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We report on the development of two dual worm constructions that lead to cluster algorithms for efficient and
ergodic Monte Carlo simulations of frustrated Ising models with arbitrary two-spin interactions that extend up to
third-neighbors on the triangular lattice. One of these algorithms generalizes readily to other frustrated systems,
such as Ising antiferromagnets on the Kagome lattice with further neighbor couplings. We characterize the
performance of both these algorithms in a challenging regime with power-law correlations at finite wave vector.
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I. INTRODUCTION

Ising models of ferromagnetism, with “spins” σ that
take on two values ±1, provide simple examples of systems
which undergo a continuous phase transition from a high
temperature disordered state to a low temperature state which
spontaneously breaks the global symmetry σ → −σ . The
vicinity of this continuous transition poses a challenge to
Monte Carlo methods that rely on local updates. In this critical
regime, the spin correlation length becomes very large, and
local updates are unable to significantly change the state of
the system. In such ferromagnetic Ising models, this “critical
slowing-down” of local updates can be combated using the
well-known Wolff or Swendsen-Wang cluster algorithms
[1–3].

When the interactions between the spins are antiferromag-
netic and the underlying lattice nonbipartite, the geometry
of the lattice causes these antiferromagnetic interactions to
compete with each other. This “geometric frustration” is
often associated with a macroscopic degeneracy of minimum
exchange-energy configurations. This can lead to interesting
liquidlike phases at intermediate temperatures. Subleading
further-neighbor interactions can destabilize this liquid to
produce complex patterns of low-temperature order. The stan-
dard Wolff construction typically fails to yield a satisfactory
cluster algorithm in the low-temperature regime of interest
in such frustrated systems, a result that can be understood
in terms of the percolation properties of the Wolff clusters
[4]. Generalizations [5–9] of the Wolff cluster construction
procedure, which build clusters by defining a percolation
process involving larger units of the lattice (typically, the
elementary plaquettes of the lattice), have also been explored
with some success for the fully frustrated Ising model with
nearest-neighbor antiferromagnetic exchange on square and
triangular lattices.

In ferromagnetic models, a “dual worm” approach has
also been used as an alternative to the standard Wolff cluster
construction [10]. This approach uses a worm construction to
effect a nonlocal update in the bond energies along a closed
loop. When transformed back to spin variables, this dual worm
construction yields a procedure for constructing a spin cluster
that can be flipped with probability one. Recently, such a dual
worm algorithm has also been formulated for some frustrated
systems [11]. These generalizations feature a nonzero rejection
rate that is required to preserve detailed balance.

Here, we introduce two new cluster algorithms for frus-
trated triangular lattice Ising models with arbitrary two-spin
couplings that extend up to next-next-nearest neighbors. Both
algorithms use the dual worm framework of Ref. [10]. At the
heart of these two algorithms are two new worm construction
protocols that both preserve detailed balance without any
rejection of completed worms both at T = 0 and T > 0.
This makes both cluster algorithms very efficient in the entire
temperature range of interest in such frustrated magnets.

In the limiting case of J1→∞, or equivalently, in the T →0
limit with J1 = 1 and J2/3 = c2/3T (with constant c2 and c3),
one of these algorithms, which we dub the “DEP” algorithm
(since it involves deposition, evaporation, and pivoting of
dual dimer variables), reduces to a previously used [12–15]
honeycomb lattice implementation of the well-known worm
algorithm for interacting dimer models [10]. In the same limit,
our other algorithm, which we dub the “myopic” algorithm
since it ignores the environment variables at alternate steps
of the worm construction, reduces to the honeycomb lattice
implementation of an approach developed previously as an
alternative [16] to the standard procedure [17] for constructing
worm updates for generalized link-current models.

This myopic algorithm generalizes readily to other frus-
trated systems, including Kagome lattice Ising antiferromag-
nets with two-spin couplings again extending up to next-
next-nearest neighbors. In the limiting case of J1 → ∞ on
the Kagome lattice (equivalently, in the T → 0 limit with
J1 = 1 and J2/3 = c2/3T with constant c2 and c3), this myopic
algorithm reduces to an approach used in previous work
to simulate an interacting dimer model on the dice lattice
[14,18].

In this paper, we present a detailed characterization of both
these cluster algorithms in the low-temperature power-law-
ordered intermediate state associated with the two-step thermal
melting of three-sublattice order in such triangular lattice
Ising models. Similar results are also obtained in the Kagome
lattice case with the myopic algorithm. We demonstrate that
both cluster algorithms have a significantly smaller dynamical
exponent z compared to that of the standard Metropolis
algorithm. Interestingly, we also find that the dependence of the
dynamical exponent on the equilibrium anomalous dimension
η is quasiuniversal in a sense that we attempt to make precise
in this work. The rest of this paper is organized as follows:
In Sec. II, we introduce the Ising models of interest to us and
summarize the basic physics of three-sublattice ordering in
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such triangular lattice antiferomagnets. In Sec. III, we provide
a detailed description of the two cluster algorithms developed
here and present benchmarks establishing the correctness of
the procedures used. In Sec. IV, we provide a characterization
of the performance of our cluster algorithms and compare this
performance to that of the standard Metropolis algorithm. We
conclude in Sec. VI with a brief discussion.

II. MODELS

Ising antiferromagnets [19–21] on frustrated lattices such
as the triangular and the Kagome lattice provide paradig-
matic examples of the effects of geometric frustration in
low-dimensional magnets. In such systems, the behavior
at low temperature is governed by the interplay between
the macroscopic degeneracy of configurations that minimize
the nearest-neighbor antiferromagnetic exchange energy and
subleading energetic preferences imposed by weaker further-
neighbour interactions. The classical Hamiltonian for these
model systems on the triangular and Kagome lattices may be
written as

H = J1

∑

〈RR′〉
σRσR′ + J2

∑

〈〈RR′〉〉
σRσR′ + J3

∑

〈〈〈RR′〉〉〉
σRσR′ ,

(1)

where 〈RR′〉, 〈〈RR′〉〉, and 〈〈〈RR′〉〉〉 denote nearest neighbor,
next-nearest neighbor, and next-next-nearest neighbor links of
the lattice in question, and σR = ±1 are the Ising spins at sites
R of this lattice. In our convention, J1/2/3 > 0 corresponds to
an antiferromagnetic coupling, while J1/2/3 < 0 corresponds
to a ferromagnetic coupling. In the rest of this paper, J1 is
assumed positive and equal to 1.

When J2 = J3 = 0, the nearest-neighbor model does not
order on either lattice even in the zero-temperature limit,
providing an example of a classical spin liquid state. On the
triangular lattice, the correlation length grows exponentially
with decreasing temperature, reflecting the fact that the T = 0
spin-liquid, which involves an average over the ensemble
of minimum nearest-neighbor exchange energy states, is
characterized by power-law spin correlations at the three-
sublattice wavevector Q [19,20]. On the Kagome lattice, H

with J2 = J3 = 0 remains a short-range correlated spin liquid
all the way down to zero temperature [21].

When J2 is negative, such magnets tend to develop three-
sublattice spin order at low temperature. In this ordered state,
the spins freeze in a pattern that is commensurate with the
three-sublattice decomposition of the underlying triangular
Bravais lattice. This parameter regime has attracted some in-
terest earlier in the context of spatial ordering of monolayer ad-
sorbate films on substrates with triangular symmetry [22–28]
and in the context of “artificial spin-ice”, i.e., honeycomb
networks of micromagnetic wires, which can be modeled
in terms of the Kagome lattice Ising antiferromagnet with
further neighbor couplings [29–32]. In both these examples,
the three-sublattice order is of the ferrimagnetic type, i.e., it is
accompanied by a small net moment.

As a computationally challenging regime in which to
test our algorithms, we focus here on this ferrimagnetc
three-sublattice ordered state that is stabilized at low enough

FIG. 1. (a) The triangular lattice is shown in black and its dual
honeycomb lattice is shown in blue. (b) The Kagome lattice is shown
in black and its dual dice lattice is shown in blue. Basis sites and
Bravais lattice translation vectors are also marked as appropriate.

temperature by a nonzero ferromagnetic J2 (J2 < 0) on both
lattices [33–37] (for a simple caricature of this state on both
lattices; see Fig. 1 of Ref. [38]). On both lattices, there is a large
range of parameters for which this three-sublattice order melts
in a two-step manner on heating [33–37] via an intermediate
phase with power-law three-sublattice order corresponding
to a temperature-dependent power-law exponent η ∈ ( 1

9 , 1
4 ).

In our work here, we test our algorithms in this extended
critical region and extract the values of the dynamical critical
exponents that characterize our algorithms. However, we
re-emphasize that the algorithms developed here have much
wider applicability and work well for arbitrary values of J2

and J3 on both lattices when the nearest-neighbor interaction
J1 is positive.

III. ALGORITHMS

A. Dual representation and dual worm updates

We begin with a summary of the dual representation of the
frustrated Ising antiferromagnet on the triangular lattice: One
represents every configuration of the triangular lattice Ising
model in terms of configurations of dimers on links of the
dual honeycomb lattice, with a dimer placed on every dual
link that intersects a frustrated nearest-neighbor bond of the
triangular lattice (Fig. 1). For our purposes here, a frustrated
bond of the triangular lattice is one that connects a pair of spins
pointing in the same direction. When J1 > 0 (corresponding
to the interesting case of frustrated antiferromagnetism), this
implies that every minimally frustrated spin configuration,
which minimizes the nearest-neighbor exchange energy by
ensuring that every triangle of the triangular lattice has exactly
one frustrated bond, corresponds to a defect-free dimer cover
of the dual honeycomb lattice, in which there is exactly one
dimer touching each dual site of the honeycomb lattice.

At nonzero temperature, more general configurations also
contribute to the partition sum. These have a nonzero density
of defective triangles, i.e., triangles in which all three spins are
pointing in the same direction. In dual language, these corre-
spond to honeycomb lattice sites with three dimers touching
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the site. Thus, in dual language, the configuration space at
nonzero temperature is that of a generalized honeycomb lattice
dimer model, with either one or three dimers touching each
dual site. This dimer model inherits boundary conditions from
the original spin model: We choose to work with Lx × Ly

samples with periodic boundary conditions on the Ising spins
along two principal directions x̂ and ŷ of the triangular lattice.
This translates to global constraints on the dual description
which are spelled out in detail when we describe our algorithm.

All of this generalizes readily to the Kagome lattice
antiferromagnet. The idea is again to work with the dual
representation in terms of a generalized dimer model on the
dual lattice. The dual lattice is now the dice lattice, which
is a bipartite lattice with one sublattice of three-coordinated
sites and a second sublattice of six-coordinated sites (Fig. 1).
Every spin configuration on the Kagome lattice corresponds
to a dimer configuration on the dice lattice, with either one
or three dimers touching the three-coordinated sites, and an
even number of dimers touching the six-coordinated sites.
As before, a frustrated bond is one that connects a pair of
nearest-neighbor spins pointing in the same direction and is
represented by a dimer on the dual link that is perpendicular
to this bond. Minimally frustrated spin configurations, which
minimize the nearest-neighbor exchange energy, now corre-
spond to dimer configurations with exactly one dimer touching
each three-coordinated dice lattice site. Periodic boundary
conditions of the Lx × Ly spin system again translate to global
constraints (see below).

The dual worm approach [10], on which both cluster
algorithms are based, is rather simple to explain in general
terms: One first maps the spin configuration of the system
to the corresponding dual configuration of dimers. Each
dimer configuration is thus assigned a Boltzmann weight of
the “parent” spin configuration from which it was obtained.
Next, one updates the dual dimer configuration in a way that
preserves detailed balance. In this way, one obtains a new
dimer configuration, which is then checked to see if it satisfies
certain global winding number constraints (spelled out in detail
below) that must be obeyed by any dimer configuration that is
dual to a spin configuration with periodic boundary conditions.
If the global constraints are satisfied, one maps the new dimer
configuration back to spin variables, to obtain an updated
spin configuration, which can differ from the original spin
configuration by large nonlocal changes. Since the procedure
explicitly satisfies detailed balance, one obtains in this way a
valid algorithm for the spin model being studied.

For the triangular lattice Ising antiferromagnet, we have
developed two strategies for constructing rejection-free
updates of the generalized dimer model on the dual
honeycomb lattice. As mentioned in the Introduction, one
of these generalizes readily to the generalized dice lattice
dimer model, which is dual to the frustrated Kagome lattice
Ising model, while the other is specific to the generalized
honeycomb lattice dimer model.

The strategy that generalizes readily to the dice lattice case
is one in which we deliberately do not keep track of the local
dimer configuration of the dual lattice at alternate steps of
the worm construction to ensure that detailed balance can be
satisfied without any final rejection step. This is similar to the
myopic worm construction developed earlier [16], for a general

class of link-current models [17], and used successfully on the
dice lattice in earlier work on an interacting dimer model for
the low-temperature properties of certain high-spin Kagome
lattice antiferromagnets with strong easy-axis anisotropy [18].
Since this strategy involves being deliberately short-sighted at
alternate steps of the construction, we dub this the “myopic”
worm algorithm. Below we begin with a detailed description
of how this works for the generalized dimer models on the hon-
eycomb and dice lattices, which are dual to the physics of the
frustrated Ising models on the triangular and Kagome lattices.

B. Myopic worm algorithm

On the honeycomb lattice this myopic worm algorithm
consists of the following steps: We begin by choosing a random
“start site” o on the honeycomb lattice. Regardless of the
local dimer configuration in the vicinity of this site, we move
from the start site to one of the three neighboring sites, with
probability 1/3 each (Fig. 2). The neighboring site reached in
this way is our first “vertex site” v(1). In our terminology, we
have “entered” this vertex site from the start site o. Therefore,
the start site is the “entry site” n(1) for this vertex. Next, we
choose one of the neighbors of v(1) as the “exit site” x(1), via
which we can exit this vertex. When we arrive at vertex site
v(1) from entry site n(1), and leave this vertex site via exit
site x(1), we flip the dimer state of the dual links 〈n(1)v(1)〉
and 〈v(1)x(1)〉. The choice of exit site x(1) via which we exit
from a vertex site v(1), given that we arrived at vertex site v(1)

from a particular entry site n(1), is probabilistic (Fig. 3), with

FIG. 2. The first step of the myopic worm construction on the
dual honeycomb lattice: A start site o is chosen randomly. The tail of
the worm remains static at this start site until the worm construction
is complete. In this first step, the head of the worm moves to one of
the three neighbors of the start site with probability 1/3, regardless of
the local dimer configuration. The neighbor thus reached is our first
vertex site v(1). Viewed from the point of view of this vertex, the start
site o is the first entry site n(1).
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FIG. 3. The probabilistic step of the myopic algorithm: After
arriving at the vertex site v(l) from the entry site n(l) we choose to exit
via x(l) (which is one of the neighbours of v(l)) with probability given
by the probability table T . (a) When the spin interactions extend up
to next-next-nearest neighbors on the Kagome lattice, knowledge of
the local dimer configuration consisting of dimer states from s0 to
s5 and d0, d1, and d2 suffices to compute entries of the table T . (b)
When the spin interactions extend up to next-next-nearest neighbors
on the triangular lattice, knowledge of the local dimer configuration
consisting of dimer states from s0 to s11 and d0, d1, and d2 suffices to
compute entries of T .

probabilities specified in a probability table T whose structure
we now discuss.

For any vertex site v encountered in our process, these
probabilities are given by a probability table T v

nx , where n is
the entry site from which we have entered the vertex and x is the
exit site we wish to leave from. Entries in this probability table
are constrained by the requirement of local detailed balance.
To state these constraints on T v in a way that makes subsequent
analysis easy, we rewrite this table as a three-by-three matrix
Mv

ij (i,j = 1,2,3) by choosing a standard convention to label
the three neighbors of v by integers running from one to three.
Thus, if n is the ith neighbor of v and x is the j th neighbor of
v according to this convention, we write T v

nx = Mv
ij .

We denote by wv
n the Boltzmann weight of the dual dimer

configuration before we flip the dimer states of dual links
〈nv〉 and 〈vx〉. In the same way, wv

x , for each choice of
x, denotes the corresponding Boltzmann weight after these
flips are implemented. As is usual for all worm algorithms,
these weights for the intermediate configurations encountered
during this myopic construction are obtained from the Boltz-
mann weight of the generalized dimer model with the proviso
that the “infinite energy cost” of violating the generalized
dimer constraints at the start site and current site (“head” and
“tail” of the worm in worm algorithm parlance) are ignored
when keeping track of the weights of these intermediate
configurations.

We choose the T matrices to satisfy a local detailed balance
condition that depends on these weights,

wv
nT

v
nx = wv

xT
v
xn. (2)

Rewriting wv
n ≡ Wv

i if n is the ith neighbor of v, and wv
x ≡ Wv

j

if x is the j th neighbor of v, we can write these detailed balance
conditions in terms of the matrix Mv

ij and the weights Wv
i

(with i,j = 1,2,3) as

Wv
i Mv

ij = Wv
j Mv

ji, (3)

As is usual in the analysis of such detailed balance
constraints [39,40], we define the three-by-three matrix Av

ij =
Wv

i Mv
ij and note that the detailed balance condition is now

simply the statement that Av is a symmetric matrix which
satisfies the three constraints,

∑

j

Av
ij = Wv

i for i = 1,2,3. (4)

For interactions that extend up to next-next-nearest neigh-
bors on the triangular lattice, the three weights Wv

i that enter
these equations differ from each other only due to factors
that depend on the dimer state, d0,d1,d2 of the the three links
emanating from v and the 12 dual links surrounding v, whose
dimer state has been denoted s0, s1 . . . s11 in Fig. 3. This feature
allows us to tabulate all possible local environments of v and
analyze these constraint equations in advance to determine
and tabulate the Av (and thence determine Mv) in advance.
In practice, if the weights permit it, we use the “zero-bounce”
solution given in Refs. [39] and [40], else the “one-bounce”
solution given there.

Having reached the exit x(1) of the vertex v(1) in this manner,
we now need to choose the next vertex v(2), which we will
enter next from this site x(1). This is the myopic part of our
procedure: This next vertex v(2) is randomly chosen to be one
of the two other neighbors of x(1) (other than the previous
vertex v(1)) with probability 1/2 each (Fig. 4). After making
this choice, x(1) becomes the entry site n(2) for this next vertex
v(2), and the previous probabilistic procedure is repeated at this
next vertex v(2) to choose the next exit site x(2) from which we
will exit v(2).

In this manner, we go through a sequence of vertices until
the exit site x(k) of the kth vertex equals the start site o.
When this happens, one obtains a new dimer configuration,
which again has either one dimer touching each honeycomb
site or three dimers touching a honeycomb site. This new
dimer configuration can be accepted with probability one since

FIG. 4. The myopic step of the myopic worm algorithm on the
dual honeycomb lattice: After arriving at an exit site x(l) from a vertex
site v(l), the next vertex site v(l+1) is chosen to be one of the two other
neighbors of x(l) with probability 1/2. Viewed from this new vertex
site v(l+1), x(l) becomes the entry site n(l+1).
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our procedure builds in detailed balance with respect to the
Boltzmann weight of the generalized dimer model.

It is straightforward to prove this explicitly using the
notation we have developed above. To this end, we first note
that the forward probability for constructing a particular worm
to go from an initial configuration Ci to a final configuration
Cf takes on the product form

P (Ci → Cf ) = 1
3T v(1)

n(1)x(1)
1
2T v(2)

n(2)x(2) . . .
1
2T v(k)

n(k)x(k) , (5)

while the reverse probability takes the form

P (Cf → Ci) = 1
3T v(k)

x(k)n(k)
1
2T v(k−1)

x(k−1)n(k−1) . . .
1
2T v(1)

x(1)n(1) . (6)

As noted earlier, while the weights w that appear in the
intermediate steps of the construction are computed ignoring
the violation of the generalized dimer constraints at two sites,
the initial and final weights wv(1)

n(1) and wv(k)

x(k) have no such caveats
associated with them. Indeed, we have

wv(1)

n(1) ≡ w(Ci), (7)

the physical Boltzmann weight of the initial configuration,
while

wv(k)

x(k) ≡ w(Cf ), (8)

the physical Boltzmann weight of the final configuration.
Now, since our choice of transition probabilities obeys

wv(p)

n(p) T
v(p)

n(p)x(p) = wv(p)

x(p)T
v(p)

x(p)n(p) (9)

for all p = 1,2 . . . k, and since

wv(p)

x(p) ≡ wv(p+1)

n(p+1) (10)

for all p = 1,3 . . . k − 1, we may write the following chain of
equalities

w(Ci)P (Ci → Cf ) = wv(1)

n(1)
1
3T v(1)

n(1)x(1)
1
2T v(2)

n(2)x(2) . . .
1
2T v(k)

n(k)x(k)

= 1
3T v(1)

x(1)n(1)w
v(1)

x(1)
1
2T v(2)

n(2)x(2) . . .
1
2T v(k)

n(k)x(k)

= 1
3T v(1)

x(1)n(1)w
v(2)

n(2)
1
2T v(2)

n(2)x(2) . . .
1
2T v(k)

n(k)x(k)

= 1
3T v(1)

x(1)n(1)
1
2T v(2)

x(2)n(2)w
v(2)

x(2) . . .
1
2T v(k)

n(k)x(k)

. . .

= wv(k)

x(k)
1
3T v(k)

x(k)n(k)
1
2T v(k−1)

x(k−1)n(k−1) . . .
1
2T v(1)

x(1)n(1)

= w(Cf )P (Cf → Ci). (11)

Thus, our procedure explicitly obeys detailed balance, and this
myopic worm construction provides a rejection-free update
scheme that can effect large changes in the configuration of a
generalized honeycomb lattice dimer model with one or three
dimers touching each honeycomb site.

To translate back into spin language, we need to take care of
one additional subtlety: Although the procedure outlined above
gives us a rejection-free nonlocal update for the generalized
dimer model with Boltzmann weight inherited from the
original spin system, we cannot translate this directly into a
rejection-free nonlocal update for the original spin system,
since we are working on a torus with periodic boundary
conditions for the spin system. The reason has to do with the
fact that the periodic boundary conditions of the spin system
translate to a pair of global constraints: In every valid dimer

configuration obtained from a spin configuration with periodic
boundary conditions, the number of empty links crossed by a
path looping around the torus along x̂ or ŷ must be even, since
the absence of a dimer on a dual link perpendicular to a given
bond of the spin system implies that the spins connected by
that bond are antiparallel. This corresponds to constraints on
the global winding numbers of the corresponding dimer model
(see Ref. [12] for a definition specific to the honeycomb lattice
dimer model), which must be enforced by any Monte Carlo
procedure. Note that these constraints are on the parity of these
winding numbers, which are in any case only defined modulo
2 unless one is at T = 0.

Therefore, to convert this rejection-free myopic worm
update procedure for dimers into a valid update scheme for the
original spin system, we test the winding numbers (modulo
2) of the new dimer configuration to see if it satisfies these
two global constraints. If the answer is yes, we translate the
new dimer configuration back into spin language by choosing
the spin at the origin to be up or down with probability 1/2
and reconstructing the remainder of the spin configuration
from the positions of the dimers. If, however, the new dimer
configuration is in an illegal winding sector, we repeat the
previous spin configuration in our Monte Carlo chain.

FIG. 5. The first step of the myopic worm construction on the
dual dice lattice: A start site o is chosen randomly from one of the
six coordinated sites on the dice lattice. The tail of the worm remains
static at this start site until the worm construction is complete. In this
first step, the head of the worm moves to one of the six neighbors
of the start site with probability 1/6, regardless of the local dimer
configuration. The neighbor thus reached is our first vertex site v(1).
Viewed from the point of view of this vertex, the start site o is the
first entry site n(1).
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FIG. 6. The myopic step of the myopic worm algorithm on
the dual dice lattice: After arriving at an exit site x(l) (which, by
construction, is always a six-coordinated site) from a vertex site
v(l), the next vertex site v(l+1) is chosen to be one of the five other
neighbours of x(l) with probability 1/5. Viewed from this new vertex
site v(l+1), x(l) becomes the entry site n(l+1).

This procedure generalizes readily to the Kagome lattice
Ising antiferromagnet with interactions extending up to next-
next-nearest neighbor spins. Since most of the required
generalizations are self-evident, we merely point out some of
the key differences here. Our myopic worm update procedure
now begins with a randomly chosen six-coordinated site as
the start site o. With probabilities 1/6 each, we choose one
of its neighbors as the first vertex site v(1) (Fig. 5). The start
site o thus becomes the entry site n(1) from which we enter the
first vertex v(1). The choice of the first exit site x(1) via which
we exit the first vertex is again dictated by a three-by-three
probability table (Fig. 3).

For any vertex v, this probability table is determined by
solving detailed balance equations completely analogous to
the ones displayed earlier for the honeycomb lattice case.
In the dice lattice case, the three weights Wv

i depend on
the dimer states s0, s1 . . . s5 of the six dual links shown in
Fig. 3, and on the dimer states d0,d1,d2 of the three links
emanating from v. Therefore, we are again in a position to
solve these equations for all possible local environments of v

and tabulate these solutions for repeated use during the worm
construction.

As in the honeycomb case, having arrived at x(1), we choose
the next vertex v(2) in a myopic manner: Without regard to the
local dimer configuration, we randomly pick, with probability
1/5 each, one of the other neighbors (other than v(1)) of x(1)

as the next vertex v(2) (Fig. 6). x(1) now becomes the entry site
n(2) from which we enter this second vertex v(2). The exit x(2)

is again chosen from the pretabulated probability table, and
the process continues until the kth exit x(k) equals then start
site o.

Clearly, our earlier proof of detailed balance goes through
unchanged, and this myopic worm construction again gives
a rejection-free way of updating the dual dimer model in
accordance with detailed balance. To translate this into an
update scheme for the original spin model, we must again
check that the new dimer configuration is in a legal winding
sector, and if the new configuration is in an illegal winding
sector, we must repeat the original spin configuration in our
Monte Carlo chain.

C. DEP worm algorithm

The other strategy we have developed is specific to the
honeycomb lattice dimer model that is dual to the triangular
lattice Ising antiferromagnet. Since it involves deposition,
evaporation, and pivoting of dimers, we dub this the DEP worm
algorithm. The DEP worm construction begins by choosing a
random start site s. The subsequent worm construction consists
of so-called “overlap steps” and “pivot steps”. Pivot steps are
carried out when one reaches a “central” “pivot site” from a
neighboring “entry site”, while overlap steps are carried out
when one reaches a central “overlap site” from a neighboring
entry site. Details of some of the subsequent pivot steps in this
construction depend on whether the randomly chosen start
site s is touched by three dimers or by one dimer, i.e., if the
corresponding triangle is defective or minimally frustrated.
Therefore, we describe these two branches of the procedure
separately but use a unified notation so as to avoid repetition
of the aspects that do not depend on the branch chosen.

1. Branch I

Let us first consider the case when the randomly chosen
start site s is touched by exactly one dimer (Fig. 7). In this
case, we move along the dimer touching s to its other end. The
site at the other end of this dimer becomes our first central site
c(1), at which we must now employ a pivot step with c(1) as the
first pivot site. For the purposes of this first pivot step, the start
site s becomes the entry site e(1) from which we have arrived
at this pivot site c(1) by walking along this dimer.

Before proceeding further, it is useful to elucidate the nature
of a general pivot move encountered in our algorithm: In a
pivot step, after one arrives at the central pivot site pc from
an entry site e (as we will see below, e could be the previous
overlap site oold, or a previous pivot site pold) by moving along
a dimer connecting e to pc, the subsequent protocol depends

FIG. 7. If the randomly chosen start site s is touched by only one
dimer, we move along that dimer to reach a new pivot site c(1) in the
first step of the DEP worm construction. The start site s becomes our
first entry site e(1).
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FIG. 8. The pivot step of the DEP worm construction when one
arrives at a central pivot site pc from an entry site e and there is only
one dimer touching pc. We pivot the dimer from the link 〈pce〉 to
the link 〈pconew〉 with probabilities determined by the corresponding
elements of the probability table R. onew, which is the new overlap
site, can either be one of the two neighbors n1 and n2 of the central
pivot site pc, or be the entry site e from which we came to pc. The
central pivot site pc now becomes the new entry site enew from which
this new overlap site onew has been reached, and the next step is an
overlap step. On the dual honeycomb lattice, knowledge of the local
dimer configuration consisting of dimer states from s0 to s11 and
d0, d1 and d2 suffices to calculate R when the interactions extend up
to next-next-nearest neighbors on the triangular lattice.

on whether there is exactly one dimer (Fig. 8) touching pc or
three (Fig. 9). In the first case, one pivots the dimer touching
pc, so that it now lies on link 〈pconew〉 instead of link 〈pce〉
(Fig. 8). Here, onew is one of the neighbors of pc, chosen using
the element R

pc
e,onew of a three-by-three probability table R

pc
α,β

(where α and β range over the three neighbors of the central
site pc, and the full structure of this table is specified at the
end of this discussion). Note that in some cases, it is possible
for onew = e with nonzero probability, if the corresponding
diagonal entry of the table is nonzero. After this is done, the
next step in the construction will be an overlap step, with onew

being the central overlap site and pc playing the role of the
new entry site enew from which we have arrived at this central
overlap site. The structure of a general overlap step is specified
below, after describing the pivot move in the second case, i.e.,
with three dimers touching the central pivot site.

If the central pivot site pc in a pivot step has three dimers
connecting it (Fig. 9) to its three neighbors n1, n2, and e

(where e is the entry site from which we arrived at the central
pivot site pc), we choose one out of three alternatives using
a different probability table K

cs

α,β(np), where α and β range
over all neighbors of a central site cs and np is a particular
privileged neighbor of cs (in the case being described here,
cs = pc and np = e): With probabilities K

pc
e,n1 (e) and K

pc
e,n2 (e)

FIG. 9. The pivot step of the DEP worm construction when one
arrives at a central pivot site pc from an entry site e and there are
three dimers touching pc: At this point, one has three options, with
probabilities determined by corresponding entries of the probability
table K: We can choose to exit to one of the two neighbors n1 or
n2, or bounce back to the entry site e. If we choose to exit through
either n1 or n2, we move along the dimer connecting the central
pivot site pc to this chosen exit which becomes our new pivot site
pnew, and delete the dimer on the link 〈pce〉. The third option is to
move along the dimer connecting the central pivot site pc back to the
entry site e, and e then becomes our new overlap site onew. On the
dual honeycomb lattice, knowledge of the local dimer configuration
consisting of dimer states from s0 to s11 and d0, d1, and d2 suffices
to determine K when the interactions extend up to next-next-nearest
neighbors on the triangular lattice.

drawn, respectively, from this table, we may delete the dimer
on link 〈pce〉 and reach either n1 or n2, and the next step
would then be a pivot step, with the neighbor thus reached
now playing the role of the new central pivot site pnew and pc

playing the role of the new entry site enew from which we have
reached this new central pivot site. On the other hand, we may
“bounce” with probability K

pc
e,e(e), i.e., we simply return from

pc to e without deleting any of the three dimers touching pc;
in this case, the next step will be an overlap step, with e as
the new central overlap site onew, and pc will play the role of
the new entry site enew from which we have reached this new
overlap site (Fig. 9). Note that elements of this table K

cs

α,β(np)
with α 	= np never play any role in the choices made at this
kind of pivot step. As we will see below, these elements of the
table in fact determine the choices made at a general overlap
step in a way that preserves local detailed balance.

Returning to our construction, if the central pivot site c(1)

was of the second type and we did not bounce, we would reach
a new central pivot site c(2) (with c(1) now becoming the entry
site e(2) from which we reach this new pivot site), and we
would perform another pivot step as described above. If, on
the other hand, the central pivot site c(1) was of this first type
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or if it was of the second type and we bounced, then the next
step will be an overlap step with a new central overlap site c(2).
Since we would have reached c(2) by moving along a dimer
connecting it to c(1), c(1) will play the role of the new entry
site e(2) for this overlap step (in the bounce case, c(2) = e(1)).
Having reached the central overlap site c(2) from entry site e(2)

in this way, we must employ an overlap step.
Before proceeding with our construction, let us first

elucidate the structure of choices at an overlap step after we
have reached a central overlap site oc from an entry site e. Site
e could be the previous pivot site e = pold if the previous step
had been a pivot step (as in the example above) or it could be a
previous overlap site e = oold if the previous step had also been
an overlap step (we will see below that this is also possible). In
either case, at a general overlap step, one arrives at the overlap
site oc from entry site e along one of the two dimers touching
oc. Thus, one neighbor of oc, suggestively labeled onew, is not
connected to the central overlap site oc by a dimer, while the
other two neighbors are connected to oc by dimers. One of the
latter pair of neighbors is of course the entry site e from which
we arrived at oc, while we suggestively label the other as pnew.

At such an overlap step, one always has two options to
choose from, whose probabilities are given as follows by

FIG. 10. The overlap step of the DEP worm construction: One
arrives at a central overlap site oc from an entry site e. At this stage,
one uses the probability table K to choose one out of two options:
If we choose to exit along the empty link (in this case 〈ocn1〉), we
deposit a dimer on the empty link, and move along it making n1 our
new overlap site onew. The central overlap site oc now becomes the
new entry site enew from which we enter the new overlap site onew.
On the other hand, we may choose to exit along the link 〈ocn2〉 to
reach our new pivot site pnew = n2. The central overlap site oc now
becomes the new entry site enew, from which we enter the new pivot
site pnew. On the dual honeycomb lattice, knowledge of the local dimer
configuration consisting of dimer states from s0 to s11 and d0, d1, and
d2 suffices to determine the probability table K , when the interactions
extend up to next-next-nearest neighbors on the triangular lattice.

entries of the probability table K introduced earlier (Fig 10):
One option is to deposit, with probability Koc

e,onew
(onew),

an additional dimer on the originally empty link 〈oconew〉
emanating from oc. If we do this, onew becomes the new overlap
site, which we have entered from oc, which becomes the new
entry site enew, and the next step will again be an overlap step.
The second option, chosen with probability Koc

e,pnew
(onew), is

that we move along the second dimer touching oc to the other
neighbor pnew, which is connected to oc by this second dimer.
If we do this, pnew becomes the new pivot site, which we enter
from site oc, which becomes the new entry site enew, and the
next step will be a pivot step. As we will see below, the fact that
the table K that fixes the probabilities for choosing between
these two options is the same as the one used in a pivot step
(when the pivot site has three dimers touching it) is crucial in
formulating and satisfying local detailed balance conditions
that guarantees a rejection-free worm update.

Returning again to our construction, we employ this
procedure to carry out an overlap step when we reach the
overlap site o(2) from entry site e(2). Clearly this process
continues until we encounter the start site s as the new
overlap site in the course of our worm construction. When this
happens, we obtain a new dimer configuration that satisfies the
generalized dimer constraint that each site be touched by one
or three dimers.

2. Branch II

Let us now consider the case when the randomly chosen
start site s is touched by three dimers. In this case, we move
along one of the three dimers touching s to its other end (with
probability 1/3 each), so that the site at the other end becomes
the central pivot site c(1) for a pivot step, and the start site s

becomes the entry site e(1) from which we have entered this
central pivot site (Fig. 11). We now implement the protocol
for a pivot step (as described in Branch I) to reach a new
central site c(2). If the next step turns out to be a pivot step, c(2)

plays the role of a central pivot site, whereas it becomes the
central overlap site if the next step is an overlap step. In either
case, c(1) becomes the entry site e(2) for this next step. In this
manner, we continue until we reach the start site s as the new
central overlap site c(k) for an overlap step. When this happens,
the worm construction ends after these k steps, since the start
site again has three dimers touching it, and we thus obtain a
new dimer configuration that satisfies the generalized dimer
constraint that each site be touched by one or three dimers.

The only additional feature introduced in Branch II is that
one could in principle reach the start site s as the central
pivot site of some intermediate pivot step l(Fig. 12). In this
case, the intermediate configuration reached at this lth step
is not a legal one (since it still has two dimers touching s),
and we need to continue with the worm construction. This is
done using a special “two-by-two” pivot step (Fig. 12). In this
two-by-two pivot step, one arrives at the two-by-two pivot site
(which will always be the start site in our construction) pc

from an entry site e (as in all other steps, e could be a previous
central overlap site oold or the previous central pivot site pold)
by moving along a dimer connecting e to pc. Unlike the usual
pivot step, at which there is only one dimer touching the central
pivot site, pc has a second dimer touching it, which connects
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FIG. 11. The first step of the DEP worm construction when the
randomly chosen start site s is touched by three dimers: We move
along any one of the three dimers with probability 1/3, to reach a
new pivot site c(1). The start site s becomes our first entry site e(1).

pc to another neighbor nf . Thus, unlike the usual pivot step,
there is just one neighbor of pc, suggestively labeled onew,
which is not connected to pc by a dimer when one arrives at
pc to implement this step. Therefore, our only options are to
rotate the dimer which was on link 〈epc〉, to now lie on link
〈pconew〉, or to bounce. The probabilities for these two choices
are determined by a probability table T

pc

α,β (nf ). Here, α and
β are both constrained to not equal nf , making T

pc

α,β(nf ) a
two-by-two matrix. In either case, onew chosen in one of these
two ways becomes the new central overlap site of the next step,
which must be an overlap step, and the process continues.

This new configuration thus obtained upon completing the
worm construction initiated either using Branch I or Branch II
can now be accepted with probability one if the probabilities
with which we carried out each of the intermediate pivot steps
and overlap steps obeyed local detailed balance. Local detailed
balance at a pivot step in which the pivot site is touched by
one dimer requires that the probability table R

pc
e,of

obeys the
conditions

wpc

e Rpc

e,of
= wpc

of
Rpc

of ,e, (12)

where the w
pc
n is the Boltzmann weight of the dimer con-

figuration in which the link 〈pcn〉 connecting pc to one
of its neighbors n is occupied by a dimer and the other
two links emanating from pc are empty. As in all worm
constructions, these weights are computed ignoring the fact
that the generalized dimer constraint (that each site be touched
by exactly one or three dimers) is violated at two sites on
the lattice. These conditions again form a three-by-three set
of constraint equations of the type discussed in Refs. [39]
and [40], allowing us to analyze these constraints and tabulate

FIG. 12. The pivot step of the DEP worm construction when one
arrives at a central pivot site pc from an entry site e, and there are
two dimers touching pc: We can exit to the neighbor n, which is the
neighbor not connected to the central pivot site pc by a dimer, or
bounce back by exiting through the entry site e. If we choose to exit
through the neighbor n, we flip the dimer on the link 〈pce〉 to the
link 〈pcn〉. We then move along this dimer to reach our new overlap
site onew ≡ n. If we choose to bounce back, the entry site e becomes
our new overlap site onew. The central pivot site pc now becomes our
new entry site enew in either case. The probability table T is used to
determine which option is chosen. On the dual honeycomb lattice,
knowledge of the local dimer configuration consisting of dimer states
from s0 to s11 and d0, d1, and d2 suffices to calculate T when the
interactions extend up to next-next-nearest neighbors on the triangular
lattice.

solutions in advance for all cases that can be encountered. If
the weights permit it, we use the “zero-bounce” solution given
in Refs. [39] and [40], else the “one-bounce” solution given
there.

Local detailed balance at a two-by-two pivot step in which
the pivot site is touched by two dimers requires that the
probability table T

pc

α,β (nf ) obeys the conditions

wpc

α (nf )T pc

α,β(nf ) = w
pc

β (nf )T pc

β,α(nf ), (13)

where the w
pc
α (nf ) is the Boltzmann weights of the dimer

configurations in which the links 〈pcnf 〉 and 〈pcα〉 are covered
by dimers and the third link is empty. As always, these weights
are computed ignoring the fact that the dimer constraints are
violated at two sites on the dual lattice. In practice, we tabulate
all possible local environments that can arise in such an update
step, and use Metropolis probabilities to tabulate in advance
the corresponding entries of T pc (nf ).

Finally, the constraints imposed by local detailed balance
at an overlap step are essentially intertwined with the local
detailed balance constraints that must be enforced at a pivot
step when the pivot site has three dimers touching it. This is
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because the deletion of a dimer at such a pivot step is the “time-
reversed” counterpart of the process by which an additional
dimer is deposited at an overlap step. Indeed, this is why
we have been careful in our discussion above to draw the
probabilities at the pivot step from the same table K as the
probabilities that govern the choices to be made at an overlap
step.

We use a different probability table K
cs

α,β(np) (where α

and β range over all neighbors of a central site cs and np is
a particular privileged neighbor of cs) to decide on the next
course of action:

We now describe the structure of the table K
cs

α,β(np). Here,
cs is the central site, which would be the current pivot site
in a pivot step with three dimers touching the pivot site, or
the current overlap site in an overlap step. np is a “privileged
neighbor” of cs ; in a pivot step, np is the entry site from
which we enter the pivot site cs , while in an overlap step, it
is the unique neighbor of cs that is not connected to cs by a
dimer. Clearly, local detailed balance imposes the following
constraints on this probability table K:

wcs

α (np)Kcs

α,β(np) = w
cs

β (np)Kcs

β,α(np). (14)

Here, both α and β can be either the site np or the two other
neighbors n1 and n2 of the central site cs . wcs

n1
(np) = wcs

n2
(np)

denotes the weight of the configuration with both links 〈csn1〉
and 〈csn2〉 covered by a dimer and the link 〈csnp〉 unoccupied
by a dimer. On the other hand, wcs

np
(np) denotes the weight

of the configuration in which all three links 〈csn1〉, 〈csn2〉,
and 〈csnp〉 are covered by dimers. As before, these weights
are computed ignoring the fact that the generalized dimer
constraint (that each site be touched by exactly one or three
dimers) is violated at two sites on the lattice.

Choices for the tables R and K consistent with these local
detailed balance constraints, can be computed using the same
strategy described in our construction of the myopic worm
update. Again, the weights that enter these constraints on K

(R) depend only on the dimer states d0, d1, and d2 of the
three links emanating from the central site cs (pivot site pc),
and the dimer states s0, s1 . . . s11 of the 12 links surrounding
this site, allowing us to tabulate in advance all possible local
environments and the corresponding solutions for K and R.
The formal proof of detailed balance uses these local detailed
balance constraints to construct a chain of equalities relating
the probabilities for an update step and its time-reversed
counterpart in exactly the same way as the proof given in the
previous discussion of the myopic worm update. Therefore,
we do not repeat it here for the present case.

IV. PERFORMANCE

As mentioned earlier, the next-nearest- and next-next-
nearest-neighbor interactions induce three-sublattice long-
range order of the Ising spins on both triangular [37] and
Kagome [33] lattices. This order melts via a two-step transition
with an intermediate power-law-ordered critical phase. The
correlation function of the three-sublattice order in this phase
decays as a power law with a temperature-dependent exponent
η(T ) ∈ ( 1

9 , 1
4 ). Here, we use this power-law-ordered intermedi-

ate phase associated with two-step melting of three-sublattice
order as a challenging test bed for our algorithms. In this

regime on the triangular lattice, we compare the performance
of the DEP worm algorithm and the myopic worm algorithm
with that of the Metropolis algorithm. Similarly, we compare
the performance of the myopic worm algorithm on the Kagome
lattice with that of the single spin flip Metropolis algorithm
in the same critical phase. On the triangular lattice we use
J1 = 1, J2 = −1, and J3 = 0, while for the Kagome lattice
system, we use J1 = 1, J2 = −0.5, and J3 = 0. Monte Carlo
simulations are performed on both lattices for three values of
T corresponding to three values of the anomalous exponent η.

On the triangular lattice in the limiting case of T → 0
with J2 = c2T , a power-law phase [36] is also established
for a range of c2. This T = 0 phase is characterized by a c2-
dependent η(c2) ∈ ( 1

9 , 1
2 ). With this in mind, we also study this

T → 0 limit on the triangular lattice, with J1 = 1 and J3 = 0,
for six values of c2 = J2/T corresponding to six values of η

in this T = 0 power-law-ordered phase.
As is conventional, we characterize the three-sublattice

order in terms of the complex three-sublattice order pa-
rameter ψ ≡ |ψ |eiθ . Additionally, we also monitor the fer-
romagnetic order parameter σ . These are defined as ψ =
−∑


R ei 2π
3 (m+n)Sz


R and σ = ∑

R Sz


R on the triangular lattice

and ψ = −∑

R,α ei 2π

3 (m+n−α)Sz

R,α

and σ = ∑

R,α Sz


R,α
on the

Kagome lattice, where 
R = mêx + nêy is used to label the
sites as shown in Fig. 1 and α = [0,1,2], labels the three basis
sites in each unit cell of the Kagome lattice (Fig. 1).

To meaningfully compare the algorithms, we need a
consistent definition of one Monte Carlo step. This is achieved
as follows: For the DEP and myopic worm algorithms, we first
compute the average number of sites visited by a complete
worm of the algorithm at a given point in parameter space.
We then adjust the number of worms in one Monte Carlo step
(MCS) so that the average number of sites visited in one MCS
equals the number of sites in the lattice. For the Metropolis
algorithm, we simply fix the number of attempted spin flips in
a step to be equal to the number of sites on the lattice, and this
defines one MCS for the Metropolis algorithm.

To validate the worm algorithms, we first study the
frequency table of the accessed configurations in long runs
on a 3 × 3 triangular lattice with the DEP and myopic worm
algorithms and a 2 × 2 Kagome lattice with the myopic
worm algorithm. As is clear from our results, the measured
frequencies are perfectly predicted by theoretical expectations
based on the Boltzmann-Gibbs probabilities of different
configurations (see Fig. 13 for the triangular lattice and Fig. 14
for the Kagome lattice).

With all algorithms thus performing an equivalent amount
of work in one MCS, we can compare the performance of
these algorithms by measuring the autocorrelation function
(defined below) of the order parameter. Given the presence
of a critical phase with power-law three-sublattice order, it is
natural to test the performance of our algorithms by analyzing
the L dependence of the autocorrelation time. At criticality,
one expects the autocorrelation time τ to scale as τ ∼ Lz,
where z is the Monte Carlo dynamical exponent [41]. The
autocorrelation time τ of course provides an indication of
the number of Monte Carlo steps that need to be executed to
obtain the next statistically independent configuration. Since
the accuracy of any measurement depends on the number
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FIG. 13. The frequency of configurations accessed by a Monte
Carlo simulation consisting of 107 Monte Carlo steps (as defined in
Sec. IV) for a 3 × 3 triangular lattice Ising model with interactions
extending to next-next-nearest neighbors. There are 512 possible
unique configurations. The frequencies measured for the DEP worm
algorithm and the myopic worm algorithm are seen to agree well
with the predictions of equilibrium Gibbs-Boltzmann statistics, thus
establishing the validity of both algorithms.

of statistically independent measurements over which the
observable is sampled during a Monte Carlo simulation, a
lower value of τ allows one to obtain accurate results at
lower computational cost: Since our definition of one MCS
corresponds to one sweep of the lattice, the computational
time (tCPU) required to achieve a fixed accuracy clearly scales
as tCPU ∼ Ld+z where d is the dimensionality of the lattice
(d = 2 in the systems studied here). Thus, a lower value of z

translates to a slower escalation in computational cost as the
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FIG. 14. The frequency of configurations accessed by a Monte
Carlo simulation consisting of 108 Monte Carlo steps (as defined in
Sec. IV) for a 2 × 2 Kagome lattice Ising model with interactions
extending to next-next-nearest neighbors. There are 4096 possible
unique configurations. The frequencies measured for the myopic
worm algorithm are seen to agree well with the predictions of
equilibrium Gibbs-Boltzmann statistics, thus establishing the validity
of the algorithm.
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FIG. 15. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the DEP worm algorithm on the triangular lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to
the functional form cLz at three temperatures at which the system
is in the power-law-ordered critical phase. Also shown is the
anomalous exponent η of the power-law three-sublattice order at
the corresponding temperatures.

system size is increased, allowing cheaper access to accurate
results for larger sizes.

For a given observable O, whose value at the ith MCS
is depicted as Oi , we define the normalized autocorrelation
function AO(k) in the standard way:

AO(k) = 〈OiOi+k〉 − 〈Oi〉〈Oi+k〉〈
O2

i

〉 − 〈Oi〉〈Oi〉
, (15)

where 〈〉 implies averaging over the Monte Carlo run after
equilibriation (see below). We extract autocorrelation times
τ|ψ |2 and τσ 2 by fitting A(k) for the DEP and myopic worm
algorithms as well as the Metropolis algorithm at various
system sizes L to exponential relaxation functions. We plot
these autocorrelation times as a function of L and fit these
curves to the power-law functional form cLz in order to extract
the corresponding dynamical exponent z. Figures 15–19
show such power law fits to the L dependence of the
autocorrelation time τ|ψ |2 . These fits provide us our estimates
for the dynamical exponent z|ψ |2 . All the data shown here
correspond to a measurement run consisting of 2 × 107 MCS,
which is preceded by a warm up of 2 × 106 MCS, which
ensures that the system is in equilibrium before measurements
are made. Figures 20–22 show the corresponding plots for the
Metropolis algorithm.

The η dependence of the dynamical exponent z|ψ |2 for the
DEP and myopic worm algorithms is shown in a comparative
plot in Fig. 23. From these results, it is clear that z|ψ |2 is quasi-
universal in the following sense: In the power-law-ordered
phase at T = 0 on the triangular lattice, z|ψ |2 is independent
of the actual details of the worm construction protocol, and
data from the DEP algorithm and the myopic algorithm
together define a T = 0 functional form z|ψ |2 (η). The T > 0
results are also quasiuniversal in a similar sense: Data from
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FIG. 16. The lattice size L dependence of autocorrelation time
of the three sublattice order parameter |ψ |2 in Monte Carlo simu-
lations using the myopic worm algorithm on the triangular lattice
with nearest-neighbor antiferromagnetic and next-nearest-neighbor
ferromagnetic interactions. The dynamical exponent z is extracted by
fitting to the functional form cLz at three temperatures at which the
system is in the power-law-ordered critical phase. Also shown is the
anomalous exponent η of the power-law three-sublattice order at
the corresponding temperatures.

the myopic algorithm on the Kagome and triangular lattices
together define a nearly constant function z|ψ |2 (η). A full theory
for the η dependence of various dynamical exponents would
require us to confront the at-first-sight difficult problem of
a random walker (the worm constructed by our algorithm)
influenced by a power-law-correlated critical background field
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T → 0, J1 = 1, J3 = 0

FIG. 17. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the DEP worm algorithm on the triangular lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to the
functional form cLz at six values of J2/T at which the system is
in the power-law-ordered critical phase in the zero-temperature limit
T → 0. Also shown is the anomalous exponent η of the power-
law three-sublattice order at the corresponding points in the zero
temperature phase diagram.
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J2/T = −0.1565, η = 0.201(1), z|ψ|2 = 1.18(7)
J2/T = −0.1000, η = 0.276(3), z|ψ|2 = 0.91(6)
J2/T = −0.0500, η = 0.367(5), z|ψ|2 = 0.62(5)
J2/T = −0.0000, η = 0.500(1), z|ψ|2 = 0.38(2)

T → 0, J1 = 1, J3 = 0

FIG. 18. The lattice size L dependence of autocorrelation time
of the three sublattice order parameter |ψ |2 in Monte Carlo simu-
lations using the myopic worm algorithm on the triangular lattice
with nearest-neighbor antiferromagnetic and next-nearest-neighbor
ferromagnetic interactions. The dynamical exponent z is extracted
by fitting to the functional form cLz at six values of J2/T at which
the system is in the power-law-ordered critical phase in the zero-
temperature limit T → 0. Also shown is the anomalous exponent η

of the power-law three-sublattice order at the corresponding points in
the zero-temperature phase diagram.

(the equilibrium spin configuration it seeks to alter) and
back-reacting to alter this field during its motion. Clearly, this
is an interesting question in its own right and deserves separate
study. We hope to return to this question in future work.

Returning to the performance analysis of our algorithms,
we have also measured the η dependence of z|ψ |2 for the
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T = 1.26, η = 0.141(1), z|ψ|2 = 1.27(1)
T = 1.32, η = 0.171(1), z|ψ|2 = 1.14(1)
T = 1.36, η = 0.207(2), z|ψ|2 = 1.16(1)

J1 = 1, J2 = −0.5, J3 = 0

FIG. 19. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the myopic worm algorithm on the Kagome lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to
the functional form cLz at three temperatures at which the system
is in the power-law-ordered critical phase. Also shown is the
anomalous exponent η of the power-law three-sublattice order at
the corresponding temperatures.
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Metropolis on triangular

FIG. 20. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the Metropolis algorithm on the triangular lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to
the functional form cLz at three temperatures at which the system
is in the power-law-ordered critical phase. Also shown is the
anomalous exponent η of the power-law three-sublattice order at
the corresponding temperatures.

Metropolis algorithm. This is shown in Fig. 24 in both
(T > 0 and T = 0) power-law-ordered phases. Comparing
this to our results for z|ψ |2 (η), we see that both the DEP and
myopic worm algorithms outperform the Metropolis update
scheme by a very wide margin. While for the Metropolis
algorithm we find z|ψ |2 (η) ∼ 2 (Fig. 24), for the DEP and
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FIG. 21. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the Metropolis algorithm on the triangular lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to the
functional form cLz at six values of J2/T at which the system is in the
power-law-ordered critical phase in the zero-temperature limit T →0.
Also shown is the anomalous exponent η of the power-law three-
sublattice order at the corresponding points in the zero-temperature
phase diagram.
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Metropolis on Kagome

FIG. 22. The lattice size L dependence of autocorrelation time of
the three sublattice order parameter |ψ |2 in Monte Carlo simulations
using the Metropolis algorithm on the Kagome lattice with nearest-
neighbor antiferromagnetic and next-nearest-neighbor ferromagnetic
interactions. The dynamical exponent z is extracted by fitting to
the functional form cLz at three temperatures at which the system
is in the power-law-ordered critical phase. Also shown is the
anomalous exponent η of the power-law three-sublattice order at
the corresponding temperatures.

myopic algorithms z|ψ |2 (η) varies from 0.4 to 1.6 (Fig. 23).
Corresponding results for the autocorrelation times of σ 2 are
detailed in the Supplemental Material [42].

Our T → 0 results for z|ψ |2 can also be compared to the
findings of Ref. [9], in which the efficiency of a plaquette-based
generalization of the Wolff cluster algorithm was studied in the
context of the low temperature limit of the nearest neighbor
triangular lattice Ising antiferromagnet. Comparing to these
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FIG. 23. The dynamical exponent z|ψ |2 for the three-sublattice
order parameter in simulations employing the DEP and myopic
worm algorithms depends in a universal way, independent of the
lattice as well as the details of the worm construction procedure,
on the corresponding equilibrium anomalous exponent η. However,
z|ψ |2 (η) appears to be nearly constant in the range of η corresponding
to the nonzero-temperature power-law-ordered phase, while the
corresponding function in the zero-temperature limit, which can be
defined for a larger range of η shows a clear trend.
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FIG. 24. Dynamical exponent z|ψ |2 for the three-sublattice order
parameter in simulations employing the Metropolis algorithm.

results, we find that our approach outperforms this earlier
algorithm even in this simple case by a factor of about 1.7
in 1/z. Additionally, this earlier approach does not generalize
in an obvious way to systems with further neighbor couplings,
while the approach described here is designed to incorporate
such further-neighbor couplings in a straightforward way. We
also note that the accurate determination of the values of η

used in this work was made possible only through the use of
DEP and myopic updates.

V. RESULTS

Next-next-nearest-neighbor ferromagnetic couplings in the
triangular lattice Ising antiferromagnet are known to favour
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FIG. 25. Mean energy per site plotted as a function of κ at two
temperatures. At a higher temperature of T = 1.35, the mean energy
per site has two discontinuous jumps corresponding to successive
first-order transitions, from the striped phase to a disordered paramag-
net, and then from the disordered paramagnet to the three-sublattice-
ordered phase. At a lower temperature of T = 1.33, there is a single
discontinuous jump, corresponding to a direct first-order transition
between the striped and the three-sublattice-ordered phase.

a striped phase. This is particularly clear in the dimer repre-
sentation, since such ferromagnetic couplings clearly favor a
staggered arrangement of dimers, with links of one particular
(spontaneously chosen) orientation on the dual honeycomb
lattice preferentially occupied by dimers. Translated to spin
language, this corresponds to stripes of ferromagnetically
correlated Ising spins running along one spontaneously chosen
principal direction of the triangular lattice, with neighboring
parallel stripes being antiferromagnetically correlated relative
to each other. As an aside, we note that this striped phase can
also be stabilized by next-nearest-neighbor antiferromagnetic
couplings [15,43,44]. However, ferromagnetic next-nearest-
neighbor couplings stabilize three-sublattice order, as already
noted earlier.

To provide an example of the kind of precision study that
is possible using the algorithm developed here, we study the
competition between stripe and three-sublattice order at low
temperature in the triangular lattice Ising antiferromagnet with
competing ferromagnetic next-nearest- and next-next-nearest-
neighbor couplings. The presence of three-sublattice order is
measured in terms of the three-sublattice order parameter ψ

defined earlier. To quantify the strength of the stripe order, we
define a vector order parameter 
φ with three components φμ

(μ = 1,2,3):

φ1 =
∑


R=mêx+nêy

(−1)mSz

R,

φ2 =
∑


R=mêx+nêy

(−1)nSz

R, (16)

φ3 =
∑


R=mêx+nêy

(−1)m−nSz

R.

Here, as indicated in the summation, m and n are the (integer)
components of 
R in the coordinate system of Fig. 1. In our
measurements (see below), we compute the mean value of

φ =
√ 
φ · 
φ and use this to quantify the strength of the stripe

order.
We fix J1 = 1 and define R = J2 + J3 and κ = J2 − J3.

We fix R and vary κ at a fixed low temperature to study
the transition between stripe order (favored by ferromagnetic
J3) and three-sublattice order (favored by ferromagnetic J2).
For R = 2 at T = 1.33, we find a direct first-order transition
between stripe order and three-sublattice order as a function
of increasing κ . To locate this transition we look at the mean
energy per site as a function of κ . Across a nonzero temperature
first-order phase transition, the mean energy is expected to
show a jump related to the latent heat. In our case, we find a
sharply defined jump that we can narrow down to the region
between κ = −0.0025 and κ = −0.0030 (Fig. 25). We also
plot the histograms of the stripe order parameter φ and the
three-sublattice order parameter ψ in this vicinity, and see a
correspondingly abrupt change in these histograms (Fig. 26).
This is broadly consistent with a similar direct first order
transition seen earlier between these two ordered states as
one goes from a ferromagnetic J2 to an antiferromagnetic
J2 (without any third-neighbor coupling) [44]. However, at a
slightly higher temperature of T = 1.35, we find a sequence
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FIG. 26. Histograms P (|ψ |2) and P (φ2) corresponding to the
three-sublattice order parameter ψ and the striped order parameter φ

at T = 1.33. These histograms show a dramatic change between
κ = −0.0025 and κ = −0.0030. For κ < −0.0300, J3 dominates
and the system orders into a striped phase. Above κ > −0.0025, J2

dominates and the system is three-sublattice ordered.

of two first order transitions as a function of κ . First, the stripe
phase gives way to a paramagnetic phase via a first-order
transition. At a higher value of κ there is another first-order
transition whereby the paramagnetic phase gives way to a
three-sublattice ordered phase. This is clearly seen in the
two jumps in the mean energy per site as a function of κ

(Fig. 25). Plots of the histogram of the stripe order parameter
(Fig. 27) in the vicinity of the transition between the stripe
ordered phase and the paramagnet show a characteristic double
peak structure. Similarly, the histogram of the three-sublattice
order parameter (Fig. 28) shows a double peak structure in
the vicinity of the transition between the paramagnet and the
three-sublattice-ordered phase.
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FIG. 27. Histogram P (φ2) of the striped order parameter φ at
T = 1.35. The stripe order is destroyed upon increasing κ , giving
way to a disordered paramagnet via a first-order transition at κ =
−0.0030. Note the double peak structure of the histogram in this
vicinity.
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FIG. 28. Histogram P (|ψ |2) of the three-sublattice order parame-
ter ψ at T = 1.35. The three-sublattice order gives way to a disordered
paramagnet via a first order transition at κ = 0.0010. Note the double
peak structure of the histogram in this vicinity.

VI. OUTLOOK

As is well known, Ising models on planar graphs can be
solved exactly using various methods [45–48] even in the
frustrated case. However, these methods fail in the case of non
planar graphs corresponding to the presence of further neigh-
bor couplings. The efficient computational tools developed
here have no such restriction, and are therefore expected to
be valuable for precision studies of competing orders induced
by subdominant further neighbor interactions, and for detailed
studies of the melting transitions corresponding to the loss of
these orders upon heating.

Generalizations to three dimensions also appear possible:
For instance, one can readily imagine using our ideas to
develop a direct worm algorithm for the frustrated Ising
antiferromagnet on the pyrochlore lattice with subdominant
further neighbor couplings. The strategy one envisages is to
work on the medial graph (the diamond lattice in this case)
and generalize the usual dimer worm algorithm to include
with their correct Boltzmann weight configurations in which
a certain fraction of “defective sites” of the diamond lattice
are touched by more than two dimers or less than two dimers
(here an Ising spin σ = +1 maps to the presence of a dimer
on the corresponding link of the diamond lattice). Similar
generalizations also appear feasible for the hyperkagome
lattice. In this case, one would work on the hyperkagome
lattice itself, and map a frustrated bond of the Ising model
to a dimer on the corresponding link. Again, the key would
be to use our ideas to first generalize the usual dimer worm
algorithm to this unusual setting, and then to include with the
correct Boltzmann weight configurations with some fraction
of fully frustrated triangles (with three frustrated bonds instead
of the minimum of one that characterizes minimally frustrated
triangles).

It is also natural to wonder if the dual worm strategies
introduced here could be ported to quantum Monte Carlo
simulations of frustrated models. Unfortunately, in contrast
to the considerations outlined above, no straightforward
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generalization of this type appears possible. The difficulty is
that a worm which alters the state on a given “time-slice”
of the quantum Monte Carlo configuration also introduces
unphysical off-diagonal terms in the Hamiltonian, which
correspond to ring-exchanges over large loops (in the language
of the dual quantum dimer model). In this context, it is
worth nothing that the cluster construction strategy developed
recently for frustrated transverse field Ising models in Ref. [49]
reduces, in the limit of vanishingly small transverse field, to a
version of the Kandel-Ben Av-Domany plaquette-percolation
approach. Thus, generalizations to quantum systems appear
to be more natural within that framework, rather than in the
dual worm approach used here. Finally, we note that the

quasiuniversal behaviour of the dynamical exponents z|ψ |2
and zσ 2 is very suggestive, throwing up the possibility that
the statistics of worms constructed by these algorithms is
universally determined by the long-wavelength properties of
the underlying equilibrium ensemble. We hope to return to this
in more detail in a future publication.
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