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Influence of the temperature-dependent viscosity on convective flow in the radial force field
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The numerical investigation of convective flows in the radial force field caused by an oscillating electric field
between spherical surfaces has been performed. A temperature difference (T1 > T2) as well as a radial force
field triggers a fluid flow similar to the Rayleigh-Bénard convection. The onset of convective flow has been
studied by means of the linear stability analysis as a function of the radius ratio η = R1/R2. The influence of
the temperature-dependent viscosity has been investigated in detail. We found that a varying viscosity contrast
β = ν(T2)/ν(T1) between β = 1 (constant viscosity) and β = 50 decreases the critical Rayleigh number by a
factor of 6. Additionally, we perform a bifurcation analysis based on numerical simulations which have been
calculated using a modified pseudospectral code. Numerical results have been compared with the GeoFlow
experiment which is located on the International Space Station (ISS). Nonturbulent three-dimensional structures
are found in the numerically predicted parameter regime. Furthermore, we observed multiple stable solutions in
both experiments and numerical simulations, respectively.
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I. INTRODUCTION

Buoyancy driven convective flows play a crucial role in
geophysical and astrophysical research, and furthermore in
the understanding of dynamos in the core of planets. Radial
fields induced by means of an artificial electric force field in
the spherical gap and coupled with temperature can be used
to investigate convective flows in geophysics and astrophysics
numerically and experimentally as well. Furthermore, a mech-
anism of the artificial gravity is useful for the flow control and
heat transfer. To trigger such flows the influence of the Earth’s
gravity must be eliminated and heating source has to be placed
to enable the artificial buoyancy force. The first condition can
be satisfied by performing the experiment under microgravity
conditions, e.g., on the International Space Station (ISS). A
possibility to realize the second one is to set a temperature
difference between surfaces, say the inner surface is warmer
than the outer one (T1 > T2). The radial force field is created
by an electric field E which induces three forces. The force
density generated by E imposed on a dielectric fluid is obtained
by [1]

fe = ρeE − 1

2
E2∇ε(T ) + ∇

[
1

2
ρ

(
∂ε
∂ρ

)
T

E2

]
, (1)

where the first term is the Coulomb force with free charge
ρe. This force can be neglected as the inherent frequency
is several magnitudes higher than characteristic process fre-
quencies found in convective flows. The third one, namely
electrostrictive force, is combined with the pressure gradient
in the Navier-Stokes equation. The remaining second term
corresponds to the dielectrophoretic force fdep. In principle,
the electric permittivity ε is a tensor of rank 2, depending on
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temperature and frequency. In the case of small temperature
fluctuations the electric permittivity is approximated by a
linear function

ε(T ) = ε0εr [1 − γ (T − T2)]. (2)

The force fdep can be written after small algebra as follows:

fdep = −γ (T − T2)ge, ge = ε0εr

2ρ
∇E2, (3)

where ge is the electric field due to the induced artificial gravity
field and γ is the thermal coefficient of the permittivity. The
electric field can be found by solving the Gauss equation [2].
An expression for the gravity is simplified for large frequency
ω of the applied electric field approximation: ω � τ−1

e = σ/ε,
with electrical conductivity σ . A period averaged relation for
the gravity reads

ge = −2V 2
rms

ε0εr

ρ

R2
1R

2
2

(R2 − R1)2

1

r5
er . (4)

Because the dielectrophoretic force fdep and the induced
artificial gravity have opposite directions the problem can be
compared with the classical Rayleigh-Bénard problem.

This specific problem has been considered by many authors
in the case of the constant viscosity. The linear stability
analysis for the radius ratios η = R1/R2 = 0.1–0.7 has been
performed in [3] to investigate the onset of convection. It
was found that in the nonrotating case critical Rayleigh
number, obtained by means of the linear stability analysis,
RacL, increases with increasing in η. Moreover, the basic flow
becomes unstable with respect to steady perturbations and
does not depend on the Prandtl number. Perturbations have
been represented in terms of spherical harmonics, Ym

� , and
because of the spherical symmetry the linear stability analysis
is performed in terms of the degree � and not of the azimuthal
wave number m as it occurs in rotating systems. Therefore, it is
particularly important to perform nonlinear three-dimensional
calculations to detect which patterns the system prefers. Busse
[4] solved the pattern selection problem of the convective
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flow in the nonrotating case analytically, in which degree
� plays a crucial role. He found solutions with � = 4 and
� = 6. Recently, the multiplicity of supercritical states has
been detected in [5] by means of numerical simulations,
using a pseudospectral code, developed by Hollerbach [6].
Octahedral and axisymmetric structures have been observed in
the interval 2491 < Ra < 5000 (RacL = 2491), for the radius
ratio η = 0.5 and Prandtl number Pr = 64.64. Further increase
in Rayleigh number up to Ra = 17450 leads to the appearance
of a seven-cell structure and periodic flow. Experimental
investigations of the convective flow under the influence
of the artificial gravity in the form of ge ∼ r−5 have been
performed in [7] for fluids with constant viscosity like silicon
oil. Spatiotemporal irregular structures have been observed for
Ra = 6.0 × 104. We expect that the use of working fluids with
temperature-dependent viscosity enables the occurrence of
new fluid structures which can have an important geophysical
application [8,9].

The microgravity experiment GeoFlow is designed to
capture convective flows with these properties. This is a
motivation for our numerical efforts. First experimental and
numerical results [10,11] show that sheetlike flows can be
observed for moderate Rayleigh numbers, and that plumelike
thermal flows develop if the Rayleigh number increases.
Numerical three-dimensional solutions have been obtained
by using the finite-volume method. But only recently we
have developed a pseudospectral numerical code which is
able to perform the linear stability analysis and evaluation
of three-dimensional flows as well.

Solomatov [12] characterized convection with temperature
dependent viscosity as follows. Isoviscous situations and small
contrasts (β < 102) in the viscosity belong to the mobile-lid
type. Here, convective plumes reach the colder boundaries. For
102 < β < 104 the sluggish-lid regime dominates the flow.
The viscous boundary layer at the colder side is significantly
larger than at the hotter boundaries. This reduces the velocity
of convective plumes. Situations where β > 104 develop a
stagnant lid. Convective plumes are not able to reach the
cold solid boundary. Recently, Curbelo and Mancho [13,14]
published results for the transient sluggish lid case. Their
simulations showed traveling waves, heteroclinic connections,
and chaotic regimes in a two-dimensional setup in the presence
of the O(2) symmetry.

This paper is organized as follows. After discussion of
governing equations in Sec. II we formulate briefly the
numerical method (Sec. III) with which the problem under
consideration is solved. Stability of the basic flow has been
investigated by means of the linear stability theory in Sec. IV.
Some examples of three-dimensional flows are presented
in Sec. V A, two bifurcation scenarios and diagrams are
discussed in Sec. V B, the behavior of the Nusselt number
which describes the heat transfer is shown in Sec. V C, and
comparison between numerical calculation and experimental
results has been performed in Sec. VI.

II. EQUATIONS

We consider an incompressible viscous dielectric fluid in
the spherical gap of width d = R2 − R1. The inner surface
is maintained at the warmer temperature than the outer one

(T1 > T2). Introducing the following scaling T = T1 − T2

for the temperature, ρ0(κ/d)2 for the pressure, d for the length,
κ/d for the velocity, and tκ = d2/κ for the time, and using the
Boussinesq approximation, the Navier-Stokes equation, the
energy equation, and the continuity equation can be written in
the dimensionless form as follows:

Pr−1

[
∂U
∂t

+ (U · ∇)U
]

= −Pr−1∇P + Ra
η2

(1 − η)4

T

r5
er

+∇ ·
[
ν(T )

νref
[∇U + (∇U)T ]

]
,

(5)

∂T

∂t
+ (U · ∇)T = ∇2T , (6)

∇ · U = 0. (7)

The flow depends on the radius ratio η = R1/R2, the Prandtl
number Pr = νref/κ = 125 (1-Nonanol, GeoFlow II [10]), and
the Rayleigh number

Ra = 2ε0εrγ

ρνrefκ
V 2

rmsT,

where εr is the relative permittivity, γ is the permittivity,
V 2

rms = V 2
0 /2 is the voltage, ρ is the density, and νref is

the viscosity on the outer and colder surface. The velocity
should obey the no-slip boundary conditions u = 0 and T = 1,
T = 0 for the temperature on the surfaces r = η/(1 − η)
and r = 1/(1 − η), correspondingly. The influence of the
temperature-dependent viscosity is the focus of the research
presented. The kinematic viscosity varies according to the
Arrhenius law

ν(T ) = νrefe
−(lnβ)T , (8)

where β = νref/νhot = νcold/νhot is the viscosity contrast that
varies between β = 1 (constant viscosity) and β = 50 and
must be taken into account by solving the Navier-Stokes
equation. The equations (5)–(8) with the boundary conditions
have to be solved numerically.

III. NUMERICAL METHOD

The fully three-dimensional pseudospectral numerical code
for the spherical geometry has been developed by Hollerbach
[6] for the case of the constant viscosity. We expanded this
tool on the situation when the viscosity varies according to the
Arrhenius law Eq. (8). The poloidal-toroidal representation of
the velocity field

U = ∇ × ∇ × (�er ) + ∇ × (�er ) (9)

obeys the continuity equation. Separated equations for poloidal
� and toroidal � potentials are presented in the Appendixes.
After performing the mapping r = 1

2 [z + 1+η

1−η
], where z ∈

[−1,+1] each scalar function can be expanded in terms of
Chebychev polynomials Tk−1(z) in radial direction and in
terms of spherical harmonics Ym

� (θ,φ) = P m
� (θ )eimφ for the

angular dependence. Expressions for poloidal and toroidal
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potentials can be written as follows:

�(t,r,θ,φ) =
MU∑
m=0

LU∑
�=�

′

KU+4∑
k=1

(gck�m(t) cos(mφ)

+gsk�m(t) sin(mφ))Tk−1(z)P m
� (θ ), (10)

�(t,r,θ,φ) =
MU∑
m=0

LU∑
�=�

′

KU+2∑
k=1

(fck�m(t) cos(mφ)

+ fsk�m(t) sin(mφ))Tk−1(z)P m
� (θ ), (11)

where �
′ = max(1,m), and KU, LU, and MU are cutoff

parameters that vary between 20–30, 30–40, and 20–30,
correspondingly. Time-dependent spectral coefficients have
been calculated by means of the predictor-corrector method.
The smallest time step was t = 2 × 10−5. Note that four
boundary conditions for � and two for � are necessary (see
the Appendixes).

IV. LINEAR STABILITY ANALYSIS

The system of equations (5)–(8) has basic flow solution u =
u0 = 0, Tcond = η

(1−η)2
1
r

− η

1−η
. In contrast to the Rayleigh-

Bénard convection, the artificial gravity is not constant and
depends on r according to ge ∼ r−5. Stability of the basic
flow is investigated by means of linear stability theory, which
is used to find such critical Rayleigh numbers, RacL, above
which the flow becomes unstable with respect to infinitesimal
perturbations.

To calculate the critical Rayleigh numbers in frames of
the linear stability theory the Navier-Stokes equation as well
as the energy equation have to be linearized. Furthermore,
the eigenvalue problem for the radius ratios between η =
0.1–0.7, for different viscosity contrasts β = 1–50 needs to be
solved, too. The basic flow is subjected to small perturbations
ũ(t,r,θ,φ) for the velocity, p̃(t,r,θ,φ) for the pressure, and
�(t,r,θ,φ) for the temperature. Substituting the perturbed
functions U = u0(= 0) + ũ, P = p0 + p̃, and T = Tcond + �

in Eqs. (5)–(8) and neglecting nonlinear terms results in

Pr−1 ∂ũ
∂t

= − Pr−1∇p̃ + Ra
η2

(1 − η)4

�

r5
er

+ f̃0 + ν(Tcond)

νcold
∇2ũ, (12)

∂�

∂t
− ũr

η

(1 − η)2

1

r2
= ∇2�, (13)

∇ · ũ = 0, (14)

with

f̃0 =

⎛
⎜⎜⎝

νr (Tcond)
νcold

D̃rr

νr (Tcond)
νcold

D̃rθ

νr (Tcond)
νcold

D̃rφ

⎞
⎟⎟⎠,

where D̃ij are components of the rate-of-strain tensor for the
perturbed velocity field multiplying by 2. Equations can be
formulated in terms of the poloidal-toroidal decomposition.
The potential �̃ obeys Eq. (A2) with force F̃ = Ra η2

(1−η)4
�
r5 er .

TABLE I. Critical Rayleigh numbers RacL.

η �c β = 1 β = 6 β = 32 β = 50

0.10 1 836.55 372.57 178.72 147.08
0.20 2 1162.12 491.43 232.97 191.55
0.25 2 1283.95 544.15 257.85 212.42
0.30 2 1483.25 628.39 296.49 243.92
0.40 3 1897.87 801.22 379.34 312.33
0.50 4 2491.03 1052.10 498.15 409.96
0.56 5 2967.24 1254.15 594.14 488.79
0.62 6 3591.17 1519.08 719.35 591.59
0.65 7 3984.94 1686.66 799.02 656.92

The right hand side in Eq. (A3) is zero. Therefore, taking into
account the boundary conditions for the toroidal potential,
we get �̃ = 0. Hence we have to solve the system of two
equations for �̃ and � to derive the critical Rayleigh number.
The stability problem has been solved by two methods: the
first one by solving a generalized eigenvalue problem [15] and
the second one by the time integration of linear Eqs. (12)–(14).
Both methods enable the calculation of the leading eigenvalue,
σ , which has the largest real part. Numerical analysis shows
that the basic flow becomes unstable with respect to steady
perturbations, i.e., Im(σ ) = 0 for all radius ratios and viscosity
contrasts considered. Therefore, as in the case of the Rayleigh-
Bénard convection, the first instability does not depend on
the Prandtl number. The leading eigenvalue is the growth
rate in linear regime, calculated according to σ = 1

t
ln�(t+t)

�(t)
because the time dependency of perturbation is proportional
to eσ t . The critical Rayleigh number corresponds to σ = 0.
Results of both methods coincide with accuracy much less than
1%. Furthermore, the critical Rayleigh number at the onset of
convection does not depend on the azimuthal wave number m.
Hence the linear stability equations can be separated for each
number �. Summarizing, the critical Rayleigh number obeys

RacL(η,β) = min
�

Ra�(η,β). (15)

Results of the linear stability analysis are presented in Fig. 1
(note the logarithmic scale for RacL) and in Table I. Critical
Rayleigh numbers and �c have been calculated as function
on radius ratio for η ∈ [0.1,0.7] and for viscosity contrasts
β = 1,6,32,50. A stability analysis for the constant viscosity
case (β = 1) has been performed too and discussed in [3]. Note
that critical Rayleigh numbers and �c increase with increasing
in η for fixed β. But the temperature-dependent viscosity leads
to the remarkable decreasing of the critical Rayleigh numbers
RacL. Indeed, whereas the onset of convection occurs at
RacL = 836.55 for η = 0.1 and at RacL = 2491 for η = 0.5 in
the case of the constant viscosity, the critical Rayleigh number
shifts to RacL = 147.08 for η = 0.1 and RacL = 409.96 for
η = 0.5 for the viscosity contrast β = 50 (Table I). But,
generally, shapes of stability curves for temperature-dependent
viscosity (β > 1) and constant viscosity (β = 1) are similar.
Even intervals, in which the number �c is critical, shift only
slightly from one β to the other. The next important feature
is that the intervals with higher critical numbers �c become
very narrow if η increases. This provides a multiplicity of the
three-dimensional supercritical states.
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FIG. 1. Critical Rayleigh numbers RacL as function on η.

V. 3D DYNAMICS SIMULATION

Solutions of the fully three-dimensional nonlinear problem
are necessary for the identification of the three-dimensional
structure of the flow. Moreover, results obtained in frames
of the linear stability theory can be checked by means of
three-dimensional calculations. However, only two bifurcation
scenarios are analyzed, since the full analysis of the bifurcation
branches would go beyond the scope of this study. The analysis
of the three-dimensional flow begins with the presentation of
slightly supercritical states. Furthermore, we investigate the
behavior of the Nusselt number which is important for the
description of the heat transfer. Additionally, experimental
results allow one to corroborate numerical simulations. A
comparison of numerical and experimental results form the
GeoFlow experiment for the case η = 0.5 and β = 32 is
presented in Sec. VI and ends this study.

A. Onset of convection

We present the bifurcated branches of solution near the
onset of convection using results of local bifurcation analysis
with spherical symmetry and time integration. The spherical
symmetry of the problem gives information of the kind of
bifurcations near the onset of convection [16]. For generic
conditions (codimenion-1 bifurcation), the possible bifurcated
branches depend only on the �c critical mode [16]. In particular,
the bifurcation is (supercritical or subcritical) pitchfork for
odd modes and transcritical for even modes. Because of
the spherical symmetry, the solution branch belongs to an
orbit of solutions obtained by rotation around the centroid.
Moreover, note that the pitchfork bifurcation breaks the
antipodal symmetry (r → −r) noted S. However, the solution
X and its opposite S(X) belong to the same orbit so, in this
paper, we represent only one branch. Moreover, the theory
of bifurcation with symmetry allows one to characterize the
symmetry of the bifurcated branches at least for � � 4 [17].

The definition of symmetry groups relevant for the paper are
given in Appendix B. We list the bifurcated branch for �c � 4
as follows.

(i) �c = 1. One axisymmetric branch [O(2)− symmetry].
(ii) �c = 2. One axisymmetric branch [O(2) ⊕ Zc

2]. This
branch crosses the bifurcation point and it is unstable.

(iii) �c = 3. Three branches with the symmetries: O(2)−,
Dd

6 (threefold rotations), and O− (tetrahedron symmetry).
The axisymmetric solution is unstable and there is one stable
branch among the Dd

6 and O− branches.
(iv) �c = 4. Two unstable transcritical branches with the

symmetries O(2) ⊕ Zc
2 and O− cross the bifurcation point.

Therefore, the direct time integration is required to deter-
mine the stable branch for �c = 3, on the one hand, and, on the
other, for �c = 2 or 4 to find the attractor near the onset since
all bifurcated branches are unstable. We present two samples
of the slightly supercritical three-dimensional flow for radius
ratios η = 0.1 and η = 0.5 to examine results given by the
linear stability analysis. Dynamic features are characterized by
the total kinetic energy of the fluid E that can be represented
as summation over the energies E�, corresponding to the wave
modes �,

E = 1

2

∫
V

u2dV =
∑

�

E� =
∑

�

�∑
m=0

ε�m. (16)

In all cases the conducting state has been used as an initial
condition. To produce a three-dimensional flow some spectral
coefficients with m > 0 [see Eq. (11)] have been perturbed.
No symmetry has been assumed. The nonlinear analysis
confirms that the basic state [u0 = 0 and T0 = Tcond(r)]
loses stability, if the Rayleigh number exceeds the critical
one (Ra > RacL = 147.08) for η = 0.1 and β = 50 (Fig. 2).
Calculation of energies E� show that the degree � = 1 is
dominant (Table II), which is in good agreement with the linear
stability (Table I). Modes � = 1, m = 1 (ε11 = 0.2968) and
� = 2, m = 2 (ε22 = 2.1459 × 10−2) have a most significant
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FIG. 2. Radial velocity component for η = 0.1, Ra = 150, Pr =
125, and β = 50 in the middle of the gap.

influence on the three-dimensional structure (Fig. 2). Please
note that to make the influence of the mode � = 1, m = 1
visible the axisymmetric mode has been eliminated.

In case of radius ratio η = 0.5 nonlinear calculations,
performed with small values of the spectral coefficients that
have been used as initial conditions, are in very good agreement
with linear stability results, too. The radial component of
the three-dimensional steady flow obtained just above RacL

has an octahedral (Fig. 3) form as in the case of con-
stant viscosity β = 1 [5]. But, in case of the temperature-
dependent viscosity, e.g., β = 50, the flow becomes unstable
much earlier at RacL = 409.96 (Table I). According to the
three-dimensional calculations this pattern has two dominant
modes (Table III), corresponding to � = 4, m = 0 (ε40 =
26.6964) and � = 4, m = 4 (ε44 = 19.0688) in qualitative
agreement with the analytical result obtained by Busse [4] and
Bercovici et al. [18].

B. Bifurcation diagrams

Before we start discussion of the bifurcation diagrams, it
is useful to introduce some definitions that are important for
the description of the system under consideration. Because the
basic flow is absent (u0 = 0) it is convenient to define the value

a =
√

E (17)

as the amplitude of the flow. The behavior of the amplitude is
controlled by the supercriticality, δ = (Ra − RacL)/RacL, or
Rayleigh number control parameter.

TABLE II. Kinetic energy of the first four modes for η = 0.1,
Ra = 150, Pr = 125, and β = 50.

� E� � E�

1 0.3151 3 8.631 × 10−4

2 0.0322 4 3.090 × 10−5

FIG. 3. Radial velocity component for η = 0.5, Ra = 412, Pr =
125, and β = 50 in the middle of the gap.

We present only two bifurcation scenarios occurring in gaps
with radius ratios η = 0.1 and η = 0.5 and for fixed Prandtl
number Pr = 125.

Numerical calculations, performed for wide gap (η =
0.1), show that critical Rayleigh numbers, given by three-
dimensional analysis, coincide with RacL, obtained by means
of the linear stability analysis for all viscosity contrasts consid-
ered. The next confirmation of the linear stability results is that
the three-dimensional flow is steady. The bifurcation diagram
for this situation is presented in Fig. 4. The Navier-Stokes
equation has a stable conductive solution at δ < 0. Convection
sets in at the bifurcation point δ = 0. If the Rayleigh number
exceeds the critical one, δ > 0, the conductive solution loses
its stability with respect to infinitesimal perturbations. The
instability sets in as a pitchfork supercritical bifurcation,
because the conductive solution becomes unstable only at
δ > 0. Note that the critical degree is �c = 1 in agreement with
theoretical results. According to the Landau equation [19] the
amplitude at the vicinity of the critical Rayleigh number can
be approximated by the expression

a = Ca(β)
√

δ. (18)

Values of the constant Ca are located between Ca = 4 and
Ca = 5 (Table IV). It it interesting to note that this kind of
bifurcation is usual in the case of the constant viscosity, e.g.,
in the box with free-slip boundaries [20] and in the cylindrical
gap [21,22].

TABLE III. Kinetic energy of the most dangerous modes for
η = 0.5, Ra = 412, Pr = 125, and β = 50.

� E� � E�

4 45.7652 8 2.5291
6 3.0104 10 0.1732
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FIG. 4. Amplitude of the supercritical flow for η = 0.1.

A different bifurcation scenario occurs at η = 0.5 (Fig. 5).
We present the case with β = 50 in detail. The basic flow loses
its stability suddenly at Ra = RacL = 409.96. A branch where
a = 0 (dotted line in Fig. 5) becomes unstable with respect
to infinitesimal perturbations. The transition occurs with a
jump into the branch, corresponding to the convective flow
(bold line in Fig. 5). The fundamental difference to the above
considered case is that the conductive state becomes unstable in
the interval RaG < Ra < RacL (RaG is the Rayleigh number,
corresponding to the global stability) if the perturbation is
large enough. From the other side, the conductive solution
remains stable to infinitesimal perturbations in this region. The
transition from the convective branch on the conductive one
occurs at Rac = 402.4 again with a jump. Hence the subcritical
instability leads to the hysteresis effect. It suggests that the
unstable transcritical branch possesses a turning point in the
subcritical region for which the branch gains stability as it
is observed in the isoviscous case [5,23]. Note that the same
bifurcation scenario takes place for other β, too. But whereas
the difference  = (RacL − Rac)/RacL = 0.06% is very small
in the case of constant viscosity β = 1 (RacL = 2491, Rac =
2489.4), the hysteresis effect becomes more remarkable in
fluids with high viscosity contrast, e.g., for β = 32 (RacL =
498.15, Rac = 492.8) we have numerically found that  =
1.21% and for β = 50,  = 1.84% (Fig. 5).

C. Behavior of the Nusselt number

The Nusselt number is a global characteristic of the heat
transfer that is defined as the ratio between the heat flux of
the convective flow and the heat flux of the pure conduction
regime, Tcond(r). Expressions for the Nusselt number on the
inner and outer surfaces can be formulated as follows:

TABLE IV. Constants Ca and CNu for η = 0.1.

β Ca CNu

1 5.02 0.4300
6 4.25 0.3871
32 4.06 0.4037
50 4.19 0.4562

400 410 420 430 440 450
0

20

40

60

80

100

120

140

Rac RacL Ra

a
2

FIG. 5. Amplitude of the flow for η = 0.5 and β = 50.

Nuin = − (1 − η)2

4πη

∫
Sin

(
∂T

∂r

)
in

dSin, (19)

Nuout = − (1 − η)2

4πη

∫
Sout

(
∂T

∂r

)
out

dSout. (20)

Beginning with the case η = 0.1 (supercritical bifurcation),
we note that if the Rayleigh number is smaller than the
critical one (Ra < RacL) the Nusselt number is unity and
increases if the Rayleigh number exceeds RacL (Fig. 6). It is
worth noting that according to the linear stability analysis the
threshold of convection does not depend on the Prandtl number.
Nevertheless, this dependence appears in the nonlinear case.
We concentrate on the influence of the parameter β on
the flow and heat transfer, because of our interest on the
temperature-dependent viscosity in frames of the GeoFlow
experiment on the ISS. The behavior of the Nusselt number
for slightly supercritical states has a linear shape and changes
according to

Nu = 1 + CNu(β)δ. (21)

Constants CNu(β) have almost the same value for all β

considered (Table IV). Moreover, it is worth noting that the
influence of the dielectrophoretic effect on the heat transfer in
the wide spherical gap is weaker than in the cylindrical one
where Nu = 1 + 0.92δ for η = 0.1 [22]. The behavior of the
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FIG. 6. Behavior of the Nusselt number for η = 0.1.

023108-6



INFLUENCE OF THE TEMPERATURE-DEPENDENT . . . PHYSICAL REVIEW E 96, 023108 (2017)

400 410 420 430 440 450
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Rac RacL

ΔNu = 0.069

ΔNu = 0.024

Ra

N
u

FIG. 7. Behavior of the Nusselt number for η = 0.5 and β = 50.

Nusselt number changes drastically for η = 0.5. A subcritical
bifurcation is responsible for the jump of the Nusselt number
at Ra = 409.96. Furthermore, the Nusselt number undergoes a
remarkable increase in comparison to η = 0.1 (Fig. 7). Indeed,
whereas an increase of the Rayleigh number of 10% for the
wide gap leads to a change of the Nusselt number solely in
3%–4%, the same growth of the Rayleigh number for η = 0.5
causes an enhancement of the Nusselt number of 18% which is
interesting from a practical point of view for possible technical
applications.

VI. COMPARISON WITH EXPERIMENT

The GeoFlow experiment [11,24] on the ISS is designed
to study convective flows under the influence of a radial
force field. The specific experimental setup follows strictly
the spherical gap geometry presented in Sec. I. A gap between
two concentric spherical shells is filled with a highly viscous
dielectric working fluid, namely the straight chain fatty alcohol
1-Nonanol. The radius ratio of η = 0.5 is in good agreement
with geometrical properties of the Earth’s outer core and even
the Earth’s mantle. Convection is triggered by heating the
inner shell in steps of Tcold + T , where (T )min = 0.4 K
and the maximum temperature difference is T = 10 K.
The experiment is performed at two working environments,
Tcold = 20 ◦C and Tcold = 30.5 ◦C, respectively. The lower
working environment has a Prandtl number of Pr = 179,
whereas the higher temperature level lowers the viscosity
and hence the Prandtl number to Pr = 125. The Rayleigh
number is changed according to the working environment
by a factor of about 20% to higher values. The radial force
field is established by utilizing the dielectrophoretic effect,
which brings radial accelerations between 0.1 m/s2 < ge <

13 m/s2. In consequence of the low acceleration at the
outer shell it is necessary to perform the experiment under
microgravity conditions. The viscosity contrast of β = 32
exhibits from the temperature dependent relative permittivity
of the working fluid.

The visualization of the fluid flow is a crucial point.
However, the safety requirements of the Columbus module
make it difficult to work with particles in the fluid. Therefore,
a Wollaston sharing interferometry unit is utilized which
works by optical means alone. The analysis, interpretation, and

postprocessing of these specific interferograms are discussed
by various members of the GeoFlow topical team. Depending
on the GeoFlow campaign, the interferograms were recorded at
different frame rates. In the presented study we use 10 Hz video
streams which allow tracking of fluid flows quite accurately.
However, this frame rate is more than sufficient for the
laminar regime. The recorded period per experimental set
point is 2 min, resulting in about 1200 images. In total, 240
parameter variations have been performed during the GeoFlow
campaign. The resulting fringe patterns are the base of the
following comparisons between numerical simulations and
experiments. The experimentally gained Rayleigh numbers
are in the range of 102 < Ra < 106, but in the following we
focus on experiments for Ra < 1.4 × 104, which are covered
by numerical simulations. This regime is dominated by steady
laminar flows and conductive states. Due to limitations of
the sensitivity in the Wollaston shearing interferometry it
is not possible to visualize the onset of convection itself.
The lowest technically reachable Rayleigh number is Ra =
560, which is just above the theoretical onset of Ra =
498.15. However, evaluable interferograms are achieved for
Ra � 4200. The high voltage is set to Vrms = 1800 V and
the reference temperature to Tcold = 30.5 ◦C. This gives a
Prandtl number of Pr = 125, which is used for the numerical
simulations, too. Changes in the Rayleigh numbers are only
due to temperature variations which are T = 1.7 K. To lower
statistical anomalies, we performed all experimental set points
twice.

A. Comparison of numerical and experimental results

In order to validate the theoretical results, we compare
numerical interferograms with the experimentally gained
images (Fig. 8). The numerical interferograms are calculated
by means of the temperature field alone. The radially integrated
and weighted temperature field needs to be differentiated
directionally in the polarization plane. The resulting tem-
perature fluctuations are visualized by applying a cosine on
this field. This gives fringe patterns which are similar to the
experimental images [25]. Generic analytical interferograms
are subsequently used to distinguish between convective rising
plumes and sheetlike flows. The parameter regime of time-
dependent convective plumes is above Ra = 1.4 × 104 and not
covered by this study. In principle, we observe only threefold
and fourfold symmetries of the m mode in the interferograms.
These structures exhibit in regular, star-shaped patterns. The
detection of � mode is not unique, since the optical access
does not allow one to investigate the whole lateral elongation.
However, we can utilize symmetries in the angles between
the sheetlike plumes. The angles between the stripes measure
theoretically 120◦ in the threefold case and 90◦ in the fourfold
case. This geometrical property can be used to identify the m

modes. Optical distortions lower and raise the observed angles
by 20%–30%, depending on the interferometry direction. The
angles between the rays are helpful, but not sufficient for the
unique identification. As the experiment rotates very slowly
(0.008 Hz, Taylor number Ta < 1), the fringe lines change their
relative shape, too. Only by tracking the structures individually
is it possible to identify them. Figure 9, first column, presents
four experimental set points, namely Ra = 3040, Ra = 4200,
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FIG. 8. Comparison of experimental and numerical results for various Rayleigh numbers. From left to right: (1) experimental interferograms
from the GeoFlow experiment on the ISS; (2) artificial interferograms calculated by numerical simulations; (3) top view of numerical simulation;
(4) side view of numerical simulation. Temperature isosurfaces are calculated at T = 0.7. The artificial interferograms show the same modes
as the experiments. Even the transition from (� = 4,m = 4) at Ra = 4200 to (� = 3,m = 3) at Ra = 5365 is observed. Due to limitations of
the interferometry unit, the case of Ra = 3040 shows a false conductive solution.

Ra = 5365, and Ra = 7689. A false (in the sense of in-
terferometry) conductive state is observed: the experimental
interferograms do not show significant fringe patterns for
Ra = 3040, while according to the stability analysis we expect
convective flow. The case Ra = 4200 displays a fourfold mode
m = 4 which is in good agreement with the numerical analysis
that shows that modes (� = 4, m = 0) and (� = 4, m = 4)
with energies ε40 = 1458.2 and ε44 = 5900 are dominant. As
found in the numerical simulations, we identify a transition
from m = 4 to m = 3 as the Rayleigh number is increased
from Ra = 4200 to Ra = 5365. Indeed, according to the nu-
merical investigation mode (� = 3, m = 3) becomes dominant
(ε33 = 7354.52) for Ra = 5365. These patterns are dominant
up to Ra = 1.4 × 104. Higher values exhibit in transient,
time-dependent flows. We summarize that the m = 4 and
the m = 3 modes are predominant in the convective laminar
regime for η = 0.5 and β = 32 in the GeoFlow experiment.
In the following, we analyze the symmetry classes in more
detail.

B. Extended analysis of symmetry classes

If the interferometry method allows only identification of
the m modes, it is interesting to retrieve the �-spherical mode
of these solutions using DNS. Five cases are analyzed in detail
and compared with experimental results. For Ra = 4000 we
found two stable states which differ in the � mode. The cases
of Ra = 3000, Ra = 5365, and Ra = 7000 exhibit in unique
states. More specifically, we list the symmetry analysis as
follows.

(i) Ra = 3000 and Ra = 4000 (� = 4). The steady states
are a pure � = 4 mode with the symmetry D4 ⊕Zc

2, i.e., the
full group symmetry of a prism with a square basis. This group
being a subgroup of the cube symmetry group then, this branch
is a secondary branch of the cube symmetric branch (Fig. 5).

(ii) Ra = 4000 (� = 3). The symmetry group is Dd
6 ; this

threefold symmetric branch bifurcates from the onset of
convection of the mode 3. However, according to our numerical
results, it is unstable near the onset of convection. Therefore,
the stability of the steady state suggests that at least a
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FIG. 9. Hysteresis in the laminar experimental regime: threefold
and fourfold symmetries are observed; however, the unstable fourfold
symmetry class is more likely in this experiment. In order to lower
statistical anomalies, we performed experiments with nonunique
patterns several times at different days.

bifurcation occurs and this solution could be a mixed mode
(3,4). Therefore, near the bifurcation the mode 4 remains till
Ra = 4000. Beyond the mode 3 is in competition with the
mode 4.

(iii) Ra = 5365. Almost symmetries of the steady state are
broken except a plane reflexion. It is then the Z−

2 symmetry.
It is easy to recognize approximatively the threefold rotation
and other plane reflexion, so the symmetry of the solution is
close to the Dz

3 or Dd
6 symmetries. The observed mode can be a

secondary branch from Dd
6 or Dz

3 branches. All these solutions
are possible steady states of the pure mode � = 3. However, it
is possible that the mode 4 coexists. Moreover, note that this
Z−

2 symmetry was not observed near the onset for the (3,4)
mode interaction for the isoviscous case (see [15]).

(iv) Ra = 7000. The steady state has the symmetry Dz
2

which corresponds to a twofold reflexion and a plane reflection
symmetry. This steady state does not exist for the pure mode
� = 3 but rather for the mode interaction (3,4) (see, e.g.,
Ref. [15]). Other symmetries are clearly broken, so this steady
state is clearly a mixed mode between � = 3 and � = 4.
The experimental example differs in the Rayleigh number;
however, the (3,4) mode is still assumed.

We summarize that the � = 3 and � = 4 modes are predom-
inant in the convective laminar regime for 3000 < Ra < 8000.
By increasing the Ra number, we have the main steps of
bifurcation scenario: (a) pure mode 4 steady state; (b) almost
“pure” mode 3 steady state; (c) mixed modes 3 and 4.

C. Hysteresis effect in experiment

The experiments show the existence of multiple stable
patterns. This behavior is restricted to a few experiments for
104 < Ra < 1.4 × 104. At first, the experimental data seemed

to be biased by preceding runs. Therefore, we repeated specific
set points randomly which reinforced the suspicion that this
parameter space exhibits in multiple stable laminar flows. We
found the m = 3 and the m = 4 wave modes at the same
Rayleigh number, but in different set points. First results are
displayed in Fig. 9. The angles between the rays as well
as the (not presented) time lapse are strong evidence that
both modes are stable. However, the flow with wave number
m = 4 mode is less frequent than the flow with m = 3. It
is assumed that the basin of attraction of the mode m = 4
is smaller than for m = 3. Similar results are observed in
the numerical simulations, where the initial conditions trigger
different dominant modes. The randomly initialized flows are
an appropriate way to lower these uncertainties.

VII. CONCLUSION

The presented study deals with the numerical investigation
of the convective flow between two spherical surfaces. The
inner one is warmer then the outer one. An applied oscillating
electrical field produces an artificial radial gravity due to
the dielectrophoretic effect. Hence the situation is similar
to the Rayleigh-Bénard convection. The influence of the
temperature-dependent viscosity has been taken particularly
into account. The onset of the convective flow is investigated by
means of the linear stability theory that enables one to calculate
the critical Rayleigh number, RacL, above which the basic flow
is always unstable. We found that the temperature-dependent
viscosity leads to significant decrease of the critical Rayleigh
number. A pseudospectral code developed by Hollerbach
[6] and modified for the case of the temperature-dependent
viscosity has been used to calculate three-dimensional flows.
We present two bifurcation scenarios that occur in spherical
gaps with η = 0.1 and η = 0.5. Whereas the instability sets
in as a supercritical pitchfork bifurcation in the wide gap, if
the Rayleigh number exceeds the critical one, the conductive
state bifurcates into the convective one with jump, if the gap
becomes narrower. The occurring subcritical bifurcation leads
to the hysteresis effect. The behavior of the Nusselt number
shows that the heat transfer in the wide spherical gap is
essentially weaker in comparison to the cylindrical one. Nev-
ertheless the heat transfer grows remarkably if the radius ratio
increases. Besides numerical simulations, we compared our re-
sults with data from the GeoFlow experiment which is located
on the ISS. In order to investigate convection under micrograv-
ity conditions, the dielectrophoretic effect is used to maintain
an artificial radial force field. The experimental set points reach
down to the onset of convection. Evaluable results where
found for Ra > 4020, where m = 4 and m = 3 modes are
found. Experimental and numerical interferograms are in good
agreement in the presented parameter space. Even regimes
with multiple stable structures are observed, where both wave
numbers (m = 3 and m = 4) occur at the same Rayleigh
number. Especially the experimental validation confirms the
theoretical and numerical results presented in this study.

It is planned to extend the presented study to the rotating
case. The GeoFlow experiment has been performed for three
rotation rates, 0.008 Hz, 0.8 Hz, and 1.6 Hz. The resulting
Taylor numbers Ta = (�d2/ν)2 are below Ta = 6 × 104 for
Ra < 1.4 × 104, which can be covered by the presented code.
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APPENDIX A: DERIVATION OF EQUATIONS IN THE
POLOIDAL-TOROIDAL FORM

In this Appendix we explain how the equations for the
poloidal and toroidal potentials in the case of the temper-
ature dependent viscosity can be carried out. Furthermore,
we clarify technical details concerning implicit usage of some
terms that originally were a part of the friction force. The
last term in the Navier-Stokes equation (5) can be written
in more useful form. Indeed, introducing the notation f =
∇ · [ ν(T )

νcold
[∇u + (∇u)T ]], we have after small algebra

f = f0 + ν(Tcond)

νcold
u + f1 + ν(T ) − ν(Tcond)

νcold
u, (A1)

where

f0 =

⎛
⎜⎜⎝

νr (Tcond)
νcold

Drr

νr (Tcond)
νcold

Drθ

νr (Tcond)
νcold

Drφ

⎞
⎟⎟⎠,

f1 =

⎛
⎜⎜⎝

νr (T)−νr(Tcond)
νcold

Drr + 1
r

νθ (T)
νcold

Drθ + 1
r sin θ

νφ (T)
νcold

Drφ

νr (T)−νr(Tcond)
νcold

Drθ + 1
r

νθ (T)
νcold

Dθθ + 1
r sin θ

νφ (T)
νcold

Dθφ

νr (T)−νr(Tcond)
νcold

Drφ + 1
r

νθ (T)
νcold

Dθφ + 1
r sin θ

νφ (T)
νcold

Dφφ

⎞
⎟⎟⎠,

with Tcond = η

(1−η)2
1
r

− η

1−η
. This decomposition of the friction

term is useful from the numerical point of view because the first
two terms in (A1) can be embraced implicitly which increases
the numerical convergence. An application of operations ∇ ×
∇× and ∇× not only eliminates the pressure but also allows
one to obtain separated equations for potentials � and �,

s

r2

[
1

Pr

∂

∂t

(
∂2

∂r2
+ s

r2

)
− ν(Tcond)

νcold

(
∂2

∂r2
+ s

r2

)2]
�

−νr (Tcond)

νcold
s

[
2

r2

∂3

∂r3
− 2

r3

∂2

∂r2
+ 2

r4

∂

∂r
+ 2

r4
s

∂

∂r
− 4

r5
s

]
�

−νrr (Tcond)

νcold
s

[
1

r2

∂2

∂r2
− 2

r3

∂

∂r
− s

r4

]
�

= ∇ × ∇ × F, (A2)

−s

r2

[
1

Pr

∂

∂t
− ν(Tcond)

νcold

(
∂2

∂r2
+ s

r2

)]
�

+νr (Tcond)

νcold
s

(
1

r2

∂

∂r
− 2

r3

)
� = ∇ × F, (A3)

with

s = 1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+ 1

sin2 θ

∂2

∂φ2
, (A4)

F = Ra
η2

(1 − η)4

T

r5
er

+Pr−1u × (∇ × u) + f1

+ν(T ) − ν(Tcond)

νcold
∇2u. (A5)

There are four boundary conditions for the poloidal potential
� = 0, ∂�

∂r
= 0 and two for the toroidal one � = 0 at r = η

1−η

and r = 1
1−η

.

APPENDIX B: SYMMETRY GROUPS

In this section we detail the symmetry groups used in this
paper. Let us note S the antipodal symmetry r → −r and K(δ)
the reflection through a plane containing the line δ. Then, we
define the following.

(i) The central symmetry group Zc
2: generated by S. Note,

it acts trivially on the even modes.
(ii) The symmetry of the cube O ⊕ Zc

2: generated by the
direct symmetries of the octahedron and S.

(iii) The symmetry O−: generated by the direct symmetries
of a tetrahedron and by the reflection K(δ), where δ is the axis
of a threefold rotation of the tetrahedral group.

(iv) Axisymmetric group O(2) ⊕Zc
2 (even modes): gener-

ated by the rotations about an axis δ and by S.
(v) Axisymmetric group O(2)− (odd modes): generated by

the rotations about an axis δ and K(δ).
(vi) n-fold rotation groups (odd modes): Dz

n, generated by
the n-fold rotation about an axis δ and K(δ); Dd

2n contains the
Dz

n group and additionally it possesses a rotation by π around
an axis perpendicular to δ.
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