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In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed
for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE)
condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field
based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam
temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked
through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam
are solved. The present method has several distinctive features. First, as compared with previous studies, the
present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and
is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB
scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface
and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model
is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across
the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method
can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change
heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for
practical applications of the present method.
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I. INTRODUCTION

Over the past three decades, latent heat storage (LHS) using
solid-liquid phase-change materials (PCMs) has attracted a
great deal of attention because it is of great importance for
energy saving, efficient and rational utilization of available
resources, and optimum utilization of renewable energies
[1–5]. Solid-liquid PCMs absorb or release thermal energy
by taking advantage of their latent heat (heat of fusion) during
the solid to liquid or liquid to solid phase-change process.
PCMs have many desirable properties, such as high energy
storage density, nearly constant phase-change temperature,
small volume change, etc. However, the available PCMs
commonly suffer from low thermal conductivities (in the
range of 0.1 ∼ 0.6 W/(m K) [6]), which prolong the thermal
energy charging and discharging period. In order to overcome
this limitation and improve the thermal performance of
LHS units and systems, a lot of heat transfer enhancement
approaches have been developed, among which embedding
PCMs in highly conductive porous materials (e.g., metal
foams, expanded graphite) to form composite phase-change
materials (CPCMs) has long been practiced [7]. High porosity
open-cell metal foams, as a kind of promising porous materials
with high thermal conductivity, large specific surface area, and
attractive stiffness and strength properties, have been widely
used for LHS applications [6,7].

With new experimental techniques and advanced
instruments, experimental investigations of heat transfer
behaviors in porous systems are becoming more accessible,
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and the problems of solid-liquid phase-change heat transfer
in metal-foam-based PCMs have been experimental studies,
so by many researchers [8–12]. In addition to experimental
studies, numerical analyses usually play an important
role in studying such problems. In the past two decades,
numerical investigations have been extensively conducted
to study solid-liquid phase-change heat transfer in metal
foams [13–23]. These numerical investigations provide
valuable design guidelines for practical applications of LHS
technologies. Since the thermal conductivity of the metal foam
is usually two or three orders of magnitude higher than that of
the PCM, the thermal nonequilibrium effects between the PCM
and metal foam may play a significant role. Therefore, the local
thermal nonequilibrium (LTNE) model (also called the two-
temperature model) has been widely employed for numerical
studies [14–23]. However, most of the previous numerical
studies [13–20] for solid-liquid phase-change heat transfer in
metal foams were carried out using conventional numerical
methods [mainly finite-volume method (FVM)] based on the
discretization of the macroscopic continuum equations. In
order to get a thorough understanding of the underlying mech-
anisms, more fundamental approaches should be developed
for solid-liquid phase-change heat transfer in metal foams.

The lattice Boltzmann (LB) method [24–28], as a meso-
scopic numerical method sitting in the intermediate region
between microscopic molecular dynamics (MD) and macro-
scopic continuum-based methods, has achieved great success
in simulating fluid flows and modeling physics in fluids since
its emergence in 1988 [29–33]. Historically, the LB method
originated from the lattice gas automata (LGA) method [34],
a simplified, fictitious version of the MD method in which
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the time, space, and particle velocities are all discrete. Later
He and Luo [35,36] demonstrated that the LB equation can be
rigorously obtained from the linearized continuous Boltzmann
equation of the single-particle distribution function. The
establishment of such connection not only makes the LB
method more amenable to numerical analysis, but also puts
the LB method on the solid theoretical foundation of kinetic
theory. From this perspective, the LB method can be viewed as
a Boltzmann equation–based mesoscopic method. Between the
microscopic MD and macroscopic continuum-based methods,
there also exist several other Boltzmann equation–based
mesoscopic methods, such as the discrete-velocity method
(DVM) [37] and the gas-kinetic scheme (GKS) [38,39], as
representatives. Unlike the MD method which takes into
account the movements and collisions of all the individual
molecules, the LB method considers the behaviors of a
collection of pseudoparticles (a pseudoparticle is comprised of
a large number of molecules) moving on a regular lattice with
particles residing on the nodes. This feature of the LB method
is similar to that of the direct simulation Monte Carlo (DSMC)
method [40–42]. Different from the conventional numerical
methods based on a direct discretization of the macroscopic
continuum equations, the LB method is based on minimal
lattice formulations of the continuous Boltzmann equation
for single-particle distribution function, and macroscopic
properties can be obtained from the distribution function
through moment integrations. As highlighted by Succi [43],
the LB method should most appropriately be considered not
just as a smart Navier-Stokes solver in disguise, but rather like
a fully fledged modeling strategy for a wide range of complex
phenomena and processes across scales.

In recent years, the LB method in conjunction with the
enthalpy method has been successfully employed to simu-
late solid-liquid phase-change heat transfer in metal foams
[21–23]. Gao et al. [21] proposed a thermal LB model to
simulate the melting process coupled with natural convection
in open-cell metal foams under the LTNE condition. The
influence of foam porosity and pore size on the melting process
was investigated and discussed. Subsequently, Gao et al. [22]
further developed a thermal LB model for solid-liquid phase
change in metal foams under the LTNE condition. By ap-
propriately choosing the equilibrium temperature distribution
functions and discrete source terms, the energy equations of the
PCM and metal foam can be exactly recovered. Most recently,
Tao et al. [23] employed an enthalpy-based LB method to
study the LHS performance of copper foams/paraffin CPCM.
The effects of geometric parameters such as pore density and
porosity on PCM melting rate, thermal energy storage capacity,
and density were investigated.

Up to now, although some progress has been made in
studying solid-liquid phase-change heat transfer in metal
foams, there are still two key issues that remain to be resolved.
The first one is to avoid the iteration procedure so as to improve
the accuracy and computational efficiency. In previous studies
[21–23], the nonlinear latent heat source term accounting for
the phase change was treated as a source term in the LB
equation of the PCM temperature field, which causes the
explicit time-matching LB equation to be implicit. Therefore,
an additional iteration procedure is needed at each time step
so that the convergent solution of the implicit LB equation

can be obtained, which severely affects the computational
efficiency, and the inherent merits of the LB method are
lost. The second key issue is to accurately realize the no-slip
velocity condition in the interface and solid phase regions. For
solid-liquid phase-change heat transfer in metal foams, the
phase interface is actually a region with a certain thickness
because of the interfacial heat transfer between PCM and
metal foam [15]. Therefore, the phase interface is usually
referred to as the interface region or mushy zone. Considering
the actual situation of the phase-change process, it is not
appropriate to use the bounce-back scheme to impose the
no-slip velocity condition in the interface region (this point
will be demonstrated in Sec. V B).

In the present study, we aim to develop an enthalpy-based
LB method for solid-liquid phase-change heat transfer in
metal foams, in which the above-mentioned key issues will
be resolved. Considering that the multiple-relaxation-time
(MRT) collision model [28] is superior to its Bhatnagar-Gross-
Krook (BGK) counterpart [27] in simulating solid-liquid
phase-change heat transfer in metal foams, the MRT collision
model is employed in the enthalpy-based LB method. We will
compare these two collision models in Sec. V A. The rest of
this paper is organized as follows. The macroscopic governing
equations are briefly given in Sec. II. Section III presents the
enthalpy-based MRT-LB method in detail. Section IV validates
the enthalpy-based MRT-LB method. In Sec. V, comparisons
and discussions are made to offer useful information for
practical applications of the present method. Finally, some
conclusions are given in Sec. VI.

II. MACROSCOPIC GOVERNING EQUATIONS

For solid-liquid phase-change heat transfer coupled with
natural convection in metal foams, the following assumptions
are made: (1) the flow is incompressible and laminar; (2) the
thermophysical properties of the metal foam (m) and PCM
(f ) are constant over the range of temperatures considered,
but may be different for the metal foam, liquid PCM (l), and
solid PCM (s); (3) the metal foam and PCM are homogeneous
and isotropic, the metal foam and solid PCM are rigid,
and the porosity of the metal foam is constant; (4) the
volume change during the phase-change process is neglected;
i.e., ρf = ρl = ρs ; (5) the thermal dispersion effects and
surface tension are neglected. To take the non-Darcy effect of
inertial and viscous forces into consideration, the flow field is
described by the generalized non-Darcy model (also called the
Brinkman-Forchheimer extended Darcy model) [44–46]. The
volume-averaged mass and momentum conservation equations
of the generalized non-Darcy model can be written as

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)

(
u
φ

)
= − 1

ρf

∇(φp) + ve∇2u + F, (2)

where ρf is the density of the PCM; u and p are the volume-
averaged velocity and pressure, respectively; φ is the porosity
of the metal foam; ve is the effective kinematic viscosity; and
F is the total body force induced by the porous matrix (metal
foam) and other external force fields, which can be expressed
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as [45,46]

F = −φvf

K
u − φFφ√

K
|u|u + φG, (3)

where K is the permeability, vf is the kinematic viscosity
of the PCM (vf is not necessarily the same as ve), and G is
the buoyancy force. The inertial coefficient Fφ (Forchheimer
coefficient) and permeability K depend on the geometry of
the metal foam. For flow over a packed bed of particles, based
on Ergun’s experimental investigations [47], Fφ and K can be
expressed as [48]

Fφ = 1.75√
150φ3

, K = φ3d2
p

150(1 − φ)2 , (4)

where dp is the solid particle diameter (or mean pore diameter).
For metal foam with φ = 0.8 considered in the present study,
Fφ is set to be 0.068 [15,49].

The LTNE model is employed to take into account
the temperature differences between metal foam and PCM.
According to Refs. [15,17,20], the energy equations of the
PCM (including liquid and solid phases) and the metal foam
can be written as follows:

∂

∂t
{φ[flρlcpl + (1 − fl)ρscps]Tf } + ∇ · (ρlcplTf u)

= ∇ · (φkf ∇Tf ) + hv(Tm − Tf ) − ∂

∂t
(φρlLafl), (5)

∂

∂t
[(1−φ)ρmcpmTm] = ∇ · [(1 − φ)km∇Tm] + hv(Tf − Tm),

(6)

respectively, where T is the temperature, fl is the fraction
of liquid in PCM (fl = 0 represents the solid phase, fl = 1
represents the liquid phase, and 0 < fl < 1 represents the
interface region or mushy zone), cp is the specific heat, k

is the thermal conductivity, hv = hmf amf is the volumetric
heat transfer coefficient (hmf is the interfacial heat transfer
coefficient between PCM and metal foam, amf is the specific
surface area of the metal foam [15]), and La is the latent
heat of the phase change. The underlined term in Eq. (5) is
the nonlinear latent heat source term accounting for the phase
change.

Based on the Boussinesq approximation, the buoyancy
force G in Eq. (3) is given by

G = −gβ(Tf − T0)fl, (7)

where g is the gravitational acceleration, β is the thermal
expansion coefficient, and T0 is the reference temperature. The

effective thermal conductivities of the PCM and metal foam
are defined by

ke,f = φkf , ke,m = (1 − φ)km, (8)

respectively. The thermal conductivity and specific heat of the
PCM are given as follows:

kf = flkl + (1 − fl)ks, cpf = flcpl + (1 − fl)cps. (9)

Under the local thermal equilibrium (LTE) condition, i.e.,
Tf = Tm = T , the energy equations (5) and (6) can be replaced
by the following single-temperature equation [50]:

∂

∂t
(ρcpT ) + ∇ · (ρlcplT u) = ∇ · (ke∇T ) − ∂

∂t
(φρlLafl),

(10)

where ρcp = φ[flρlcpl + (1 − fl)ρscps] + (1 − φ)ρmcpm,
and ke = φkf + (1 − φ)km.

III. ENTHALPY-BASED MRT-LB METHOD

The LB method has been proved to be a promising method
for simulating solid-liquid phase change due to its distinctive
advantages (see Ref. [43] for details). In the LB community,
the first attempt to use LB method to study solid-liquid phase
change was made by De Fabritiis et al. [51] in 1998. Since
then, many LB models for solid-liquid phase change have been
developed from different points of view [21–23,52–70]. The
existing LB models for solid-liquid phase change mostly fall
into one of the following categories: the phase-field method
[52–59] and the enthalpy-based method [21–23,60–68].
Additionally, a couple of LB models were recently developed
based on some interfacial tracking methods [69,70]. Owing
to its simplicity and effectiveness, the enthalpy-based method
plays an increasingly important role in simulating solid-liquid
phase-change problems.

In what follows, an MRT-LB method in conjunction
with the enthalpy method will be presented for solid-liquid
phase-change heat transfer in metal foams under the LTNE
condition. The method is constructed in the framework of
the triple-distribution-function (TDF) approach: the flow field,
and the temperature fields of PCM and metal foam are
solved separately by three different MRT-LB models. For
two-dimensional (2D) problems considered in the present
study, the two-dimensional nine-velocity (D2Q9) lattice is
employed. The nine discrete velocities {ei} of the D2Q9 lattice
are given by [27]

ei =

⎧⎪⎨
⎪⎩

(0,0), i = 0,

(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1−4,

(cos[(2i − 9)π/4], sin[(2i − 9)π/4])
√

2c, i = 5−8,

(11)

where c = δx/δt is the lattice speed with δt and
δx being the discrete time step and lattice spacing,
respectively.

A. MRT-LB model for flow field

The MRT method [28,71] is an important extension of the
relaxation LB method developed by Higuera et al. [25]. In
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the MRT method, the collision process of the LB equation is
executed in moment space, while the streaming process of the
LB equation is carried out in velocity space. By using the MRT
collision model, the relaxation times of the hydrodynamic and
nonhydrodynamic moments can be separated. According to
Refs. [72,73], the MRT-LB equation with an explicit treatment
of the forcing term can be written as

f +
i (x + eiδt , t + δt ) = fi(x, t) − �̃ij

(
fj − f

eq
j

)∣∣
(x, t)

+ δt (S̃i − 0.5�̃ij S̃j ), (12)

where fi(x, t) is the (volume-averaged) density distribution
function, f

eq
i (x, t) is the equilibrium distribution function, S̃i

is the forcing term, and �̃ = M−1�M is the collision matrix in
velocity space. Here, M is the transformation matrix, and � is
the relaxation matrix. For the D2Q9 model, the transformation
matrix M is given by [71]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

Through the transformation matrix M, the collision process of
the MRT-LB equation (12) can be executed in moment space
M = R9; i.e.,

m∗(x, t) = m(x, t) − �(m − meq)|(x, t) + δt

(
I − �

2

)
S,

(14)

where the boldface symbols m, meq, and S denote
nine-dimensional column vectors of moments, e.g., m =
(m0,m1, . . . , m8)T. The streaming process is still carried out
in velocity space V = R9,

f +
i (x + eiδt , t + δt ) = f ∗

i (x, t), (15)

where f∗ = M−1m∗. The superscript “+” denotes that the
effect of the solid phase has not yet been considered. The
diagonal relaxation matrix � is given by

� = diag(sρ, se, sε, sj , sq, sj , sq, sv, sv). (16)

The transformation matrix M linearly maps the discrete
distribution functions represented by f ∈ V = R9 to their
velocity moments represented by m ∈ M = R9, as in the
following:

m = Mf, f = M−1m. (17)

The equilibrium moment meq corresponding to m is defined
as [73]

meq = ρ

(
1,−2 + 3|u|2

φc2
, α1 + α2|u|2

φc2
,

ux

c
,−ux

c
,

uy

c
,−uy

c
,

u2
x − u2

y

φc2
,
uxuy

φc2

)T

, (18)

where ρ = ρf , and α1 and α2 are free parameters. The forcing term in moment space S is given by [73]

S = ρ

[
0,

6u · F
φc2

,−6u · F
φc2

,
Fx

c
,−Fx

c
,
Fy

c
,−Fy

c
,

2(uxFx − uyFy)

φc2
,
uxFy + uyFx

φc2

]T

, (19)

where Fx and Fy are x and y components of the total body
force F, respectively.

As mentioned in Sec. I, it is not appropriate to use the
bounce-back scheme [liquid fraction fl = 0.5 is defined as
the phase interface; the collision process (14) is performed
for fl > 0.5] [62] to impose the no-slip velocity condition
in the interface region. To accurately realize the no-slip
velocity condition in the interface and solid phase regions,
the volumetric LB scheme [67] is employed in the present
study. By using the volumetric LB scheme, the flow field is
modeled over the entire domain (including liquid and solid
phase regions). Considering the effect of the solid phase, the
density distribution function fi is redefined as

fi = flf
+
i + (1 − fl)f

eq
i (ρ,us), (20)

where f +
i is given by Eq. (15), and us = 0 is the velocity

of the solid phase. The above equation is based on a kinetic

assumption that the solid phase density distribution function
is at equilibrium state. Accordingly, the macroscopic density
ρ and velocity u are defined as

ρ =
8∑

i=0

f +
i , (21)

ρu =
8∑

i=0

eifi + δt

2
ρF. (22)

The macroscopic pressure p is given by p = ρc2
s /φ.

Equation (22) is a nonlinear equation for the velocity u because
F also contains the velocity. According to Ref. [74], the
macroscopic velocity u can be calculated explicitly by

u = v

l0 +
√

l2
0 + l1|v|

, (23)
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where

ρv =
8∑

i=0

eifi + δt

2
φρG, (24)

l0 = 1

2

(
1 + φ

δt

2

vf

K

)
, l1 = φ

δt

2

Fφ√
K

. (25)

Through the Chapman-Enskog analysis of the MRT-LB
equation (12), the mass and momentum conservation equations
(1) and (2) can be recovered in the incompressible limit. The
effective kinematic viscosity ve and the bulk viscosity vB are
given by

ve = c2
s

(
1

sv

− 1

2

)
δt , vB = c2

s

(
1

se

− 1

2

)
δt , (26)

respectively, where s7,8 = sv = 1/τv (τv is the relaxation time),

and cs = c/
√

3 is the sound speed of the D2Q9 model.
The equilibrium distribution function f

eq
i in velocity space

is given by (α1 = 1, α2 = −3) [74]

f
eq
i = wiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2φc4
s

− |u|2
2φc2

s

]
, (27)

where w0 = 4
9 , w1−4 = 1

9 , and w5−8 = 1
36 .

B. MRT-LB models for temperature fields

For solid-liquid phase-change heat transfer in metal foams
under the LTNE condition, the temperature fields are solved
separately by two different MRT-LB models: an enthalpy-
based MRT-LB model is proposed to solve the PCM temper-
ature field, while an internal-energy-based MRT-LB model is
proposed to solve the metal-foam temperature field. In this
subsection, the MRT-LB models for temperature fields will
be presented. In addition, some remarks about the MRT-LB
models will also be presented.

1. Enthalpy-based MRT-LB model for PCM temperature field

By combining the nonlinear latent heat source term
∂t (φρlLafl) into the transient term in Eq. (5), the following

enthalpy-based energy equation of the PCM can be obtained:

∂Hf

∂t
+ ∇ ·

(
cplTf u

φ

)
= ∇ ·

(
kf

ρl

∇Tf

)
+ hv(Tm − Tf )

φρl

,

(28)

where Hf is the enthalpy of the PCM. The enthalpy Hf can
be divided into two parts: the sensible enthalpy cpf Tf and the
latent enthalpy flLa , i.e.,

Hf = cpf Tf + flLa = flHl + (1 − fl)Hs, (29)

Hl = cplTf + La, Hs = cpsTf , (30)

where Hl is the enthalpy of the liquid PCM, and Hs is the
enthalpy of the solid PCM.

For the PCM temperature field governed by Eq. (28),
the following MRT-LB equation of the enthalpy distribution
function gi(x, t) is introduced:

g(x + eδt , t + δt ) = g(x, t) − M−1�
(
ng − neq

g

)∣∣
(x, t)

+ δtM−1SPCM, (31)

where M is the transformation matrix [see Eq. (13)], and
� = diag(ζ0, ζe, ζε, ζα, ζq, ζα, ζq, ζv, ζv) is the relaxation
matrix. The collision process of the above MRT-LB equation
is executed in moment space, i.e.,

n∗
g(x, t) = ng(x, t) − �

(
ng − neq

g

)∣∣
(x, t) + δtSPCM, (32)

where ng = Mg is the moment, and neq
g = Mgeq is the cor-

responding equilibrium moment. Here, g
eq
i is the equilibrium

enthalpy distribution function in velocity space. The streaming
process is carried out in velocity space:

gi(x + eiδt , t + δt ) = g∗
i (x, t), (33)

where g∗ = M−1n∗
g .

The equilibrium moment neq
g can be chosen as

neq
g =

(
Hf ,−4Hf + 2cf,refTf , 4Hf − 3cf,refTf ,

cplTf ux

φc
,−cplTf ux

φc
,
cplTf uy

φc
,−cplTf uy

φc
, 0, 0

)T

, (34)

where cf,ref is a reference specific heat. As done in Ref. [66],
the reference specific heat is introduced into the equilibrium
moment to make the specific heat and thermal conductivity of
the PCM decoupled.

To recover the enthalpy-based energy equation (28), the
source term in moment space SPCM is chosen as

SPCM = SPCM(1,−2, 1, 0, 0, 0, 0, 0, 0)T, (35)

where SPCM is given by

SPCM = Srf + 1

2
δt∂tSrf , Srf = hv(Tm − Tf )

φρl

. (36)

The enthalpy-based energy equation (28) is actually a
nonlinear convection-diffusion equation with a source term.
Therefore, a time derivative term 1

2δt∂tSrf is incorporated
into the source term SPCM as suggested in the literature [75].
Without this derivative term, there must exist an unwanted
term δt

2 ε∂t1Srf in the macroscopic equation recovered from
the MRT-LB equation (31). The details will be described later
through the Chapman-Enskog analysis [76] in Appendix A.

The enthalpy Hf is computed by

Hf = ng0 =
8∑

i=0

gi. (37)
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The relationship between the enthalpy Hf and temperature
Tf is given by

Tf =

⎧⎪⎨
⎪⎩

Hf /cps, Hf � Hf s,

Tf s + Hf −Hf s

Hf l−Hf s
(Tf l − Tf s), Hf s < Hf < Hf l,

Tf l + (Hf − Hf l)/cpl, Hf � Hf l,

(38)

where Hf s = cpsTf s is the enthalpy at the solidus temperature
Tf s , and Hf l = cplTf l + La is the enthalpy at the liquidus
temperature Tf l . The liquid fraction fl can be determined by

fl =

⎧⎪⎨
⎪⎩

0, Hf � Hf s,

Hf −Hf s

Hf l−Hf s
, Hf s < Hf < Hf l,

1, Hf � Hf l.

(39)

The equilibrium enthalpy distribution function g
eq
i in

velocity space is given by

g
eq
i =

{
Hf − 5

9cf,refTf , i = 0,

wicplTf

( cf,ref

cpl
+ ei ·u

φc2
s

)
, i = 1−8.

(40)

2. Internal-energy-based MRT-LB model for metal-foam
temperature field

The energy equation (6) of the metal foam can be rewritten
as

∂(cpmTm)

∂t
= ∇ ·

(
km

ρm

∇Tm

)
+ hv(Tf − Tm)

(1 − φ)ρm

. (41)

For the metal-foam temperature field governed by the
above equation, the MRT-LB equation of the internal-energy
distribution function hi(x, t) is given by

h(x + eδt , t + δt ) = h(x, t) − M−1Q
(
nh − neq

h

)∣∣
(x, t)

+ δtM−1Smetal, (42)

where Q = diag(η0, ηe, ηε, ηα, ηq, ηα, ηq, ηv, ηv) is the re-
laxation matrix. The collision process of the above MRT-LB
equation is executed in moment space, i.e.,

n∗
h(x, t) = nh(x, t) − Q

(
nh − neq

h

)∣∣
(x, t) + δtSmetal, (43)

where nh = Mh is the moment, and neq
h = Mheq is the cor-

responding equilibrium moment. Here, h
eq
i is the equilibrium

internal-energy distribution function in velocity space. The
streaming process is carried out in velocity space,

hi(x + eiδt , t + δt ) = h∗
i (x, t), (44)

where h∗ = M−1n∗
h.

The equilibrium moment neq
h is defined as

neq
h = (cpmTm,−4cpmTm + 2cm,refTm,4cpmTm

− 3cm,refTm, 0, 0, 0, 0, 0, 0)T, (45)

where cm,ref is a reference specific heat. The source term in
moment space Smetal is chosen as

Smetal = Smetal(1,−2, 1, 0, 0, 0, 0, 0, 0)T, (46)

where Smetal is given by

Smetal = Srm + 1

2
δt∂tSrm, Srm = hv(Tf − Tm)

(1 − φ)ρm

. (47)

The temperature Tm is defined by

Tm = 1

cpm

8∑
i=0

hi. (48)

The equilibrium internal-energy distribution function h
eq
i in

velocity space is given by

h
eq
i =

{
cpmTm − 5

9cm,refTm, i = 0,

wicm,refTm, i = 1−8.
(49)

Through the Chapman-Enskog analysis [76] of the MRT-
LB equation (31), the following macroscopic energy equation
can be obtained (see Appendix A for details):

∂Hf

∂t
+ ∇ ·

(
cplTf u

φ

)

= ∇ ·
[
αf,refcf,ref∇Tf + δt

(
ζ−1
α − 0.5

)
ε∂t1

(
cplTf u

φ

)]
+ Srf , (50)

where ζ3,5 = ζα = 1/τg (τg is the relaxation time), and αf,ref is
the reference thermal diffusivity [see Eq. (A19)]. As compared
with the enthalpy-based energy equation (28), Eq. (50) con-
tains an additional term, ∇ · [δt (ζ−1

α − 0.5)ε∂t1 (cplTf u/φ)].
For incompressible thermal flows, the additional term can
be neglected in most cases; then the enthalpy-based energy
equation of the PCM can be asymptotically recovered from
the MRT-LB equation (31). Similarly, the energy equation
of the metal foam can be asymptotically recovered from the
MRT-LB equation (42) as

∂(cpmTm)

∂t
= ∇ · (αm,refcm,ref∇Tm) + Srm, (51)

where αm,ref = km/(ρmcm,ref) = c2
s (η−1

α − 0.5)δt is the refer-
ence thermal diffusivity with η3,5 = ηα = 1/τh (τh is the
relaxation time).

In this subsection, the MRT-LB models for the temperature
fields have been developed based on the LTNE model. In
what follows, some remarks are presented on the proposed
models.

Remark I. The reference specific heats cf,ref and cm,ref

remain unvaried over the entire domain, which makes the
thermal conductivity and specific heat of the PCM (or metal
foam) decoupled. As a result, the differences in specific
heat and thermal conductivity can be handled naturally [see
Eqs. (A17) and (A18)]. According to Eqs. (40) and (49),
cf,ref and cm,ref should satisfy cf,ref < 9

5cpf and cm,ref < 9
5cpm,

respectively.
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Remark II. For solid-liquid phase change without con-
vective effect, i.e., the velocity u is zero, the additional
term in Eq. (50) disappears. For solid-liquid phase change
coupled with natural convection, the additional term has no
effect on numerical simulations in most cases; thus it has
been neglected in the present study. Theoretically, to remove
the additional term, the approaches in Refs. [67,75] can be
employed.

Remark III. The energy equations (28) and (41) are
nonlinear convection-diffusion equations with source terms.
Therefore, time derivative terms [see Eqs. (36) and (47)] are
incorporated into the MRT-LB equations for the temperature
fields. Without the derivative terms, there must exist unwanted
terms in the macroscopic equations recovered from the MRT-
LB equations (31) and (42), as can be seen from Eqs. (A6)
and (A8). In simulations, the explicit difference scheme can
be used to compute the time derivative terms (e.g., ∂tSrf =
[Srf (x, t) − Srf (x, t − δt )]/δt ), which does not affect the
inherent merits of the LB method. Unlike the iteration method
in previous studies [21–23], the MRT-LB equation (31) is
completely local and is easy to implement in the same way as
the standard MRT-LB equation.

Remark IV. The two-dimensional five-velocity (D2Q5)
lattice can also be employed. The MRT-LB models for the
temperature fields based on the D2Q5 lattice are presented in
Appendix B.

C. Boundary conditions and relaxation rates

In this subsection, the boundary conditions and relaxation
rates are briefly introduced. For velocity and thermal boundary
conditions, the nonequilibrium extrapolation scheme [77] is
employed. It should be noted that the no-slip velocity boundary
condition on the walls is treated based on f +

i rather than
fi ; i.e., they are treated before the consideration of the
effect of the solid phase. For a boundary node xb where
u(xb,t) is known, but ρ(xb,t) is unknown, the discrete density
distribution function f +

i (xb,t) at the boundary node xb is
given by

f +
i (xb,t) = f̂

eq
i (xb,t) + [

f +
i (xf ,t) − f

eq
i (xf ,t)

]
, (52)

where f̂
eq
i (xb,t) = f

eq
i [ρ(xf ),u(xb),t], and xf is the nearest

neighbor fluid node of xb along the link ei ; i.e., xf = xb + eiδt .
In the MRT-LB model for flow field, the relaxation rate

(related to the effective kinematic viscosity) sv is determined
by s−1

v = 0.5 + ve/(c2
s δt ); the free relaxation rates are set as

sρ = sj = 1, se = sε = 1.1, sq = 1.2. In the MRT-LB models
for temperature fields, the relaxation rates (related to the
reference thermal diffusivities) ζα and ηα are determined
by ζ−1

α = 0.5 + αf,ref/(c2
s δt ) and η−1

α = 0.5 + αm,ref/(c2
s δt ),

respectively; the free relaxation rates are set as ζe = ζε =
2 − ζα , ζq = ζα , ζv = 1.2, η0 = 1, ηe = ηε = 1.1, ηq = ηα ,
ηv = 1.2. We would also like to point out that the relaxation
rate ζe plays an important role in simulating solid-liquid
phase-change heat transfer in metal foams under the LTNE
condition. To reduce numerical diffusion across the phase

y

x

liquid

solid

x

y

cT

cT

interface

iT

metal foam+PCM

meltT

L

FIG. 1. Schematic diagram of 2D conduction-induced solidifica-
tion in a semi-infinite domain.

interface, we set ζe = 2 − ζα; i.e.,(
1

ζe

− 1

2

)(
1

ζα

− 1

2

)
= 1

4
. (53)

As reported in Ref. [66], by using the above relationship,
the numerical diffusion across the phase interface can be
significantly reduced in simulating solid-liquid phase-change
problems without porous media. Although solid-liquid phase-
change heat transfer in metal foams is much more complicated,
the relationship given by Eq. (53) is employed in the present
study.

IV. NUMERICAL TESTS

In this section, numerical simulations of two solid-liquid
phase-change heat transfer problems in metal foams under
the LTNE condition are carried out to validate the accuracy
and effectiveness of the enthalpy-based MRT-LB method. The
problems are characterized by the following dimensionless
parameters: Rayleigh number Ra, Prandtl number Pr, Darcy

FIG. 2. Phase field of conduction-induced solidification in a semi-
infinite domain at Fo = 0.02. The characteristic length is chosen as
L = Nx/2.
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FIG. 3. The liquid fraction distribution (a), isotherms of the PCM
(b), and metal foam (c) at Fo = 0.02. The blue solid and red dashed
lines represent the present and the FDM results, respectively.

number Da, viscosity ratio J , metal foam–to-PCM thermal
conductivity ratio λ, metal foam–to-PCM thermal diffusivity
ratio �, metal foam–to-PCM heat capacity ratio σ̂ , volumetric
heat transfer coefficient Hv (based on pore diameter dp),
Fourier number Fo (dimensionless time), and Stefan number

St, which are defined as follows:

Ra = gβ�T L3

vf αf

, Pr = vf

αf

, Da = K

L2
,

J = ve

vf

, λ = km

kf

, � = αm

αf

, σ̂ = (ρcp)
m

(ρcp)
f

,

Hv = hvd
2
p

kf

, Fo = tαf

L2
, St = cpl�T

La

, (54)

where L is the characteristic length, �T is the characteristic
temperature, and αf = kf /(ρcp)

f
and αm = km/(ρcp)

m
are

thermal diffusivities of the PCM and metal foam, respectively.
Some required parameters are set as follows: φ = 0.8,

Fφ = 0.068, cpl = cps = 1, cpf = cpm = 1, σ̂ = 1, ρ0 = 1
(reference density of the PCM), δx = δt = 1 (c = 1). Note that
there is no need to restrict c = 1 in simulations. In order to
make comparisons with previous numerical results, following
Ref. [15], the volumetric heat transfer coefficient Hv is held
constant at 5.9 and the pore size dp/L is set to be 0.0135.

A. Solidification by conduction

In this subsection, to validate the MRT-LB models for
the temperature fields, conduction-induced solidification in a
semi-infinite domain is considered. The schematic diagram
of this problem is shown in Fig. 1. The computational
domain is filled with metal-foam-based PCM. This problem
is symmetrical about y = x. Initially, the PCM is in liquid
state at temperature Ti (Ti > Tmelt; here Tmelt is the melting
temperature). At time t = 0, the left and bottom walls are low-
ered to a fixed temperature Tc (Tc < Tmelt), and, consequently,
solidification begins along the left and bottom surfaces and
proceeds into the PCM.

In simulations, the parameters are chosen as follows:
λ = 10, St = 4, Tc = −1, Tmelt = 0, Ti = 0.3, �T = Tmelt −
Tc = 1, kf = 0.01, cf,ref = 0.5cpf , and cm,ref = cpm. The
solidus temperature Tf s = −0.05, and the liquidus temper-
ature Tf l = 0.05. A grid size of Nx×Ny = 200×200 is em-
ployed (the characteristic length L = Nx/2), and the velocity

y

x

g

adiabatic

adiabatic

hT cT

liquid

solid

metal foam+PCM

L

mushy zone

meltT

FIG. 4. Schematic diagram of melting coupled with natural
convection in a square cavity filled with metal-foam-based PCM.
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FIG. 5. Locations of the phase interface for Ra = 106 (a) and Ra = 108 (b) at different Fourier numbers. For comparison purposes, the
locations of the phase interface are determined by fl = 0.5.
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FIG. 6. Streamlines with the phase interface at different Fourier numbers for Ra = 106. (a) Fo = 0.00025, (b) Fo = 0.001, (c) Fo = 0.002,
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field is set to be zero (u = 0) at each lattice node. In Fig. 2, the
phase field at Fo = 0.02 is shown. The phase change occurs
over a range of temperatures, and the phase interface is usually
referred to as the interface region or mushy zone. The liquid
fraction distribution, isotherms of the PCM and metal foam
at Fo = 0.02, are presented in Fig. 3. As shown in the figure,
the gaps of the isotherms in the solid phase region are less
than those in the liquid phase region because of the release
of latent heat on the phase interface. For comparison, the
results obtained by the finite-difference method (FDM) are
also presented in Fig. 3. Obviously, the present results are in
good agreement with the FDM results.

B. Melting coupled with natural convection

In this subsection, numerical simulations of melting cou-
pled with natural convection in a square cavity filled with
metal-foam-based PCM are carried out to validate the present
method. The schematic diagram of this problem is shown in
Fig. 4. The distance between the walls is L. The horizontal
walls are adiabatic, while the left and right walls are kept
at constant temperatures Th and Tc (Th > Tc), respectively.

Initially, the PCM is in solid state at temperature Ti (Ti <

Tmelt). At time t = 0, the temperature of the left wall is
raised to Th (Th > Tmelt), and, consequently, melting begins
along the left wall and proceeds into the PCM inside the
cavity.

In simulations, the parameters are set as follows:
Da = 10−4, Pr = 50, Fφ = 0.068, λ = 103, St = 1, J = 1,
Th = 1, Tmelt = 0.3, Tc = Ti = T0 = 0, �T = Th − Tc = 1,
kf = 0.0005, cf,ref = 0.2cpl , cm,ref = cpm. The solidus tem-
perature Tf s = 0.299, and the liquidus temperature Tf l =
0.301. For Ra = 106, a grid size of Nx×Ny = 150×150
is employed, and for Ra = 108, a grid size of Nx×Ny =
300×300 is employed. In Fig. 5, the locations of the phase
interface at different Fourier numbers are presented. For
comparison purposes, the locations of the phase interface
are determined by fl = 0.5. It can be seen from the figure
that the present results agree well with the FVM solutions
[15]. From Fig. 5(a) it can be seen that at Ra = 106, the
heat transfer process is dominated by conduction because the
metal foam–to-PCM thermal conductivity ratio is very large
(λ = 103), and the shape of the phase interface is almost planar
during the melting process. As Ra increases to 108, the effect of
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FIG. 7. Streamlines with the phase interface at different Fourier numbers for Ra = 108. (a) Fo = 0.0004, (b) Fo = 0.001, (c) Fo = 0.002,
and (d) Fo = 0.006.
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natural convection on the shape of the phase interface becomes
stronger. As shown in Fig. 5(b), due to the convective effect,
the phase interface moves faster near the top wall.

As mentioned in Sec. I, for solid-liquid phase change in
metal-foam-based PCMs, the phase interface is a diffusive
interface with a certain thickness rather than a sharp interface,
which is usually referred to as the interface region or mushy
zone. In Fig. 6, the streamlines with the phase interface at
different Fourier numbers for Ra = 106 are shown. From the
figure we can see that, during the melting process (Fo �
0.002), the thickness of the phase interface is around 10
lattices, as a result of the interfacial heat transfer between PCM
and metal foam. In the quasisteady regime (Fo = 0.008), the
movement of the phase interface is slow enough and it only
occupies one or two lattices. The streamlines with the phase
interface at different Fourier numbers for Ra = 108 are shown
in Fig. 7. The overall behavior is similar to that with Ra = 106,
albeit with stronger convective effect.

The temperature profiles at the midheight (y/L = 0.5) of
the cavity at different Fourier numbers for Ra = 106 and
108 are shown in Fig. 8. As can be seen in the figure, the
temperature profiles of the PCM and metal foam develop
together in a coupled manner. Initially (Fo = 0.000 05), the
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FIG. 8. Temperature profiles at the midheight (y/L = 0.5) of
the cavity for Ra = 106 (a) and Ra = 108 (b) at different Fourier
numbers. For clarity, the FVM results [15] at Fo = 0.006 are not
presented.
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FIG. 9. The variations of the total liquid fraction with the Fourier
number for Ra = 106.

metal foam–to-PCM temperature difference is rather high,
but it progressively decreases with the Fourier number. At
Fo = 0.006, the temperature profiles of the PCM and metal
foam are seen to be nearly identical, which indicates that the
thermal nonequilibrium effect between the PCM and metal
foam is weak. Figure 8 clearly shows that the maximum
metal foam–to-PCM temperature difference appears near the
phase interface. For comparison, the FVM results [15] are
also presented in the figure (for clarity, the FVM results at
Fo = 0.006 are not presented). It can be observed from the
figure that the present results agree well with the FVM results
reported in the literature. The variations of the total liquid
fraction with the Fourier number for Ra = 106 are shown in
Fig. 9. As shown in the figure, the metal foam helps utilize the
PCM much more effectively.

V. COMPARISONS AND DISCUSSIONS

In Sec. IV, the accuracy and effectiveness of the enthalpy-
based MRT-LB method have been demonstrated. For melting
coupled with natural convection in metal-foam-based PCMs,
the fluid flow and heat transfer processes during solid-
liquid phase change are rather complicated. In this section,
comparisons and discussions are made to offer some insights
into the roles of the collision model, volumetric LB scheme,
enthalpy formulation, and relaxation rate ζe in the present
method. Unless otherwise specified, all the simulations are
carried out with identical initial and boundary conditions at
a fixed Rayleigh number Ra = 108, and the other parameters
can be found in Sec. IV B.

A. MRT vs BGK

The advantage of the MRT collision model over the BGK
collision model is shown in this subsection. In the present
study, the BGK results denote that the temperature fields
are solved by BGK-LB models [ζi = 1/τg ,ηi = 1/τh, and the
equilibrium distributions are given by Eqs. (40) and (49)],
while the flow field is still solved by the MRT-LB model
presented in Sec. III A. In Fig. 10, the liquid fraction distribu-
tions obtained by BGK and MRT collision models at different
Fourier numbers are shown. It is very clear that the phase
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FIG. 10. Local enlargement view of the liquid fraction distributions obtained by BGK (left) and MRT (right) collision models at different
Fourier numbers. (a) Fo = 0.001, (b) Fo = 0.002, and (c) Fo = 0.003.

interface obtained by BGK exhibits significant oscillations,
which is predominantly due to the numerical diffusion across
the phase interface. On the contrary, the numerical diffusion
across the phase interface is almost invisible in the MRT
results. With additional degrees of freedom, the MRT collision

model has the ability to reduce the numerical diffusion across
the phase interface. In addition, it should be noted that the
steplike behavior of the liquid fraction distribution near the
liquid-mushy interface is caused by the inevitable numerical
error due to the enthalpy formulation.
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B. Volumetric LB scheme vs bounce-back scheme

In the literature [62], the bounce-back scheme was used to
impose the no-slip velocity condition on the phase interface
and in the solid phase region. Although this approach has some

drawbacks (see Ref. [67] for details), it can produce reasonable
results when the phase interface occupies one or two lattices.
However, for solid-liquid phase-change heat transfer in metal
foams under the LTNE condition, it is not appropriate to use the
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FIG. 11. The streamlines obtained by bounce-back scheme (left) and volumetric LB scheme (right) at different Fourier numbers.
(a) Fo = 0.001, (b) Fo = 0.002, and (c) Fo = 0.003.
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bounce-back scheme to impose the no-slip velocity condition
because the phase interface is actually a region (the so-called
interface region or mushy zone) with a certain thickness during
the phase-change process (see Figs. 6 and 7). In what follows,

comparisons between the volumetric LB scheme and bounce-
back scheme are made to demonstrate this point. In Fig. 11, the
streamlines at different Fourier numbers are shown. Clearly,
significant small-scale (of the order of lattice size) oscillations
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FIG. 12. Local enlargement view of the flow fields in the vicinity of the interface region obtained by bounce-back scheme (a) and volumetric
LB scheme (b) at Fo = 0.002.

023303-14



ENTHALPY-BASED MULTIPLE-RELAXATION-TIME . . . PHYSICAL REVIEW E 96, 023303 (2017)

can be seen in the streamlines obtained by the bounce-back
scheme, while the streamlines obtained by the volumetric LB
scheme are smooth.

Figure 12 shows the local enlargement view of the flow
fields in the vicinity of the interface region obtained by
the bounce-back scheme and the volumetric LB scheme
at Fo = 0.002. In the flow field obtained by the bounce-
back scheme, nonphysical oscillations occur near the phase
interface [marked by the red circles in Fig. 12(a), and note that
fl = 0.5 is defined as the phase interface]. On the contrary,
the flow field obtained by the volumetric LB scheme [see
Fig. 12(b)] is rather reasonable. As can be seen in Fig. 12(b),
the flow in the interface region is much weaker than that in
the liquid phase region near the liquid-mushy interface. It is
found that uy in the liquid phase region near the liquid-mushy
interface is of order O(10−3), while in the interface region
where fl < 0.5, uy is of order O(10−5) or less. In the
solid phase region (fl = 0), the velocity is zero (u = 0) at
each lattice node. Obviously, the flow in the interface region
(0.5 < fl < 1) is rather different from that in the liquid phase
region. For the phase interface, the following phenomena
can be observed. First, the phase interface obtained by the
bounce-back scheme exhibits significant oscillations. Second,
as compared with the volumetric LB scheme result, the phase
interface obtained by the bounce-back scheme moves faster
near the top wall, but slower near the bottom wall (see top
left and top right of Fig. 12). From the above comparisons,
it can be concluded that the bounce-back scheme is not
suitable for imposing the no-slip velocity condition in the
interface region, while the volumetric LB scheme [67] is
recommended.

C. Present enthalpy scheme vs iteration enthalpy scheme

In previous studies [21–23], the nonlinear latent heat source
term [the underlined term in Eq. (5)] is treated as a source
term in the LB equation of the PCM temperature field, which
causes the explicit time-matching LB equation to be implicit.
Therefore, the iteration enthalpy scheme [60] is needed so as
to obtain the convergent solution of the implicit LB equation.
By using the present enthalpy scheme, the iteration procedure
can be avoided in simulations. In Table I, we compare the
CPU time of the present enthalpy scheme with that of the
iteration enthalpy scheme at Fo = 0.002. The simulations
are performed on a computer with a quad-core 2.33 GHz
processor. It can be seen that the CPU time of the present
enthalpy scheme is about one-sixth of that of the iteration

TABLE I. Comparison of the CPU time of the present enthalpy
scheme with that of the iteration enthalpy scheme at Fo = 0.002.

CPU Steps/CPU
Grid size (Ra) Steps Method time (s) time

150×150 (106) 9×104 Present 423.79 212.37
Iteration 2725.45 33.02

300×300 (108) 3.6×105 Present 11611.81 31.0
Iteration 74043.11 4.86
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FIG. 13. The PCM temperature profiles at the midheight of the
cavity obtained by the present enthalpy scheme and the iteration
enthalpy scheme for Ra = 106 at Fo = 0.002.

enthalpy scheme. Without the iteration procedure, the present
method has much higher computational efficiency as compared
with previous studies [21–23].

In Fig. 13, the PCM temperature profiles at the midheight
of the cavity obtained by the present enthalpy scheme and
the iteration enthalpy scheme for Ra = 106 at Fo = 0.002 are
presented. In simulations, we set Tmelt = 0 and Hv = 0. It can
be seen that the temperature obtained by the iteration enthalpy
scheme in the solid phase (near the phase interface) is a little
lower than Tmelt (the minimum temperature is −9.72×10−3),
which is caused by the negative numerical diffusion across
the phase interface. On the contrary, the temperature obtained
by the present enthalpy scheme in the solid phase can stay
precisely at Tmelt, which indicates that the numerical diffusion
across the phase interface can be significantly reduced by
the present method. The above comparisons confirm that the
present method is superior to the iteration method in terms of
accuracy and computational efficiency.

D. The effect of the relaxation rate ζe

As shown in Sec.V A, the numerical diffusion across the
phase interface can be considerably reduced by the MRT
collision model with ζe = 2 − ζα . It should be noted that
the relaxation rate ζe has apparent influence on the phase
interface. To confirm this statement, numerical simulations
are carried out for different values of ζe. In Fig. 14, the local
enlargement view of the phase interfaces for different values
of ζe at Fo = 0.002 are presented. Form the figure it can be
observed that significant oscillations appear at ζe = 1.8. As ζe

decreases to 0.1, the numerical diffusion is not apparent, and
the phase interface is similar to that at ζe = 2 − ζα . Actually,
with the given parameters (see Sec. IV B), ζe is equal to 0.0296
when it is determined by ζe = 2 − ζα . To reduce the numerical
diffusion across the phase interface, it is recommended that
ζe = 2 − ζα . However, solid-liquid phase-change heat transfer
in metal foams is much more complicated than in the absence
of a porous medium; further study about the effect of the
relaxation rate ζe is still needed.
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FIG. 14. Local enlargement view of the phase interfaces for different values of ζe at Fo = 0.002. (a) ζe = 1.8, (b) ζe = 1.2, (c) ζe = 0.6,
(d) ζe = 0.1, and (e) ζe = 0.0296 (ζe = 2 − ζα).

VI. CONCLUSIONS

In summary, an enthalpy-based MRT-LB method has been
developed for solid-liquid phase-change heat transfer in metal
foams under the LTNE condition. In the method, the moving
solid-liquid phase interface is implicitly tracked through
the liquid fraction, which is simultaneously obtained when
the energy equations of PCM and metal foam are solved.
The present method has three distinctive features. First, the
iteration procedure has been avoided; thus it retains the

inherent merits of the standard LB method and is superior to
the iteration method in terms of accuracy and computational
efficiency. Second, by using the volumetric LB scheme, the no-
slip velocity condition in the interface and solid phase regions
can be accurately realized. Moreover, the MRT collision
model is employed, and with additional degrees of freedom,
it has the ability to reduce the numerical diffusion across
the phase interface induced by solid-liquid phase change.
For solid-liquid phase-change heat transfer in metal foams,
it has been unequivocally demonstrated that the MRT method
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is superior to its BGK counterpart in terms of accuracy and
numerical stability.

Detailed numerical tests of the enthalpy-based MRT-LB
method are carried out for two types of solid-liquid phase-
change heat transfer problems, including the conduction-
induced solidification in a semi-infinite domain and melting
coupled with natural convection in a square cavity filled
with metal-foam-based PCM. It is found that the present
results are in good agreement with the FDM or FVM results,
which demonstrates that the present method can serve as an
accurate and efficient numerical tool for studying metal-foam
enhanced solid-liquid phase-change heat transfer in LHS.
Finally, comparisons and discussions are made to offer some
insights into the roles of the collision model, volumetric LB
scheme, enthalpy formulation, and relaxation rate ζe in the
enthalpy-based MRT-LB method, which are very useful for
practical applications.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
MRT-LB MODEL FOR PCM TEMPERATURE FIELD

In this Appendix, the Chapman-Enskog analysis [76] is
employed to derive the macroscopic energy equation of the
MRT-LB equation (31). To this end, the following multiscale
expansions of ng , the derivatives of time and space, and the
source term are introduced:

ng = n(0)
g + εn(1)

g + ε2n(2)
g + · · · , ∂t = ε∂t1 + ε2∂t2 ,

∇ = ε∇1, Srf = εSr
(1)
f , (A1)

where ε (ε = δt ) is a small expansion parameter. Taking a
second-order Taylor series expansion of Eq. (31), we can
obtain

(I∂t + E · ∇)ng + δt

2
(I∂t + E · ∇)2ng

= −�

δt

(
ng − neq

g

) + ŜPCM + S̃PCM + O
(
δ2
t

)
, (A2)

where E = (Ex,Ey)T, in which Eβ =
M[diag(e0β,e1β, . . . ,e8β )]M−1 (β = x,y), and

ŜPCM = Srf (1,−2, 1, 0, 0, 0, 0, 0, 0)T, (A3)

S̃PCM = 1
2δt∂tSrf (1,−2, 1, 0, 0, 0, 0, 0, 0)T. (A4)

Using the multiscale expansions given by Eq. (A1), the
following equations in the consecutive orders of ε in moment
space can be obtained:

ε0 : n(0)
g = neq

g , (A5)

ε1 :
(
I∂t1 + E · ∇1

)
n(0)

g = −�

δt

n(1)
g + ŜPCM, (A6)

ε2 : ∂t2 n(0)
g + (

I∂t1 + E · ∇1
)
n(1)

g + δt

2

(
I∂t1 + E · ∇1

)2
n(0)

g

= −�

δt

n(2)
g + S̃PCM, (A7)

Using Eq. (A6), Eq. (A7) can be rewritten as

ε2 : ∂t2 n(0)
g + (

I∂t1 + E · ∇1
)(

I − �

2

)
n(1)

g

= −�

δt

n(2)
g − δt

2
E · ∇1ŜPCM. (A8)

Writing out the equations for the conserved moment ng0

(ng0 = Hf ) of Eqs. (A5), (A6), and (A8), we can obtain

ε0 : n
(0)
g0 = n

eq
g0, (A9)

ε1 : ∂t1n
(0)
g0 + c

[
∂x1n

(0)
g3 + ∂y1n

(0)
g5

]=−ζ0

δt

n
(1)
g0 + Srf , (A10)

ε2 : ∂t2n
(0)
g0 + ∂t1

[(
1 − ζ0

2

)
n

(1)
g0

]

+ c∇1 ·
[(

1 − ζ3/2 0

0 1 − ζ5/2

)(
n

(1)
g3

n
(1)
g5

)]

= −ζ0

δt

n
(2)
g0 . (A11)

According to Eq. (A9), we have

n
(k)
g0 = 0, ∀k � 1. (A12)

With the aid of Eqs. (A9) and (A12), we can obtain

ε1 : ∂t1Hf + ∇1 ·
(

cplTf u
φ

)
= Srf , (A13)

ε2 : ∂t2Hf + c∇1 ·
[(

1 − ζ3/2 0

0 1 − ζ5/2

)(
n

(1)
g3

n
(1)
g5

)]
= 0.

(A14)

According to Eq. (A6), we have

− ζ3

δt

n
(1)
g3 = ∂t1n

(0)
g3 + c

[
∂x1

(
2

3
n

(0)
g0 + 1

6
n

(0)
g1 + 1

2
n

(0)
g7

)
+ ∂y1n

(0)
g8

]
= 1

c
∂t1

(
cplTf ux

φ

)
+ c∂x1

(
1

3
cf,refTf

)
, (A15)

− ζ5

δt

n
(1)
g5 = ∂t1n

(0)
g5 + c

[
∂x1n

(0)
g8 + ∂y1

(
2

3
n

(0)
g0 + 1

6
n

(0)
g1 − 1

2
n

(0)
g7

)]
= 1

c
∂t1

(
cplTf uy

φ

)
+ c∂y1

(
1

3
cf,refTf

)
. (A16)
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Substituting Eqs. (A15) and (A16) into Eq. (A14), the following equation can be obtained:

ε2 : ∂t2Hf = ∇1 ·
{
δt

(
ζ−1

3 − 1
2 0

0 ζ−1
5 − 1

2

)[
∂t1

(
cplTf u

φ

)
+ c2

3
∇1(cf,refTf )

]}
. (A17)

Note that ∇1(cf,refTf ) = cf,ref∇1Tf , combining Eqs. (A13) and (A17) leads to the following macroscopic energy equation:

∂Hf

∂t
+ ∇ ·

(
cplTf u

φ

)
= ∇ ·

[
αf,refcf,ref∇Tf + δt

(
ζ−1
α − 0.5

)
ε∂t1

(
cplTf u

φ

)]
+ Srf , (A18)

where αf,ref is the reference thermal diffusivity,

αf,ref = kf

ρlcf,ref
= c2

s

(
ζ−1
α − 1

2

)
δt . (A19)

APPENDIX B: MRT-LB MODELS FOR TEMPERATURE
FIELDS BASED ON D2Q5 LATTICE

The MRT-LB models for the temperature fields based on the
D2Q5 lattice are briefly presented. The five discrete velocities
{ei} of the D2Q5 lattice are given by Eq. (11). For the D2Q5
model, the transformation matrix is given by [78,79]

M =

⎡
⎢⎢⎢⎣

1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
0 1 1 1 1
0 1 −1 1 −1

⎤
⎥⎥⎥⎦. (B1)

For the enthalpy-based MRT-LB model, the equilibrium
moment neq

g can be chosen as

neq
g =

(
Hf ,

cplTf ux

φc
,

cplTf uy

φc
, �cf,refTf , 0

)T

, (B2)

where � ∈ (0, 1). The source term in moment space is
given by SPCM = SPCM(1, 0, 0,�, 0)T , the relaxation matrix

is given by � = diag(ζ0, ζα, ζα, ζe, ζε), and the reference
thermal diffusivity is defined as αf,ref = c2

sT (ζ−1
α − 0.5)δt . To

reduce the numerical diffusion across the phase interface,
ζe is determined by ζe = 2 − ζα . The equilibrium enthalpy
distribution function g

eq
i in velocity space is

g
eq
i =

{
Hf − �cf,refTf , i = 0,

1
4�cplTf

( cf,ref

cpl
+ ei ·u

φc2
sT

)
, i = 1−4,

(B3)

where c2
sT = c2�/2 (csT is the sound speed of the D2Q5

model).
For the internal-energy-based MRT-LB model, the equilib-

rium moment neq
h can be chosen as

neq
h = (cpmTm, 0, 0,�cm,refTm, 0)T. (B4)

The source term in moment space is given by Smetal =
Smetal(1, 0, 0,�, 0)T , the relaxation matrix is given by Q =
diag(η0, ηα, ηα, ηe, ηε), the reference thermal diffusivity is de-
fined as αm,ref = c2

sT (η−1
α −0.5)δt , and the equilibrium internal-

energy distribution function h
eq
i in velocity space is

h
eq
i =

{
cpmTm − �cm,refTm, i = 0,
1
4�cm,refTm, i = 1−4.

(B5)
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