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Relativistic kinetic equation for spin-1/2 particles in the long-scale-length approximation
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In this paper, we derive a fully relativistic kinetic theory for spin-1/2 particles and its coupling to Maxwell’s
equations, valid in the long-scale-length limit, where the fields vary on a scale much longer than the localization
of the particles; we work to first order in 7. Our starting point is a Foldy-Wouthuysen (FW) transformation,
applicable to this regime, of the Dirac Hamiltonian. We derive the corresponding evolution equation for the

Wigner quasidistribution in an external electromagnetic field. Using a Lagrangian method we find expressions
for the charge and current densities, expressed as free and bound parts. It is furthermore found that the velocity
is nontrivially related to the momentum variable, with the difference depending on the spin and the external
electromagnetic fields. This fact that has previously been discussed as “hidden momentum” and is due to that
the FW transformation maps pointlike particles to particle clouds for which the prescription of minimal coupling
is incorrect, as they have multipole moments. We express energy and momentum conservation for the system
of particles and the electromagnetic field, and discuss our results in the context of the Abraham-Minkowski

dilemma.
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I. INTRODUCTION

In both high-intensity laser-matter experiments and in astro-
physical settings, the spin of the electron may play a significant
role [1-4]. It is thus necessary to find a relativistic description
of spin-1/2 electrons in strong electromagnetic fields. While
such a description is provided by the Dirac equation [5], it is
fully consistent only in the context of quantum field theory [6]
where pair production is incorporated. However, if pair pro-
duction is negligible, the Foldy-Wouthuysen transformation
[7-9] separates particles and antiparticles in an expansion in
fi, and a particle theory can be constructed.

In this paper, we derive a scalar fully relativistic kinetic
equation for spin-1/2 particles in electromagnetic fields,
starting from the Foldy-Wouthuysen transformation. We em-
phasize that the theory presented here is fully relativistic, that
is, applicable to all orders in v/c, in contrast to previous
O (v?/c?) semirelativistic work [10]. By considering a mean-
field Lagrangian, we obtain expressions for the charge and
current densities, as the sum of free and bound parts. We show
that coupled to Maxwell’s equations, the system fulfills an
energy conservation law and identify the Poynting vector.

The Foldy-Wouthuysen transformation carries with it some
difficulties of interpretation concerning observables [11],
tracing from the problem of localized particles in relativistic
theories [12,13], and the “hidden momentum” of systems with
magnetic moments [14]. In particular, while it is clear that
there must be a contribution to the current density from the
spin and its form in the Dirac theory is well known [15,16], the
corresponding expression in the Foldy-Wouthuysen represen-
tation has previously been found only in the semirelativistic
[O(v?/c?)] limit [10,17]. Based on these points, we briefly
discuss our result in the context of the Abraham-Minkowski
dilemma.

An alternative to the Foldy-Wouthuysen transformation is
the Frenkel model [18-20], which models the spin as a classical
angular momentum. The Frenkel and Foldy-Wouthuysen mod-
els have recently [21] been numerically benchmarked against
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each other and the Dirac equation for single-particle motion in
strong laser pulses, showing disagreement in experimentally
accessible regimes. However, more work needs to be done to
investigate the validity of the classical model, and especially
concerning collective effects. To this end, a kinetic theory
based on the Frenkel model will be discussed in a forthcoming

paper.

II. THE LONG-SCALE-LENGTH HAMILTONIAN

A. Foldy-Wouthuysen transformation
and domain of applicability

As the starting point we will take the relativistic Hamilto-
nian derived by Silenko [8] using a Foldy-Wouthuysen trans-
formation. A necessary condition for the Foldy-Wouthuysen
transformation to be valid is that the process of pair creation
is negligible. We will give a more precise condition below.

The Dirac Hamiltonian is of the form

H=pBm+E+ O, (D

where m is the mass, £ = g¢, and O = a - (p — gA). Here,
q is the charge, ¢,A the scalar and vector potentials, p the
momentum operator, and f,« are the Dirac matrices. In this
form, £ (O) is called the even (odd) parts of the Hamiltonian, as
it commutes (anticommutes) with 8: [8,£] = 0 ({8,0} = 0).
It is the odd part that connects the upper two components of
the bispinor with the lower two, thus coupling positive and
negative energy states and allowing for pair creation.

For the free Dirac Hamiltonian, Foldy and Wouthuysen [7]
found the transformation that renders the odd part exactly zero.
In external fields, the transformation and thus the transformed
Hamiltonian can be found as an expansion in powers of the po-
tentials and their derivatives. In this expansion, the parameter
that should be small in order to truncate the expansion is the
particle localization / compared to the inhomogeneity size L
of the external potentials, that is, L >> [ [22,23]. Since X in the
Foldy-Wouthuysen representation is the Newton-Wigner [12]
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position operator, [ > h/E, where E*> = m? + p®. Thus, [ is
bounded by the Compton wavelength for low-energy particles,
and the de Broglie wavelength for high-energy particles. In
particular, the fields cannot be comparable to the critical field
Eqii =13 x 10" V/m.

To first order in the fields, the transformed Hamiltonian for
the upper components is [8]

,;,_Hq(,,_w{la_B} Lo tem
2 e’ L V2EE+m)

X[o-(T xE—E x )]

1
V2EE +m)’ @
where we have defined é = e(#) = vVm? + #2 with the kinetic
momentum operator given by # = p — gA(X) (to be discussed
in more detail below), and o is a vector containing the
Pauli matrices as components. We use units where ¢ = 1 and
furthermore have denoted the particle mass by m, charge by ¢,
and we have the Dirac magnetic moment wp = gh/2m. The
external fields are givenby E = — V¢ — 9,AandB =V x A,
where ¢ and A are respectively the scalar and vector potentials,

J

X =

[ A 1(1
Lhg =)ot + 26 By
h 21¢ "

to lowest order in /i. The first term is the usual relation between
the velocity and the momentum, while the rest of the terms
are due to the spin and the external field. In particular, the
momentum variable 7 is no longer collinear with the velocity
vector. This is already the case for the spin-orbit interaction
to order 0(v2/c2), where the last term in (3) also appears
[25]. The two other correction terms are of the same order in
the mass but contain a factor 7 ; they are therefore relativistic
corrections.
The evolution equation of the spin is

1
7B [ —
é L JVEE +m)

X[t xE—-E x ] “4)

el
cE+m) |
whence we can easily see that the length of the polarization o is
a constant. Furthermore, the classical limit of this is precisely
the classical equation of motion for the rest frame spin [26].
It is thus clear that the operator o in the Foldy-Wouthuysen
representation gives the polarization of the electron in the
electron rest frame [11,22,27].

Based on this it is possible to understand the form of the
Hamiltonian (2). It is of course well known that the canonical
momentum and the mechanical momentum are not equal, but
also the prescription of minimal coupling, T = p — gA, is not
universally valid. Indeed, if this minimal coupling prescription
is the physically correct relation in one representation, it
will not remain valid after a momentum-dependent canonical
transformation—such as the Foldy-Wouthuysen transforma-
tion [28].

_ mgme+m)
é3 &3 +m)?
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and {A,B}, = AB + BAisthe anticommutator. The third and
fourth terms in the Hamiltonian above represent the relativistic
interaction of the spin with the electromagnetic field.

The Hamiltonian above is derived to lowest order in 7,
but, again, is fully relativistic, provided the condition L >/
is fulfilled. In Ref. [8] a more general Hamiltonian for a
particle with anomalous magnetic moment and an electric
dipole moment was derived, but we will here only consider
a particle with the Dirac magnetic moment and we hence
have set the g-factor to 2. Kinetic effects of the anomalous
magnetic moment were investigated, nonrelativistically, in
Ref. [24].

B. Observables and their corresponding operators

There are subtleties in connecting operators in the
Foldy-Wouthuysen representation to physical observables
[11,15,16]. For example, the velocity operator of the particle
is given by the time derivative of the position operator in the
Heisenberg picture. Using the Heisenberg equation of motion,
we get

(6 (& xE—E x #)]# Exo—-—0xE 3)
0 - xE—Ex ®)# — e
KB e +m)

The origin of the o x E contribution to the kinetic mo-
mentum, as in (3), can be understood by realizing, as Foldy
and Wouthuysen did [7], that the X operator in the Foldy-
Wouthuysen representation is a mean position operator [12].
Its eigenstates are smeared out combinations of eigenstates
of the Pauli-Dirac position operator. The latter states are
individually point electric charges, but their superpositions
have dipole (and higher) moments. The Foldy-Wouthuysen
particle is thus a current loop magnetic dipole, possessing
“hidden momentum” [14,29,30], which if unaccounted for
leads to apparent violations of Newton’s third law in the
Shockley-James paradox [31,32].

III. THE GAUGE-INVARIANT WIGNER AND SPIN
TRANSFORMATIONS

The density operator p for the system evolves according to
the von Neumann equation which is given by

ihp =[H,p]. ®)

This evolution equation can be transformed into an evolution
equation for the Wigner quasidistribution function [33]. This
form resembles the classical Vlasov equation and methods
from this theory can straightforwardly be applied to the
quantum version. However, an important difference is that
the Wigner function is not necessarily non-negative—hence
not a proper classical probability distribution—since it has to
respect the Heisenberg uncertainty principle.
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A. The Wigner-Stratonovich transformation

Since we are dealing with electromagnetic fields, we need to use the gauge-invariant version of the Wigner function first

derived by Stratonovich [34].
The Wigner-Stratonovich transformation is obtained by

d’z

Waﬂ(xspat):/(z h)3e%11[p+qf’
T

Z Z
AL b <x + X —,t>, (6)

2 2

where the integral in the exponent is the Wilson loop that makes W4 gauge invariant. To calculate the evolution equation, we write
out the von Neumann equation (5) in terms of p(x,y), and functions of the operators w, = —ihiV, — gA(Xx),m, = —ihiV, — gA(y)

acting on p(X,y). We use the identities [34]

ih ihg (!
Flrdpey) > Flp— 5V, + 52 /
-1
ih ik !

Flrylpx,y) — f|:P + EV}' - Tq
-1

where we have approximated the expressions to first order
in 7 assuming again that the scale length of the fields and
potentials varies very little over the extensions of the particle
wave functions. The last expansion is obtained by using the
formula [35]

f(A+ B)~ f(A)+ 5{f'(A),B), ®)

where A and B are operators (in general noncommuting) and
the expansion is to first order in B which is considered small
compared to A.

The first identity (7a) is derived in Ref. [34], and the others
are derived in a similar fashion from the definition (6).

B. The spin transform

The quasidistribution function Wz is matrix valued, where
the matrix components correspond to the different spin states
and their transition probabilities. To get a scalar distribution
function, we apply the spin transform [36] given by

1
f&xps,t) = —Tr[(1 +s-o)W(X,p)]
4

1
:_501 : «, Wot ’7t7 9
47_[(54—5 048)Wso(X,p,1) )

where a summation over «,8 = 1,2 is understood in the
last equality and s is a unit vector. In terms of this new

J

1

€

1+ [l
dT}TnB(X + %Vp> X Vpi| W(X,p), (7a)
1—n nih

(

distributionfunction, the expectation value of the polarization
operator is given by

(o)1) =3 / d>xd’pd®s f(x,p.s,1)s, (10)

where the factor 3 is there to compensate for the fact that the
quantum mechanical distribution is always spread out in s,
even for a completely polarized particle [36].

For the spin transformation it is straightforward to deduce
the identities

/V‘dezszfsdeQ, (11a)

[sxx-vxfdzsz:o, (11b)

where X is any vector independent of s. These identities are
important in deriving the results in Sec. V.

C. The kinetic equation

Starting from the evolution equation for the density matrix
(5), performing the Wigner-Stratonovich transformation using
the identities (7a) and (7b), and then taking the spin transfor-
mation, and using the identities (11a) and (11b), we get

€e+m

R e O R R (N
€ € +m € €

KUpm P X
won a2

€

This is our main result for this paper: the relativistic
kinetic equation for spin-1/2 particles in the long-scale-length
limit. Compared to the nonrelativistic evolution equation in

nlf)-(erVs)]fojLz’;Bm[sx (B—pXEﬂ-VSf. (12)

€ €+m

(

Ref. [36], (12) modifies the relation between momentum and
velocity, and adds to the magnetic dipole interaction (~B - s)
the spin-orbit interaction [~(p X E) - s].
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IV. COUPLING TO THE ELECTROMAGNETIC
FIELD: MEAN-FIELD THEORY

In the mean-field approximation, the fields are assumed
to be in the form E = E¢ + E ., where the first part is an
external field and the second part is a self-consistent mean
field. The mean fields are assumed to be given by solving
Maxwell’s equations

V-E=p;—V-P, (13a)
V-B=0, (13b)
oB
VXE=——, (13¢)
at’
) oE OP
VxB=j+—+—+VxM, (13d)

ot ot

where P and M are the polarization and magnetization, and
py and jr are the free charge and current densities.

A. Finding the sources from the Lagrangian

It is not entirely obvious what should be the taken as the
sources of the electromagnetic field in Maxwell’s equations.
One previous paper [17] treated the semirelativistic (second
order in p/m) case by using a Lagrangian formalism where the
sources are simply read off from the Euler-Lagrange equations
for the electromagnetic field. The same results appear in other
works [37-39].

A difficulty that appears when using a Lagrangian formal-
ism is the operator € = [m> + (p — igA)*]'/, which contains
derivatives of A to all orders, since p is a differential
operator. We can, however, circumvent this in the mean-field
approximation by passing to the Wigner-Weyl formulation of
quantum mechanics, where p is just half of the coordinates in
phase space. This is in fact natural since we are interested in a
kinetic theory: The sources will automatically be expressed in
terms of moments of the Wigner function f.

We propose that to the action for the free electromagnetic
field, we should add — f dt(H), where (H) is the expectation
value of the Hamiltonian operator (2),

(H) =Tr[Hp) = f &’ pd’xd®s Hf, (14)
where H is the function on phase space corresponding to
H. The Euler-Lagrange equations will then give Maxwell’s
equations with sources. We comment further on this procedure
at the end of this section.
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necessary (note that the fields are functions of X), then putting
%+ xand p — igA — p.

This reordering is only necessary for the terms in (2) that
are already proportional to /. Reordering operators using
commutation relation in these would give terms proportional
to i and containing a derivative on the fields. Finding H, then,
to the order we are interested in, is as simple as removing hats
from (2).

With these considerations, the mean-field Hamiltonian is

explicitly
(H):/d3xd9|: il s-(B— pr)]f’
(e + m)
(15)

where €2 = p? + m? and we have introduced dQ = d°pd’s
for brevity.

Since the Euler-Lagrange equations are linear in the action,
we find Gauss’s law as

3
V.E=q/dszf+v-/dszﬂs
e€(e +m)

xpf. (16)
This has the interpretation of a free charge density p  minus the
divergence of a polarization field, V - P. In the nonrelativistic
limit, we reproduce the previous result of Refs. [10,17].

For Ampere’s law, we have to be careful and remember that
f is gauge invariant only because of the Wilson line factor
entering into the definition (6). In computing the variation
with respect to the vector potential, the variation of the Wilson
line factor must also be taken into account, viz.,

) 3f
S dQOf = /dQ(—f—i—Og). (17)

From the definition of the gauge-invariant Wigner function,
one finds

)
L q8(x —x" )V, f,

5A, (18)

so that after an integration by parts, the variation is

54 | 4%0f = fdsz(—f q(v, 0)f>8(x—x)

The function H (x,p,s) is found by writipg the Hamiltonian (19)
(2) such that the operators X and p — igA appear in totally
symmetric order [40], using the commutation relations if Performing this variation, we find Ampere’s law as
|
88 JoE p 1 pxE
0=—=-VxB+ — Q| = — V,-|B - -3
SA; x +8t —i—q/ |:e Hem pe( e—}—m) S:|f
3u
+Vx/dsz“3m3sf /dQ—m s X pf. (20)
(€ +m)
[
We can interpret the source terms as, in order, magnetization density, and o,P, the polarization cur-

Js. the free current density, V x M, the curl of the

rent density. The semirelativistic limit again agrees with
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previous results [10,17]. For reference, we state explicitly
that

ms X p
P=-3 dQ————, 21
MB/ e(e +m) @b
m
M= 3u3/d§2—sf. (22)
€

The bound charge and current satisfy a conservation law
for purely algebraic reasons,

WV -P=V.@QP+V xM), (23)

since div curl = 0. We will demonstrate below, using only the
evolution equation for f, that the continuity equation 9, +
V -jr = 0 holds, so that (12), (16), and (20) form a consistent
system. (The remaining two of Maxwell’s equations are, of
course, identically true in the potential formulation.)

B. Some comments

One might wonder why one cannot simply add (H) to the
Hamiltonian of the free electromagnetic field. The reason for
not doing so is that while for the free electromagnetic field,
the momentum conjugate to A; is E;, we cannot expect this
to hold in the presence of the spin-orbit interaction which is
proportional to s - (p x E). Thus, naively using Hamiltonian
methods, evaluating Poisson brackets by means of

(A (). Ej(x)) = 8;8(x — x) (24)

will produce inconsistent results. [For example, if we had
used (24), we would not have found the polarization in
(16).] There is more structure to Hamiltonian mechanics than
just the Hamiltonian function. Having found the momentum
conjugate to A; in the presence of the spin-orbit coupling,
however, one can reproduce equivalent equations of motion in
Hamiltonian form, provided one is sufficiently careful about
electrodynamics being a constrained Hamiltonian system, for
which we should apply the methods of Dirac [41,42].

While there is admittedly some arbitrariness in the proce-
dure just described, it is borne out by that it defines a consistent
system that, as we will show below, has an energy conservation
law, and that the semirelativistic limits are all correct.

V. PROPERTIES OF THE MODEL

A. Continuity equation and the velocity operator

It can be seen that the number density of particles n is given
by n = [dQ f. Taking the zeroth moment of the evolution
equation (12), remembering to use the spin integral identity
(11a), we find that it can be written in the form

0=8,n~|—Vx-/dQvf, 25)

where

P v,(B_PxE ) 4 (26)
V== — ——— ) 3s.
€ HamYp € €(e+m)

The function v on phase space is in fact precisely the function
that is in Weyl correspondence with X as given by (3),
remembering that & — 3s when using the scalar f. Since the
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Wigner-Weyl phase-space formulation of quantum mechanics
is equivalent to the Hilbert space formulation, it should not
be surprising that the nontrivial relation between velocity and
momentum appears also in this formulation.

Knowing that this function corresponds to the velocity, the
kinetic equation (12) becomes somewhat easier to interpret.
It is in fact analogous to the Vlasov equation. The same
discussion and interpretation as above in connection with (3)
applies. Furthermore, (25) multiplied by ¢ is precisely the
continuity equation for the free charge and current, in (16)
and (20).

B. Conservation of energy and the
Abraham-Minkowski dilemma

The system of Maxwell’s equations with polarization and
magnetization given by (21) and(22) the kinetic equation (12)
can be shown to have an energy conservation law, of the form

W +V.K=0, 27

where the total energy density is given by
l 5 ) B
WZE(E 4+ B)+ | dQ2\ € —3ugm— -s | f, (28)
€

and the energy flux vector is

K — 3. (B PXE \ oo
= [e—l—/igms(e—e(e_i_m))V}f

+E x H, 29)

where H =B — M. Again, the semirelativistic limit agrees
with previous results [10].

In (29), the Poynting vector appears to be E x H. Some
comments on this, in the context of the Abraham-Minkowski
dilemma, are in order. As is well known (see, e.g., the review
in Ref. [43]), there are two proposals for the electromagnetic
momentum density vector, the Minkowski momentum density

gy =D x B, (30)
where D = E 4 P, and the Abraham momentum density
ga =E xH, (31

where, again, H=B — M. In a relativistic theory with a
symmetric stress-energy tensor, if the energy conservation law
is of the form (27), then K must be the momentum density and
should be conserved,

0;K; +0;T;; =0, (32)

for some symmetric tensor 7;; (i,j = 1,2,3). Our Eqgs. (27)—
(29) would then suggest that the Abraham alternative is correct.
Howeyver, there is more to be said.

In nonrelativistic work [44] using the kinetic theory from
Ref. [36], it was found that

(D xB+p)+0,T;
=0=0,ExH+p)+ 3T, +8ExM), (33)

where p is the particle momentum density. This would
seem to favor Minkowski. However, since that work was
nonrelativistic—lowest order in v/c—the Hamiltonian, and
thus the evolution equation, do not include the O(v?/c?)

023207-5



R. EKMAN, F. A. ASENJO, AND J. ZAMANIAN

spin-orbit interaction. Consequently, the relation between
particle momentum and velocity is the standard p = myv,
that is, the hidden momentum is neglected, and the hidden
momentum is, to O (v?/c?), precisely E x M. This agrees with
the argument by Barnett [45] that the dilemma is between
canonical momentum (defined by [X, pean] = i%) and kinetic
momentum ymv.

However, working to lowest order in v/c, the Shockley-
James paradox [31] appears. In this paradox, there is a
force from an uncharged magnet with changing magnetic
moment on a test charge, due to the induced electric field,
but no obvious force on the magnet, as required by Newton’s
third law. Coleman and van Vleck’s resolution [32] of the
Shockley-James paradox by arguing that a theory including
electromagnetic momentum must be at least o(v? /cz) to be
consistent. The argument is that if a nonstatic B is generated
by the movement of charge carriers, it is O(v/c). The induced
electric field, determined by Faraday’s law, is also O(v/c).
Since the electromagnetic momentum is quadratic in the
fields, all terms of order v2 /c2 must then be kept. In the
Shockley-James case, this means taking the gamma factor
y = 1 4+v%/2in p = myv as the magnetic moment is entirely
due to free current.

Filho and Saldanha [46] recently gave a similar, but
quantum mechanical, argument, demonstrating the presence
of hidden momentum in various states of the hydrogen atom.
They, however, choose to not include the spin, and so could not
“deduce if [spin] has or does not have hidden momentum.” The
forms of observables in the Foldy-Wouthuysen representation
are strong support for hidden momentum associated with spin.

We hope to in future work investigate the semirelativistic
limit in detail, to confirm that Barnett’s [45] argument mends
the problems of Ref. [44].

VI. DISCUSSION

In this paper, we have presented a kinetic theory that is both
fully relativistic and includes the electron spin. Previously,
at most, one of these has been included [36,47]; thus the
present model is of theoretical interest, for completeness sake.
In addition, we believe it clarifies the Abraham-Minkowski
dilemma, highlighting the connection with hidden momentum.

As for practical applications, strong magnetic fields are very
important in the realm of relativistic quantum mechanics. In
plasmas, if a magnetic field is strong enough, such that the
gyroradius of constituents is of the order of the de Broglie
length, then quantum effects become relevant. In this case,
the spin of the particles affects the plasma dynamics. Thus,
a semiclassical kinetic theory, as the one constructed here,
is useful to obtain the first-order quantum corrections to
descriptions of strongly magnetized plasmas. Examples are
pulsar atmospheres [48—50] or high-energy laser plasmas [51],
where quantum effects have been found to be very relevant at
high energies [52-56].

Since the theory presented here is based on separating
positive and negative energy states of the Dirac equation, it
cannot describe pair production. This is a limit on the field

PHYSICAL REVIEW E 96, 023207 (2017)

strengths allowed: It means that &, = |e|E/mw < 1, where w
is the frequency of the fields. For optical systems, w = leV,
this strictly means intensities in the 10" W/m? range, but
the process is strongly kinematically suppressed, even with
intensities an order of magnitude higher, and electron energies
in the tens of GeV (see Sec. VIII in Ref. [56]). We have also
discarded derivatives of the fields, which is justified only if the
fields vary little over the particle localization distance. This
places a limit at least as strict as L >> A¢ = Ii/(mc) with A¢
the Compton wavelength and L the length scale of the fields.

One further limitation of the theory presented here is
that it does not include effects of radiation reaction (RR),
which has vexed electrodynamics for over a century (see,
e.g., Refs. [56,57] for recent reviews). The contribution of a
magnetic moment to RR has been studied classically [58,59].
Very recently, a paper particularly relevant to us [60] compared
the Frenkel and Foldy-Wouthuysen models (for one-particle
motion) including radiation reaction for both using the Landau-
Lifshitz equation. In principle, the Landau-Lifshitz force could
be added by hand to (12) as a Fyp - V, f term, but studying
this extension is beyond the scope of the present paper.

Radiation reaction, however, is quantitatively small except
in the most extreme regimes, with the relative importance of
the RR and Lorentz forces being n = ay?E/E., where y is
the Lorentz factor and « the fine-structure constant. Intensities
high enough that n & 1 are only expected to be reached with
next-generation laser facilities [56], and by inspection there
are clearly regimes where 1 < 1, but y is large enough that
an O(v?/c?) treatment is inapplicable.

In summary, while the model we have presented here
discards some physics, we believe it may still be useful for sys-
tems such as those mentioned at the beginning of this section.
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APPENDIX: EQUATIONS OF MOTION
IN HAMILTONIAN FORMALISM

In this Appendix, we show explicitly that the same Maxwell
equations are found using a constrained Hamiltonian systems
approach, as described by Dirac [41].

The field variables in the Lagrangian are the scalar potential
¢ and the vector potential A, with corresponding momenta,

Ty =0, (Ala)

L oL E /dQ
TA = —F— == ——— = — —
ATSA T T OE

Note that r4 = —E — P = —D. Just as for the particles, the
canonical momentum is modified to contain a spin-dependent

term. For brevity, we let i’ = i‘:jﬁ) Since ¢ does not appear

3upp xS
Sl A1b)

023207-6



RELATIVISTIC KINETIC EQUATION FOR SPIN-1/2 ... PHYSICAL REVIEW E 96, 023207 (2017)

in the Lagrangian, the Lagrangian is singular and the first of these is a constraint. Now, the naive (i.e., without Lagrange
multipliers) Hamiltonian density is
E? - B? E? + B?

HO=NA~A—L=(E+/d§2,u’pxsf)‘(E+V¢)—T+HMF=T+V¢-(E+fd§2u/pxsf)

+ /dQ[e+q¢——§%£s~B}ﬁ (A2)

and the corresponding Hamiltonian is Hy = [ d°x H,. Note that since the Hamiltonian is a function of the fields and the momenta,
E should be expressed according to (A1b), i.e., it is independent of ¢. (This is because treating electrodynamics with Hamiltonian
methods, the scalar potential corresponds to gauge freedom, as will be seen below.)

Now, we check if there are any secondary constraints and find Gauss’s law:

0~ 7y = {my,Ho} = 5(;[;1;)) = /d3x/|:(V6)(x —x')- (E-l—/dQ;L’p X sf) +/d§2q8(x —x’)f]

:—V.E+q/dszf—v./dsz 31

Bpm
——p xS f. A3
cermP f (A3)
Clearly, the free and bound charge densities are the same as we found with the Euler-Lagrange equations, namely, (16) and (21).
Since ¢ does not appear in the secondary constraint, the constraints are first class, i.e., they correspond to gauge freedom.
To see if there are any tertiary constraints, we must consider the time evolution of E, which will give us Ampere’s law. By
using (A1b), and identifying the p x s term as the polarization, the time evolution of E is given by

—0,E = {pa,Ho} + 0,P, + {/dQ 1'p x Sf,Ho}, (A4)

For the first Poisson bracket, using (17) we find

S H
{pa.Ho} = 8A(§Z) =-VxB —q/dQ V[V - 1/'(px9)f]
+/d3x’/‘d§2[3MTBs x (V&) (x — x') — qu<6 + MTBS . B)S(x — x’)j|f
p B V¢xp
=—VxB—q/dQ|:—+3uBV,,(—+—)-S:|f+V><M, (A5)
€ € ¢ele+m)

where the magnetization M = f d Q@ f, just as we found before in (22). For the second Poisson bracket we again use (17)
and obtain (summation over i implied)

s SHo(x)
Qu Ho b = 3¢ d3x" —/ Qu' S N
{/d Hpxs 0} f s ((SA,-(x”) ‘ “pxsf>8nAi<X”)

= f dx'd*x"dQ(V p1'p x 8)8(x — X" F](Ei + Vi)8(x — x)

3upp X s
= [dQV,|— - (E+V . A6
/ p(e(em) E+ ¢))f (A6)
We collect terms and conclude that
P B pxE
GE=VxB—-gq [dQ|=—-3upV,| ————]-s|[f =V xM-29P, (A7)
€ € €(e+m)

with the same free current, magnetization M, and polarization P as using the Lagrangian approach.

In principle, we should follow Dirac and add Lagrange multipliers that enforce the constraint py = 0 to the Hamiltonian
density. However, because the constraint would be relevant only for the equation of motion for ¢, which merely generates gauge
transformations, we need not be concerned with the time evolution of ¢, and the above analysis gives the correct Maxwell
equations.

Checking for tertiary constraints, we get

(V- Ey=V.[Vx®B-M)-—09P—ji
~ 0pr— 0,V - P, (A8)
i.e., the continuity equation for the bound charge, which is (25), found using only the evolution equation for the Wigner function

f. Therefore, there are no tertiary constraints.
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