtained from measurements by detectors
located not only at the training site B, but also at sites A and
C as shown in Fig. 5. In this case, we study how the ANN
behaves if it is only trained with information at measurement
site B and tested at sites A, B and C, for the same obstacles.

For measurements made at site B, both q and vx show R2

values very close to 1.0 for obstacles with diameters greater
than 0.05 m, that is, for β > 0.25; see Fig. 6 for an example,
where the target and predicted grids are plotted for an obstacle
of β = 0.4758, achieving a prediction of R2 = 0.979. How-
ever, for small obstacles the accuracy decreases, for example,
with β = 0.0488 we obtained R2 = 0.654 considering vx and
R2 = 0.802 using q.
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FIG. 6. (a) Target and (b) ANN prediction considering the profile
of the vx of the fluid generated by an obstacle at the center of the
pipe with β = 0.4758. The color box represents the SLRI. The
difference between the target and the prediction obstacle is almost
imperceptible to the naked eye; the R2 coefficient has reached a value
of 0.979.

Estimations at measurement sites A and C for the same
diameters show a similar behavior with small variations in
precision; this was expected since the profiles change in time
and space. For example, in the estimation for the obstacle with
β = 0.0122, R2 decreases approximately 16%. This could
imply that measuring far away from the obstacle can still
produce good estimations of the obstacle’s size. Considering
the results obtained in this case, it is not possible to establish
for which of the physical variables (vx or q) the ANN shows a
better performance.

Figure 7 shows the results with a single sensor at y =
0.21 m, where we obtained values of R2 above 0.8 considering
vx . This accuracy decreases when q is considered as input,
obtaining the worst prediction at R2 = 0.231. In the case with
three sensors, the results improved considerably, maintaining
a very similar behavior for both physical variables; the
worst prediction obtained was R2 = 0.669 for β = 0.183.
Furthermore, in case 1c, R2 > 0.9 for β > 0.25.

Following the approach in case 2a, where the ANNs are
trained with the profiles of vx or q measured at site B,
with the intention of obtaining not only an estimation of the
obstruction’s size, but also its location on the y axis. As shown
in Fig. 8, the results have an R2 coefficient close to 1.0 for
the larger obstacles (β � 0.488). However, in relation to the
obstacle with β = 0.366, for which the ANN was not trained
at all, the worst results decreased to a value of R2 = 0.356 for
vx and R2 = 0.243 for q. Note that both estimations are made
with the obstacle near the walls of the pipeline. Meanwhile,
the R2 coefficient for the obstacle with diameter β = 0.244
has its lowest value when it is located at the center of the pipe,
with R2 = 0.66 and R2 = −0.033 using the profiles of vx and
q, respectively. An example of a bad prediction from this case
is shown in Fig. 9, where the target obstacle has a diameter
of β = 0.122 and is located at y = 0.35 m; however the ANN
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FIG. 7. ANN prediction analysis by R2 for several obstacle sizes
and centered on the pipe. Measuring the time series on a single sensor
for vx (crosses) and q (X’s) at y = 0.205 m and three detectors, at
y = 0.105, 0.210, and 0.315 m, for vx (asterisks) and q (squares) at
measurement site B. Note that by considering the time series of the
three detectors the values of R2 are close to 1 for diameters greater
than β = 0.20, while considering a single detector this happens for
β > 0.25.

shows two obstacles, one at the top of the pipe, as expected,
and small one at the bottom of the pipe.

Regarding case 2b, where the ANN is trained with the time
series of a single sensor at the center of the pipe. The ANN is
unable to learn the behavior of the flow, mostly for obstacles
close to the borders as well as for small ones, as seen also
in case 2a. This is evident in Fig. 10, where we get negative
values for the small obstacles, β = 0.122, with a minimum
value of R2 = −0.312 when the obstacle is at the center of
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FIG. 8. Prediction analysis for obstacles in different positions
on the y axis, by training and testing the ANN with the profiles of
(a) vx and (b) q for detectors at measurement site B. The red curve with
crosses shows the results for the obstacle with β = 0.122; the black
curve with X’s, β = 0.244; the blue curve with asterisks, β = 0.366;
and the green curve with squares, β = 0.488. Values of R2 are similar
for both approaches; the smallest obstacle has the worst prediction at
the center and close to the borders of the pipe.
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FIG. 9. (a) Target and (b) ANN prediction considering the profile
of the vx of the fluid generated by an obstacle at y = 0.35 m with
β = 0.122. Contrasting with Fig. 6, we observe how the ANN shows
two obstacles instead of a single one, resulting in bad prediction with
R2 = 0.09.

the pipe. For larger obstacles (β � 0.244) the ANN is more
accurate, except when they are near the walls.

In case 2c, where the time series was generated with three
equidistant detectors at y = 0.105, 0.210, and 0.315 m at
measurement site B, the predictions shown in Fig. 11 indicate
similar values of R2 for both q and vx . In this scenario,
the predictions for the smallest obstacle (β = 0.122) show
an improvement over their counterpart results for case 2b
(Fig. 10). For the obstacle with β = 0.366 all values of R2

are above 0.4 using vx or q. Meanwhile, for the obstacles with
β = 0.244 and β = 0.488 the prediction grid shows a great fit
with respect to the target grid at almost all locations, with R2
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FIG. 10. Prediction analysis for obstacles in different positions
on the y axis. The ANNs are trained with the time series of (a) vx

and (b) q at the center of the pipe at measurement site B. The red
curve with crosses shows the results for the obstacle with β = 0.122;
the black curve with X’s, β = 0.244; the blue curve with asterisks,
β = 0.366; and the green curve with squares, β = 0.488. It is evident
that with the ANN it is difficult to give a proper prediction of the
location of the obstacle with only one sensor; this is more evident for
small obstacles close to the borders of the pipe.
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FIG. 11. R2 results obtained for obstacles in different positions at
the y axis. The ANNs are trained with the time series of (a) vx and (b) q

for three sensors at y = 0.105, 0.210, and 0.315 m at measurement site
B. The red curve with crosses shows the results for the obstacle with
β = 0.122; the black curve with X’s, β = 0.244; the blue curve with
asterisks, β = 0.366; and the green curve with squares, β = 0.488.
Again, the worst adjustment coefficient was obtained with the smallest
obstacle, R2 = −0.102, using q as input data. However, there is a
remarkable improvement for the other three obstacle sizes compared
to the case where a single sensor was used.

above 0.8. However, the obstacle with β = 0.122 and located
at the center of the pipe has a value of R2 = −0.102 using the
profile of q.

In general for case 2, the worst adjustment is obtained for
the smaller obstacles. This confusion of the ANNs is not

TABLE III. R2 for the test set, considering 10 values of the
incoming fluid flow profile of vx or q before the obstacle and 10
values at site B. Excluding the three smallest obstacles, the other
results are prominent, with values close to 1.

β vc (m/s) R2

For vx For q

0.0122 0.3 −23.753 −246.954
0.0122 1.35 −0.645 −0.680
0.0976 0.15 0.250 −4.518
0.0976 0.75 0.966 0.919
0.0976 1.8 0.975 0.975
0.1952 1.5 0.961 −0.016
0.2928 0.45 0.989 0.936
0.2928 1.65 0.989 0.944
0.3904 0.45 0.998 0.978
0.3904 1.2 0.991 0.997
0.4880 0.9 0.999 0.988
0.4880 1.05 0.998 0.994
0.4880 1.5 0.999 0.986
0.5856 1.05 0.998 0.997
0.5856 1.2 0.997 0.997
0.7808 0.75 0.999 0.996
0.7808 1.2 0.999 0.999
0.8784 1.35 0.999 0.992
0.9638 0.6 0.999 0.966
0.9638 0.9 0.999 0.992
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FIG. 12. Magnitude of vx , for a simulation of a flow around a square obstacle with an incoming flow of vc = 1.5 m/s. The obstacle is
located at 0.6 m on the x axis. As with the cylindrical obstacle, the vortices formed after the square obstacle are driven along the direction of
the flow, generating also a Karman vortex street, but with a different frequency.

surprising, since the pipe boundaries disturb the fluid flow
generated after the obstacle even more when it is located
near the walls rather than at the center. The boundary layer
is affected by the viscous nature of the flow, and if the
obstacle is very small, its effect on the flow is counteracted by
viscous forces, which implies that when we measure far from
the obstacle (for example, at measurement site B), the flow
practically behaves as if there were no obstacle. Furthermore,
smaller obstacles, regardless of their distance from the pipe
boundaries, do not significantly affect the pattern of the
flow that is generated behind them, so that the ANN cannot
characterize them correctly. As seen in case 2b, a single sensor
is not enough to obtain a good estimate and also reduces the
accuracy with respect to that in case 2a. By increasing to three
sensors in case 2c, we obtained a considerable improvement
in terms of R2 values.

The results in cases 1 and 2 show that as the number of
measurement points in both space and time increases, the
obstacle size prediction of the ANN improves considerably.
For example, in case 1a, where the ANNs use 83 values in
space and only 1 in time, the accuracy is equivalent to that in
case 1c, where three measurements in space and 300 in time are
used. A similar conclusion can be achieved by comparing cases
2a and 2c. In other words, the ANN in case 1a performs better
than in case 1c, since case 1 requires fewer measurements over
time. However, in a practical sense, having a measurement site
with only 3 sensors can be more desirable than the approach
of constructing a measurement site with more than 83 sensors.

For case 3, the R2 coefficients obtained for each scenario
are listed in Table III. Here we observe the persistent problem
for the smallest obstacle (β = 0.0122), with an R2 = −23.753
when vx is used or even worse for q, with R2 = −246.954.
However, these particular results also have the second lowest
incoming flow velocity, at vc = 0.3 m/s. To understand this,
compare the results obtained in case 1, where the associated
vc is always equal to 1.5 m/s. That is, a decrease in accuracy
not only is associatedwith the difficulty of the ANN in
characterizing the flow patterns for tiny obstacles, but also
occurs because the velocity field of the flow around the obstacle
is very small. In other words, in case 3 we found that, having
both very small obstacles and incoming flow velocities, the
ratios of inertial to viscous forces within the fluid are very
low. Note the improvement of the results for the same value
of β = 0.0122 with vc = 1.35 m/s, obtaining R2 = −0.645
for vx or R2 = −0.680 for q. The same happens for the
obstacle with β = 0.0976, improving from R2 = 0.250 to

R2 = 0.975 and from R2 = −4.518 to R2 = 0.975 for vx and
q, respectively, when the incoming flow velocity is increased
from vc = 0.15 m/s to vc = 0.75 m/s for both variables. This
means that the ANN learns better as we increase the incoming
fluid flow velocity. In general the accuracy of the predictions
increases when vx is used instead of q. It is noteworthy that for
most of the remaining predictions the values of R2 are close to
1, with a performance similar to that in case 1. Let us remark
that this shows the flexibility of the ANN, which works with
different initial flow velocities and employing only 10 sensors
at both measurement sites.

We have proved that the ANNs achieve a good performance
no matter whether we select the training, validation, and
prediction sets in an orderly manner, as in cases 1 and 2,
or randomly, as in case 3. The relevance of the latter case
is that the ANN is trained not only for different diameters,
but also for different incoming flow velocities, implying more
complexity with respect to input information, resulting in a
clear improvement in the recognition of the shape of obstacles.
Despite this, bad results were obtained for β = 0.0122; the
ANN was able to obtain R2 > 0.96 for β � 0.0976 when
using vx as input, except in the particular case of β = 0.0976
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FIG. 13. Prediction for a square obstacle at the center of the
diameter of the pipe, considering as input for the ANN the time
series of q at three sensors at site B. As expected, the ANN considers
this obstacle with a shape similar to those which it was trained for,
however, it has a size and location comparable to those of the target.
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with the low incoming velocity of vc = 0.15 m/s, which is
10 times lower than the vc used in case 1. A similar result
is obtained when q is used, obtaining, in general, values of
R2 > 0.915. Note that, compared with case 1, the best results
were obtained for β > 0.25 with R2 > 0.9 for both vx and q.

Hitherto, we have made predictions of the sizes and
locations of the obstacles. But we can also test the ability
of an already trained ANN to estimate the shape and size of
a different obstacle. To show this capacity, we analyze a final
experiment, introducing a square obstacle of side 0.1 m under
the same conditions as presented in case 1 (see Fig. 12). For
simplicity, we only present the case for the time series with
three sensors at measurement site B (as in case 1). Although
the predicted shape is like the ones for which the ANN was
trained, we obtained a size similar to that of the square target
(see Fig. 13), with the outstanding value of R2 = 0.93.

V. CONCLUSIONS

A series of ANNs has been constructed and trained in the
capability to estimate an obstacle’s size and location inside
a pipe with a specific width of 0.41 m, 1/80 ≤ β < 1, and
a range of incoming flows with characteristic velocities from
0.15 to 1.8 m/s. The ANNs use as input the profile of vx or q at
a certain distance from the obstacle. We analyzed several cases,
varying the diameter (case 1), the position of the obstacle with
respect to the y axis (case 2), and the incoming fluid velocity
(case 3).

Based on the specifications used in this work, from the
results obtained in case 1, the ANN is highly capable of
generating estimations of the obstacle’s size when the data
supplied are very similar to those used in the training phase,
with results of R2 > 0.9 for values of β > 0.25. In case 2
something similar was done, considering an obstacle for which
the ANN was not trained with any information about the profile
or time series of vx or q. Even when there was an evident
decrease in accuracy, the ANN was able to estimate not only the
shape but also the location of this obstacle, with an R2 > 0.6

in general, and remarkable results for values of β � 0.244
when the obstacles are not too close to the walls of the
conduit. Finally, in case 3 we have used multiple incoming flow
velocities for each blockage considered, determining that for
low velocities and small obstacles, the ANN predictions have a
poor accuracy, while for bigger sizes and higher incoming flow
velocities, the accuracy is improved considerably, achieving
values of R2 > 0.9 in general for β � 0.0976.

We found that the ANNs perform better in two situations:
first, when the number of sensors at a measurement site is
large as in case 1; and second, when the time series with three
sensors is considered as in case 1. Nevertheless, we think that,
in a practical sense, it is more convenient to extract data over
a lapse of time with a few sensors. In the same context, the
results obtained by training the ANNs with vx or q are similar.

Finally, of all cases reviewed the best results are obtained in
case 3, given that the ANN can give predictions with different
incoming fluid velocities, while cases 1 and 2 were trained
under only a single incoming fluid velocity. Furthermore, case
3 had fewer obstacles in the training set.

Taking into account that in the literature one can find works
like [39], where they use modal analysis to identify a blockage
through its location, thickness, and depth, and the study done in
Ref. [40], where a transient pressure-wave reflection analysis
is used to characterize the blockage inside the pipe and for
more complex configurations such as the one described as
motivation in Ref. [41], we would like to extend our research
to develop a numerical tool capable of recognizing the shape
and depth (position around the y axis) of such obstructions.
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