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Kinetic approach to relativistic dissipation
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Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the
microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must
still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the
transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations
with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The
Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)]
procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the
Chapman-Enskog expansion might be better suited than Grad’s method [Commun. Pure Appl. Math. 2, 331
(1949)] to capture the emergence of dissipative effects in relativistic fluids.
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The basic mechanisms by which dissipative effects emerge
from the microscopic dynamics of relativistic fluid remains
are still not fully understood in relativistic hydrodynamics.
It has been long recognized that the parabolic nature of the
Laplace operator is inconsistent with relativistic invariance
as it implies superluminal propagation, hence, noncausal and
unstable behaviors [1–3]. This can be corrected by resorting
to fully hyperbolic formulations of relativistic hydrodynamics
whereby space and time come on the same first-order footing,
but the exact form of the resulting equations is not fixed
uniquely by macroscopic symmetry arguments and thus
remains open to debate.

A more fundamental approach is to derive relativistic hy-
drodynamics from the underlying kinetic theory [4], exploiting
the advantages of the bottom-up approach: Irreversibility is
encoded within a local H-theorem [5], whereas dissipation
results as an emergent manifestation of weak departure from
local equilibrium (low Knudsen-number assumption) and
the consequent enslaving of the fast modes to the slow
hydrodynamic ones, associated with microscopic conservation
laws. At no point does this scenario involve second-order
derivatives in space, thus, preserving relativistic invariance
by construction.

In nonrelativistic regimes, Grad’s moments method [6] and
the Chapman-Enskog (CE) [7] approach manage to connect
kinetic theory and hydrodynamics in a consistent way, i.e.,
they provide the same transport coefficients. However, the
relativistic regime presents a more controversial picture. The
Israel [8] and Israel and Stewards (IS) formulation [9], extend-
ing Grad’s method [6], derives causal and stable equations of
motion, at least, for hydrodynamics regimes [10]. Although
many earlier works have relied on the IS formulation, recent
developments have highlighted theoretical shortcomings [11]
and poor agreement with numerical solutions of the Boltzmann
equation [12,13].

Recently, several authors have developed new attempts
to derive consistent relativistic dissipative hydrodynamics

equations. Attempting to circumvent the drawbacks of the
IS formulation, Denicol and co-workers [11,14,15] have
proposed an extension of the moments methods in which the
resulting equations of motion are derived directly from the
Boltzmann equation and truncated by a systematic power-
counting scheme in the Knudsen number.

This, in turn, offers the possibility to include a larger
number of moments (with respect to the 14 used in the
IS formulation), improving the expressions for the transport
coefficients. Starting from similar considerations, Jaiswal et al.
[16] have included entropic arguments within Grad’s method
[6] and derived relativistic dissipative hydrodynamics equa-
tions which take the same form as the IS formulation although
with different expressions for the transport coefficients. When
compared to the IS formulation, these developments lead
to solutions closer to the Boltzmann equation and, at least,
in the ultrarelativistic limit (defined by ζ → 0, where ζ =
mc2/KBT is the ratio of particle rest energy and temperature),
they yield transport coefficients in good agreement with
those calculated via the CE expansion. Interestingly, the CE
method itself remains somewhat less explored [17,18] with
relativistic extensions mostly restricted to the relaxation time
approximation. More recently, a novel approach, introduced in
a series of works by Tsumura and co-workers [19–22], applies
renormalization group techniques to the Boltzmann equation.
Once again, expressions for bulk (shear) viscosity and heat
conductivity coincide with those provided by the CE method.
Summing up the present and somewhat not fully conclusive
state of affairs is that different theoretical approaches, based
on different, if not conflicting assumptions, seem to converge
towards the results provided by the CE approach. Conceptual
shortcomings of the moments method, recently highlighted
also in the nonrelativistic framework [23–26], revolve around
the use of second-order spatial derivatives in constitutive
hydrodynamical equations [19]. On the other hand, objections
to the relativistic Chapman-Enskog expansion point to its link
to relativistic Navier-Stokes equations, which suffer from basic
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FIG. 1. Three-dimensional Taylor-Green vortex configuration of
a viscous relativistic fluid with ζ = 0 and τ = 0.51 (symbols defined
in the text). Top: initial configuration; middle: later stage in which
the vortex configuration becomes unstable; bottom: final disordered
state. The colors code vorticity, and the arrows represent the velocity
field.

problems, such as broken causality and resulting instabilities
[11,14]. In a less than crystal-clear situation, one would like
to validate theory towards experimental data, but a controlled
experimental setup is not a viable option at this point in time.
Given the circumstances, numerical simulation stands up as a
very precious alternative to gain new insight into this problem.

Recent works [27,28] have presented one-dimensional (1D)
simulations of the (ultra)relativistic Boltzmann equation in the
relaxation time approximation, showing results asymptotically
compatible with the CE approach. This paper follows a
similar line and reports the results of lattice-kinetic simulations
of a relativistic flow in a controlled setup for which an
approximate analytical hydrodynamic solution can be derived.
We match analytical and numerical results in order to study
the dependence of hydrodynamic transport coefficients on
parameters defined on the mesoscale. For this purpose, we
study the time evolution of a Taylor-Green vortex configuration
in two and three spatial dimensions (see Fig. 1) and probe
the functional dependence of the transport coefficients on ζ ,
extending previous work confined to the ζ → 0 limit. Our main
result is a neat indication that CE predictions accurately match
numerical data and they do so over a remarkably wide ζ range
starting from the ultrarelativistic regime and seamlessly going
over to the well-known nonrelativistic case. Our simulations
use a recently developed relativistic lattice Boltzmann model
(RLBM) [29], able to handle massive particles, providing an
analysis of dissipative effects for relativistic but not necessarily
ultrarelativistic flows.

In relativistic fluid dynamics, ideal nondegenerate fluids
are described by the particle four-flow and energy momentum

tensors, which at equilibrium read

Nα
E = nUα, (1)

T
αβ

E = (P + ε)UαUβ − Pgαβ, (2)

where Uα = γ (1,u) is the fluid four-velocity, (u is the fluid
velocity, γ = 1/

√
1 − u2; we use natural units such that

c = 1, KB = 1), P is the hydrostatic pressure, and ε (n) is
the energy (particle) density. We take into account dissipative
effects with the Landau-Lifshitz decomposition [5],

Nα = Nα
E − n

P + ε
qα, (3)

T αβ = T
αβ

E + P 〈αβ〉 − � (gαβ − UαUβ), (4)

with

qα = λ(∇αT − T Uα∂βUβ),

P 〈αβ〉 = η
(
�α

γ �
β

δ + �α
δ �β

γ − 2
3�αβ�γδ

)∇γ Uδ,

� = −μ∇αUα;

qα is the heat flux, P 〈αβ〉 is the pressure deviator, � is the dy-
namic pressure, λ is the heat conductivity, and η and μ are the
shear and bulk viscosities, respectively. Furthermore, we have

∇α = �αβ∂β,

�αβ = gαβ − UαUβ,

�α
β = �αγ �γβ.

A kinetic formulation, on the other hand, describes the
fluid as a system of interacting particles of rest mass m; the
particle distribution function f (xα,pβ) depends on space-
time coordinates xα = (t,x) and momenta pα = (p0, p) =
(
√

p2 + m2, p); f (x,t, p)dx d p counts the number of parti-
cles in the corresponding volume element in phase space.

The system evolves according to the Boltzmann equation,
which, in the absence of external forces, reads as follows:

pα ∂f

∂xα
= �(f ). (5)

The collision term �(f ) often is replaced by simplified
models. For instance, the Anderson-Witting model [30] (a
relativistic extension of the well-known Bhatnagar-Gross-
Krook [31] formulation), compatible with the Landau-Lifshitz
decomposition, reads

� = pμUμ

τ
(f − f eq). (6)

The equilibrium distribution f eq, following Boltzmann statis-
tics, has been derived many decades ago by Jüttner [32],

f eq � e−pμUμ/T . (7)

The Anderson-Witting model has just one parameter, the
equilibration (proper-)time τ and obeys the conservation
equations,

∂αNα = 0, (8)

∂βT αβ = 0. (9)

As discussed in previous paragraphs, a predictive bridge
between kinetic theory and hydrodynamics must provide the
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macroscopic transport coefficients λ,μ,η, from the meso-
scopic ones (τ in the Anderson-Witting model). Our attempt
at contributing further understanding of the issue is based on
the following analysis: We: (i) consider a relativistic flow for
which we are able to compute an approximate hydrodynamical
solution depending on the transport coefficients; (ii) study
the same flow numerically with a lattice Boltzmann kinetic
algorithm, obtaining a numerical calibration of the functional
relation between transport coefficients and τ ; (iii) obtain
clear-cut evidence that the CE method successfully matches the
numerical results and, (iv) double-check our approach using
the calibrations obtained in (ii) for a numerical study of a
different relativistic flow, successfully comparing with other
numerical data obtained by different methods.

We consider Taylor-Green vortices [33], a well-known
example of a nonrelativistic decaying flow featuring an
exact solution of the Navier-Stokes equations and derive an
approximate solution in the mildly relativistic regime. In the
nonrelativistic case from the following initial conditions in a
two-dimensional periodic domain:

ux(x,y,0) = v0 cos (x) sin (y),

uy(x,y,0) = −v0 cos (y) sin (x), x,y ∈ [0,2π ], (10)

the solution is given by

ux(x,y,t) = v0 cos (x) sin (y)F (t),

uy(x,y,t) = −v0 cos (y) sin (x)F (t), x,y ∈ [0,2π ], (11)

with

F (t) = exp (−2νt), (12)

where ν is the kinematic viscosity of the fluid.
In the relativistic case, we need to solve the conservation

equations [Eqs. (8) and (9)]. We consider a system with
a constant initial particle density and assume that density
remains constant. We will verify later this assumption against
our numerical results showing that density fluctuations in time
are very small. In this case Eq. (8) is satisfied directly, and the
expression of the second-order tensor slightly simplifies since
∇αUα = 0. Consequently we drop the term depending on bulk
viscosity and rewrite the second-order tensor as

T αβ = −Pgαβ + (ε + P )UαUβ + P 〈αβ〉. (13)

We consider the same initial conditions as in Eq. (10) and
look for a solution in the form of Eq. (11) with an appropriate
function FR(t) replacing F (t). We plug Eq. (11) in Eq. (13)
and derive bulky analytic expressions for the derivatives of the
second-order tensor. A linear expansion of these expressions
in terms of v0 yields a much simpler expression for ∂βT αβ ,
leading to the differential equation,

2ηFR(t) + (P + ε)F
′
R(t) = 0. (14)

Assuming P + ε is constant, for a fixed value of ζ , we derive
an explicit solution,

FR(t) = exp

(
− 2η

P + ε
t

)
FR(0), (15)

depending on just one transport coefficient, the shear viscosity
η. Observe that, although the quantity P + ε exhibits some
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FIG. 2. Simulated time evolution of ū for selected τ values on a
L = 400 square lattice (ζ = 0, v0 = 0.2, n0 = 1, T0 = 1). The lines
are fits to the exponential decay predicted by Eq. (15). The inset
shows nonlinear effects in the early phases of the flow.

time variation (as found in the simulations) due to the evolution
of the local temperature, such fluctuations were found to be
negligible.

Next, we compare this analytical solution with data ob-
tained via our LB numerical simulation, aiming at linking η

to the relaxation time τ . We perform several simulations with
different values of the initial speed v0 and the mesoscopic
parameters τ and ζ . We consider small (yet non-negligible)
values of u and a very broad range of ζ values smoothly bridg-
ing between ultrarelativistic to near nonrelativistic regimes. To
this end, it is expedient to introduce the observable ū,

ū2 =
∫∫ (

u2
x + u2

y

)
dx dy (16)

defined to be proportional to FR(t). Figure 2 gives an example
of our numerical results, showing the time evolution of ū,
clearly exhibiting an exponential decay. For each set of
mesoscopic values, we perform a linear fit of ln(ū) extracting
a corresponding value for η via Eq. (15). We next assume
a dependence of η on the mesoscopic parameters, which, on
dimensional grounds, reads as

η = kf (ζ )P
(
τ − 1

2

)
, (17)

with f (ζ ) normalized such that f (0) = 1. The numerical
value of k and the functional form of f (ζ ) contain the
physical information on the relation between kinetic and
hydrodynamics coefficients. For instance, CE predicts k = 4/5
and an expression for f (ζ ) to which we will return shortly;
for comparison, Grad’s method [6] predicts k = 2/3 and a
different functional dependence on ζ . We are now able to test
that Eq. (17) holds correctly, checking that all measurements
of η(τ ) at a fixed value of ζ yield a constant value for kf (ζ ).
One immediately sees from the second column of Table I
that k = 4/5 to very high accuracy, consistent with previous
results [11,19,27,34]. More interesting is the assessment of the
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TABLE I. Fitted values of kf (ζ ) for selected values of τ and ζ .
Statistical errors are smaller than 1 in the last displayed digit.

kf (ζ )

τ ζ = 0 ζ = 1.6 ζ = 2 ζ = 3 ζ = 4 ζ = 5 ζ = 10

0.600 0.8003 0.8319 0.8448 0.8587 0.8892 0.8994 0.9311
0.700 0.8002 0.8318 0.8447 0.8584 0.8888 0.8990 0.9302
0.800 0.8002 0.8318 0.8447 0.8583 0.8887 0.8989 0.9300
0.900 0.8002 0.8318 0.8447 0.8583 0.8887 0.8988 0.9299
1.000 0.8002 0.8317 0.8446 0.8582 0.8887 0.8988 0.9299

functional behavior of f (ζ ). The CE expansion predicts [5]

f (ζ ) = ζ 3

12

(
3

ζ 2

K3(ζ )

K2(ζ )
− 1

ζ
+ K1(ζ )

K2(ζ )
− Ki1

K2(ζ )

)
, (18)

with Ki1 = ∫ ∞
0 e−ζ cosh(t)/ cosh(t)dt.

Our numerical findings for kf (ζ ) are shown in Fig. 3; for
some ζ values we have used several different quadratures
for our LB method (see Ref. [29]), the corresponding results
differing from each other by approximately 1%; we consider
this an estimate of our systematic errors. Figure 3 also
shows the CE prediction [Eq. (18)] that almost perfectly
matches our results (we remark that no free parameters are
involved in this comparison) and nicely goes over to the
well-known nonrelativistic limit for large values of ζ . For a
more quantitative appreciation of the significance of our result,
we also plot the predictions of Grad’s method [6], which obey
the following equation:

f (ζ ) = 3

2

K2
3 (ζ )

K2(ζ )K4(ζ )
. (19)

Comparison of the two curves allows concluding that our
level of resolution is adequate to discriminate between the
two options. We performed the same procedure for fully three
dimensional simulations, and the corresponding results hold
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FIG. 3. Measured value kf (ζ ) as a function of ζ . The black
(magenta) lines are analytic results of the Chapman-Enskog (Grad’s
[6]) methods for the relativistic Boltzmann equation. To improve
resolution at small ζ values, we map ζ → ln (ζ +

√
1 + ζ 2) on the x

axis.
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FIG. 4. Comparison of BAMPS and our RLBM for the Riemann
problem at t = 3.2 fm (ζ = 0, η/s = 0.1). Top: (left) pressure pro-
file, (right) velocity profile. The error bars are the L2 difference be-
tween BAMPS and RLBM using Grad [6] L = 1600 (black), Chapman-
Enskog L = 1600 (red), and Chapman-Enskog L = 12 800 (green).
Bottom: (left) viscous pressure tensor, (right) heat flux profile.

a similar degree of accuracy; details will be presented in an
expanded version of this paper.

Finally, in order to provide a further test of the robustness
of our calibration procedure, we consider a significantly
different problem, we simulate a 1D shock tube problem in
the ultrarelativistic regime (ζ = 0) comparing with BAMPS

[35], a Monte Carlo numerical solver for the full Boltzmann
equation. This simulation uses a 1 × 1 × LZ lattice and keeps
the ratio η/s = 0.1 fixed (s is the entropy density). The
initial conditions for the temperature are TA = 400 MeV for
z < 0 and TB = 200 MeV for z � 0. The initial values for the
pressure step are PA = 5.43 and PB = 0.339 GeV/fm3.

Figure 4 shows that our results are in excellent agreement
with those of BAMPS. The error bars show the improvement
obtained adopting the CE method for the transport coefficients
(red bars) over previous results [36] using Grad’s method [6]
of moments (black bars). In Fig. 4 we also present the profile
of the πzz component of the pressure viscous tensor and of the
qz component of the heat flux, showing good agreement with
results produced by BAMPS for the former quantity, whereas
non-negligible differences arise for the latter. The reason is
that, since the Anderson-Witting model only provides a free
parameter τ , a fine description of several transport coefficients
would require extending it to a multirelaxation time collisional
operator.

Summarizing, we have investigated the kinetic path-
way to dissipative relativistic hydrodynamics by comparing
lattice-kinetic simulations with analytical results based on
the Chapman-Enskog method. We find very neat evidence

023305-4



KINETIC APPROACH TO RELATIVISTIC DISSIPATION PHYSICAL REVIEW E 96, 023305 (2017)

supporting recent theoretical findings in favor of the Chapman-
Enskog procedure, which we tentatively interpret as the
failure of Grad’s method [6] to secure positive definiteness of
Boltzmann’s distribution function. Since violations of positive
definiteness are most likely to occur in the high-energy tails
of the distribution, it is natural to speculate that they should
be of particular relevance to the relativistic hydrodynamic
regime in which tails are significantly more populated than in
the nonrelativistic case. These results are potentially relevant
to the study of a wide host of dissipative relativistic hydro-
dynamic problems, such as electron flows in graphene and
quark-gluon plasmas [37,38]. A further intriguing question
pertains to the relevance of this analysis to strongly interacting
holographic fluids obeying the anti-de Sitter-conformal field
theory (AdS-CFT) bound [39]. Indeed, although such fluids

are believed to lack a kinetic description altogether since
quasiparticles are too short lived to carry any physical
relevance, they are still amenable to a lattice kinetic description
reaching down to values of η/s well below the AdS-CFT bound
[40,41]. Work to explore the significance of the AdS-CFT
bounds in lattice fluids is currently underway.
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