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Different universality classes at the yielding transition of amorphous systems
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We study the yielding transition of a two-dimensional amorphous system under shear by using a mesoscopic
elasto-plastic model. The model combines a full (tensorial) description of the elastic interactions in the system and
the possibility of structural reaccommodations that are responsible for the plastic behavior. The possible structural
reaccommodations are encoded in the form of a “plastic disorder” potential, which is chosen independently at
each position of the sample to account for local heterogeneities. We observe that the stress must exceed a critical
value o, in order for the system to yield. In addition, when the system yields a flow curve (relating stress o
and strain rate y) of the form y ~ (¢ — o,.)? is obtained. Remarkably, we observe the value of 8 to depend on
some details of the plastic disorder potential. For smooth potentials a value of g >~ 2.0 is obtained, whereas for
potentials obtained as a concatenation of smooth pieces a value 8 ~ 1.5 is observed in the simulations. This
indicates a dependence of critical behavior on details of the plastic behavior. In addition, by integrating out
nonessential, harmonic degrees of freedom, we derive a simplified scalar version of the model that represents a
collection of interacting Prandtl-Tomlinson particles. A mean-field treatment of this interaction reproduces the
difference of B exponents for the two classes of plastic disorder potentials and provides values of 8 that compare

favorably with those found in the full simulations.

DOI: 10.1103/PhysRevE.96.023006

I. INTRODUCTION

Upon the application of a sufficiently large shear stress, any
solid material will eventually yield. In the case of crystalline
materials, yielding is produced by the motion of dislocations,
which are defects of the otherwise perfect crystalline structure.
In the case of amorphous materials, there is no such reference
state on top of which imperfections can be easily defined.
This has greatly delayed a theory of amorphous plasticity.
However, as first recognized by Argon [1], plasticity in this
case can be defined in terms of discrete localized nonaffine
rearrangements that produce elastic stresses and can lead
to a complex sequence of correlated deformations. These
ideas have led to the development of the theory of shear
transformations zones [2] that is nowadays one of the central
concepts in amorphous plasticity.

One of the hallmarks of amorphous plasticity is the
existence of a yield point of the material, namely, the existence
of a minimum stress o, that has to be exceeded in order to
observe yielding. In many cases, particularly for soft complex
materials such as foams, pastes, etc., and in the case of metallic
glasses, it happens that for a fixed applied stress o beyond
the yield point the material can reach a stationary condition of
constant strain rate y . This allows us to define the flow curve of
the material y (o). The nature of the yielding transition around
o, has been a matter of considerable interest. In the athermal
case, in which the effect of thermal fluctuations is negligible,
the most widely accepted view is that yielding corresponds
to a well-defined continuous transition at o., such that y = 0
for o < 0., with y increasing smoothly as o becomes larger
than o,. It is typically found [3-7] that the dependence of
y near the yielding point has the Herschel-Bulkley form [8]
o —o. ~ yYB. B is known as the flow exponent, and it is an
important characteristic of the problem.

An appealing idea to better understand the yielding transi-
tion has emerged from the comparison of this problem with the
problem of depinning of elastic media moving onto disordered
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energy landscapes [9,10]. In that case, the existence of a flow
curve with a well-defined 8 exponent has been proven in a
rather general way. One of the main conclusions of those
studies is that the depinning transition corresponds to a critical
point of the dynamics, at which the system becomes highly
correlated and a diverging correlation length exists. This points
in particular to values of 8 that are “universal,” depending in
particular on the dimensionality d of the system. For depinning
B ~0.25ind = 1[11], increasing for higher dimensions, and
reaching the value 8 = 1 in the mean-field limit (d > 4).

A second similarity between depinning and yielding is
in the form in which the dynamics proceeds close to the
transition. In both cases an infinitesimal increase in the driving
can produce an avalanche of activity. These avalanches are
characterized by their size and duration, and the distribution
is an important characteristic of the problem. Yet an important
difference between yielding and depinning is the following.
While for depinning the advance of a small piece of the inter-
face generates a positive effect on any other part of the system
(trying to move forward the interface in any other point), for
yielding the elastic interaction has effects of alternating signs
in different parts of the sample. This fact (early considered
by Eshelby [12]) has important consequences for the phe-
nomenology of yielding and is responsible for the existence of
slip directions in which deformation can accumulate without
producing any stress increase in the sample.

The formal analogy between the yielding problem and the
depinning transition is thus an interesting line of investigation.
Although there are clear numerical differences between the
two cases (in particular, 8 < 1 for depinning, whereas 8 > 1
is systematically found for yielding), a scenario in which the
yielding transition is supposed to correspond to a critical point
with diverging correlation lengths has found much consensus
[13] and triggered an important theoretical and experimental
effort aimed at its verification.

Different numerical techniques have been applied to
study the yielding transition, including direct atomistic
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simulations [14—18], effective approaches such as soft glassy
rheology [19,20], and elasto-plastic models [21-29]. Elasto-
plastic models are particularly suited to address the relation
between yielding and depinning. In these models the increase
of plastic deformation in some region leads (through the
action of a well-defined elastic kernel) to the modification
of the elastic stress in other regions of the sample, which can
produce new plastic rearrangements. In elasto-plastic models
the long-range elastic interaction is explicitly introduced in
the form of elastic propagators. Yet the dynamical nature of
the elastic interaction is not fully accounted for, and it is only
effectively incorporated in the form of time delays for the
interaction to propagate across the system.

The model we are going to study shares many features with
elasto-plastic models. In addition, it incorporates in a more
realistic way the elastic interactions through the system, and
allows for a detailed description of the plastic deformation.
Actually, one of the main findings will be that key properties
of the model depend on the way in which plastic deformation
evolves locally. In particular, we find the value of the flow
exponent 8 to depend upon certain details of the disorder
potential that is used to describe plasticity. Specifically, we find
different B values when the disorder potential has continuous
second derivative (8 =~ 2.0, this case will be termed the
“smooth potential” case) and when it has points at which there
are jumps of its first derivative (8 ~ 1.5, we call this case
the “parabolic potential” case). This unexpected nonunicity
of the B value is particularly important as it is obtained by
changing a single characteristic of the model, and it cannot
be related to artifacts originated in using different models or
different numerical techniques. This result challenges the idea
of a single universality class of the yielding transition which,
at least in this respect, seems to be less universal than its
depinning counterpart.

Trying to find a simple explanation of the results found,
we transform the original model in an equivalent scalar
problem that turns out to be a collection of interacting Prandtl-
Tomlinson models [30,31] (usually used to describe friction in
elementary terms). By studying this model in different levels
of approximation, we provide evidence that it accounts for a
yielding transition at a finite stress o, and provides different
exponents depending on the nature of the plastic potential used.
Moreover, the actual values of 8 found with the scalar model
compare fairly well with those of the full tensorial simulations.

II. MODEL

The kind of modeling we are presenting originates in works
of Bulatov and Argon [32]. It was generalized in different
directions afterwards and has been used to model a variety
of nonlinear problems of solids in which elasticity plays an
important role. Examples include martensitic transformations
[33], fracture patterns [34] and elastic collapse of thin
films [35]. We have presented already the application of this
technique to the modeling of yielding of plastic materials
in Ref. [36], although in that case the focus was in the
development of shear bands in the system when the material
has some sort of structural relaxation. This last ingredient will
not be incorporated here.
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FIG. 1. (a) Definition of the three elementary distortions ey,
ey, e3 that describe the elastic state of the system at each spatial
position. (b—c) Sketch of the state of a sample under an applied shear.
(b) Corresponds to the case of a system formed by identical elements,
and (c) the case in which each element has its own energy potential
and energy minima.

We model a (two-dimensional) yielding plastic material
as a collection of cells, each of them encoding the behavior
of a large number of atoms or molecules in the system. The
state of the cell is defined by its strain tensor ¢;;. It turns out
to be more convenient to describe the elastic deformations
by three independent strains e;(r), ex(r), e3(r), representing
volume distortions (e;) and the two independent deviatoric
distortions (e, and e3) in the system (see Fig. 1). Values of ey,
e, and ej in different parts of the system are not independent.
They satisfy a differential equation (known as the St. Venant
condition) that reads [37]

(02 4 85)er — (97 — 85)ex — 20,9ye3 = 0. (1

In order to describe the dynamics of the system it is
necessary to define a free energy that depends on the strain
state of all the cells. If the system was a perfectly elastic,
isotropic material, we would write a total free energy in the
form

F=/¥4&H&Mé+@] )

with B and p being the bulk and shear modulus of the
material. However, to allow for the possibility to describe
plastic deformation, the form of the free energy has to be
modified. Referring to the sketches in Fig. 2 the free energy
of a cell will increase upon deformation in the elastic regime
(a), but eventually it will reach a point in which a structural
rearrangement occurs, and the free energy is reduced again
to a new local minimum (b). It is assumed that structural
rearrangements can continue to occur in a given cell when
strain increases further, the local free energy thus consisting of
a sort of “plastic potential,” with different minima located at
different values of deformation. The form of the potential near
each minimum is quadratic, representing a local elastic state of
the cell. For the transition between different local minima, we
can consider at least two possibilities (see Fig. 2). If we think
of this transition as some sort of irreversible rearrangement
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FIG. 2. Sketch of the local free energy depending on the strain
state of a cell. (a) Perfectly elastic case. (b) Plastic case. In this case,
other minima appear as the strain is increased further.

within the cell, a potential V(e) consisting of a collection
of parabolic pieces seems to be appropriate. This case will
be called the “parabolic potential” case. However, we can
consider also the case in which the first potential minimum
gradually softens and eventually transforms smoothly into the
next minimum. This is the case of a “smooth potential.” One
of the main findings of this paper is that the properties of the
model depend crucially on the potential being “smooth” or
“parabolic.”

The strain values corresponding to the minima of the plastic
potential are assumed to have stochastic values, which are
different in different positions of the sample, leading to an
interplay between elasticity and plastic disorder [sketched in
Fig. 1(c)] that is crucial for the behavior of the model. We
consider the model to be externally driven by applying a global
deformation in one of the two deviatoric modes (we take it
to be ey, for concreteness [38]). For simplicity, we assume
that plastic deformation in the system can appear only in the
corresponding mode. This means that the quadratic part on
e, of the free energy of an elastic solid [see Eq. (2)] will be
replaced by an expression V(e;) describing the function in
Fig. 2(b), in such a way that the free energy is written as

F = / d’r[Be} +2ue; + V(er)]. (3)

Details on how the functions V(e;) are actually constructed
for the smooth and parabolic cases are given in an appendix.
We only notice here that in order to preserve the isotropy of
the model in the elastic limit, the form of V(e;) around any
energy minimum is of the form V(e;) = 2u(e; — eg’i“)z.

The dynamical evolution of the strains will be assumed to
be overdamped. This will be reasonable for sufficiently slow
external variations of the control parameters, particularly the
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strain rate. To be concrete, defining the local principal stresses
o; as

OF
Sei(x,y)’

the dynamical evolution of the strain is obtained through a first
order temporal evolution equation of the form

oi(x,y) = “4)

dei(x,y)
FEEE — —eoix) + Ay, ©)

where A; is a Lagrange multiplier chosen to enforce the
compatibility condition (1) [33,36], and & is the damp-
ing coefficient. In equilibrium (de;(x,y)/dt = 0), this equa-
tion reduces to the standard elastic equilibrium equations,
0/0x;(8F /S€;;) = 0 [33].

The numerical simulations presented here were performed
under a constant externally applied rate of change of e,
namely, e; = yt, and the main interest is in the evaluation
of the corresponding stress o,. This is obtained from (4) and
(3), as (0 will be simply noted o, for simplicity)
Ly ©)

o =
des ¢

where the bar indicates average over the sample, and the last
term originates in the externally imposed zero mode. We scale
o and y in order to make ¢ = 1 and u = 1 in Eq. (3).

III. RESULTS

In Fig. 3 we see the main results for the average stress in the
system o as a function of the applied strain rate y. Results are
presented for systems with different values of B/u, for smooth
and parabolic potentials. The simulations clearly show the
existence of a finite value o, to which the stress converges as
y — 0, indicating the existence of a yield point in the model.
We observe that increasing B/u systematically reduces the
value of o,. In addition, we fitted the lowest part of the curves
(y £0.01)withaformy = C(o — o), adjusting o,, 8, and
C to get the best fitting. The fitted values of § for increasing
values of B/u are 1.61, 1.59, 1.43 for parabolic potentials,
and 2.04, 1.92, 1.96 for smooth potential. Taking into account
the numerical uncertainties, the conclusion is that the value
of B is independent of B/u, but it depends on the fact of
using smooth or parabolic potentials. Although it is tempting
to assign simple rational numbers to the values found (namely,
B = 3/2 for parabolic, and 8 = 2 for smooth potentials), we
stress that there is no reason, at the moment, to expect this is
the case.

Other quantities that are studied in models of the yield-
ing transition have to do with the properties of individual
avalanches close to the yielding point, when driving the system
quasistatically. If driving is infinitely slow, the dynamics
proceeds by a sequence of avalanches that are well separated in
time, and that can be quantified by its size S (which is defined
as the stress drop in the system caused by the avalanche; see
Fig. 4) and its duration 7. In order to calculate these quantities
in our model, and see in particular if they depend on the kind of
potential used, we run quasistatic simulations in the following
way. In a simulation with a small y, a quantity Z measuring
the rate of time evolution in the system is calculated. We
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FIG. 3. Strain rate vs stress curves, for systems with different
values of B/u, for smooth and parabolic potentials. System size is
256x256. (a) Linear scale. (b) Logarithmic scale with the value of o,
subtracted. Dotted lines are drawn for reference.

choose the quantity Z to be Z = Y _ (¢,)?, where the sum runs
over all sites of the system. Z is very small when the system
is in quasistatic equilibrium. However, when an avalanche is
being triggered, Z rapidly increases. When this happens (in
concrete, when Z exceeds some threshold value zp) we stop
the driving and follow the internal dynamics of the avalanche
until Z < zp again. At this point driving is resumed until the
next avalanche is triggered. In this way, we obtain stress-strain
and stress-time curves as those shown in Figs. 4(a) and 4(b).
Figure 4(c) shows the evolution of the quantity Z. It has to be
noticed the difference in temporal evolution of Z for the two
kinds of potentials. In the parabolic case Z has an abrupt jump
up when a site goes over a cusp of the potential, initiating
an avalanche. The avalanche ends with an exponential time
decrease of Z. For the smooth potential case the evolution is
much smoother. In particular, the beginning of an avalanche is
marked by a progressive acceleration of Z as one site passes
over the smooth potential barrier. The finish of the avalanche
is also more gradual in this case.

From curves as those in Fig. 4, a collection of avalanche
sizes S;, and avalanche durations 7; can be obtained. These
data are conveniently displayed in the following form. First
we plot the histogram of avalanche size distribution in Fig. 5,
where results for different system sizes are presented (from
now on, all results presented correspond to B/u = 1). We
observe that the distribution is compatible with a power law
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FIG. 4. Examples of the evolution of stress in the system, under
the quasistatic protocol described in the text. The left part corresponds
to smooth potentials, and the right part to parabolic potentials. In
(a) we see the stress-strain plot, and in (b) the stress-time one. The
strain rate is zero in the gray regions [when Z, shown in panel (c),
is larger than a threshold value z], whereas it is a fixed, small y
outside these periods. 7" and S measure the duration and size of the
avalanches.

distribution of avalanches P(S) ~ S~7, which is cut off at large
avalanche sizes by the system size. The value of the exponent
7 is difficult to assess due to the small system sizes that we
have been able to simulate. The reference power laws drawn
in Fig. 5 have lower slopes than values typically reported in
the literature for the exponent t (see a list of values in Table 2
of Ref. [13]). We expect that simulations using larger system
sizes will provide larger values of 7.

On general grounds the scaling of the cutoff S, with the
system size L in the avalanche size distribution can be related
to the fractal dimension d s of the avalanches. From the results
in Fig. 5 we can extract the value of Sy,,x as a function of L. The
results are plotted in Fig. 6. We observe that S ~ LY with
dy slightly smaller than one for the parabolic potential (d; >~
0.9), and slightly larger than one for the smooth potential
(dy =~ 1.15). These results are compatible with values found in
the literature [13,39,40] (although larger values have also been
reported [24,41]) and are naturally interpreted as originated
in the fact that avalanches are correlated slip events along
easy directions in the system, which justifies its almost linear
scaling with L.

A third result that can be obtained from curves such as those
in Fig. 4 is the scaling between avalanche sizes and avalanche
duration. This is plotted in Fig. 7. We see that 7; versus S;
shows a power law behavior T; ~ Si” , with an exponent that
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FIG. 5. Histogram of avalanche size distribution, in systems of
different sizes, for (a) parabolic and (b) smooth potentials. The
straight lines show some reference slopes.

differs slightly for both kind of potentials: p >~ 0.63 for smooth
potentials and p =~ 0.53 for the parabolic potential. According
to Ref. [13] this exponentis p = z/d, and taking into account
the previously found value of d, we obtain the values of the
dynamical exponent as z ~ 0.75 for smooth potentials and
z >~ 0.5 for parabolic potentials. We believe this difference
between the two kinds of potentials is significant.

As a conclusion for this part, within the present accuracy
of the simulations we are not able to tell if exponents 7 and
dy are different or not between the two kinds of potentials.
However, the results for z are more convincing, pointing to a
difference between the two cases, in addition to the definitely
different values of S that we have found previously.

B parabolic
@® smooth

300F
g 200
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100

. 80. s L16()24()

FIG. 6. The cutoff avalanche size S,,x as a function of system
size, for the smooth and parabolic potential cases. A dependence
close to S,.x ~ L is observed in both cases.
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FIG. 7. Avalanche duration vs avalanche size, for both kinds of
potential, in a system of 256 x 256. Black dots are the results of
individual avalanches; red (parabolic) and blue (smooth) curves are

the average of T in successive S slices. Black lines are shown to
display the overall behavior.

It is interesting to explore in the model some of the
consequences of the alternating sign nature of the interaction
kernel in the yielding problem (the Eshelby propagator [12]).
This is most easily seen in a single shear geometry: under the
application of an external single shear, the deformation in the
system does not need to be uniformly distributed. Actually, it
can be localized in the form of a slip in a very narrow region of
the system. Under some circumstances (requiring, for instance,
some kind of aging of the material; see Ref. [36]), the position
at which deformation occurs can be persistent in time upon
further application of the external stress, and a shear band in the
system can be formed. However. in the present case successive
external deformation can be accommodated in the system in
the form of slip between adjacent planes at different spatial
locations [42]. If these locations are uncorrelated in time, it can
be expected that the strain increase in a given position of the
system has the characteristics of a stochastic Poisson process.
This analysis is also valid for the case in which the external
deformation is a deviatoric stress, as in the present simulations,
the only difference is that now deformation accumulates in a
system of two different perpendicular slip directions (the +45°
directions in Fig. 1 when deformation is of the e, type).

In Fig. 8 we observe the evolution of the variance %2 of
the strain in the system as a function of the average strain
itself. We see in fact how this quantity does not saturate but
increases rather linearly with the applied total deformation.
Note that the increase is more rapid when the value of y is
reduced. However, the results point clearly to an asymptotic
maximum increase rate as y — 0, indicating the existence of
a quasistatic limit in which the external applied deformation is
accommodated in an uncorrelated way in the system, leading
to a typical diffusive increase of the strain fluctuation.

IV. SCALAR DESCRIPTION AND MEAN-FIELD ANALYSIS

The finding of different critical exponents depending on
details of the disorder potential is an unexpected result that
deserves further analysis. The difference is definitely more
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FIG. 8. Evolution of the variance of the strain in the system (X2 =
e% — &%) as a function of the average strain e, = yt. Different curves

were obtained for different values of y, as indicated. System size is
64 x64.

clear in the case of the flow exponent 8, where the numerical
uncertainty of the results is smaller, and we concentrate on this
in the following discussion.

We have been able to obtain an alternative, scalar descrip-
tion of the model that clarifies the origin of two different flow
exponents for the two kinds of disorder potentials considered.
In order to derive this alternative description we reproduce
here the basic equations of the model for clarity:

F= / Pr[B& + 216k + V(en), )
. SF

e = —¢&— + A, ®)
56,’

(07 +95)er — (37 — 97)ex — 20,0ye3 =0 )

(note that the damping coefficient ¢ has been allowed to
depend on the mode being considered). An equivalent scalar
description can be obtained by integrating out the harmonic
degrees of freedom e; and e; in the previous equations. This
can be easily done in the case in which the variables e; and e
equilibrate very rapidly compared to e; (i.e., &1, €3 > &), and
this is the case that will be addressed here. This allows us to
search for the values of ¢; and e3 that minimize the free energy,
under the constraint given by Eq. (9). A simple calculation in
Fourier space shows that in this situation

uB(q} - q})’
w-9) 1P a0

2 2
B|€1(I| +2/‘L|63(I| = 1ng* +2Bq2q
x4y

for any q # 0. Now the model can be written as a single,
unconstrained equation for e, which in Fourier space reads

(q #0)

. dv
€q = —Sza — &G (q)eyq (11)
q
with
o 2B =) .
V=t +2Bg2g?
nq 945
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In order to write the model equation in real space, it is
convenient to separate the average value of G from its angular
oscillating part. This leads to (we set &, = 1)

éZr = fr(le)+O' +k()/f _le)_’_Zé(r _r,)ezr' (13)

(fr(e) = —dV,/dey, ), where

1 % 2uB[cos?(0) — sin(9)]

= - do, (14)
2w Jo  m+ 2B cos?(0)sin%(9)
G(r)=G(r) -k, (15)
and the value of o is chosen as
o =—f(ey)+y (16)

in order to satisfy the global constraint e; = y1.

The kernel G(r) has a r~2 decay with distance, and a
quadrupolar angular symmetry. It is noting but the Eshelby
elastic propagator [12] producing a long-range effective inter-
action in the e, field, mediated by e; and e3. We emphasize,
however, the appearance of the “mean-field-like” term k which
couples all sites to the mean value of the strain in the system.
Note that the same mean-field-like coupling has been obtained
in the case of plasticity in Ref. [40] and in other cases in which
e, and e3 are eliminated in favor of e; [43,44].

Equation (13) is very suggestive. In the absence of the last
term, e,, is driven on top of the potential V, (e;,) by a spring of
constant k. This is just the Prandtl-Tomlinson (PT) model used
to qualitatively describe the origin of a friction force between
sliding solid bodies [30,31]. The main results that are obtained
from the PT model in the absence of thermal fluctuations is the
existence of a critical stress o, for y — 0 [as long as there are
points at which d*V (e;)/de3 > k], and a power law increase
of o for finite y, i.e., ¥ ~ (0 — 0.)?. The value of 8 turns out
to be dependent of the kind of potential that is used [45]. For
smooth potentials 8 = 3/2, whereas for parabolic potentials
(with points at which the first derivative has jumps) the value
B = 1 is obtained.

In the presence of the last term, Eq. (13) defines a set of
coupled PT models, in which the variable e,, is driven by
the external driving and by the effect of all the e, through
the coupling term G(r — r’). We are currently conducting
simulations of Eq. (13) in order to reobtain within this
framework the kind of results presented in Sec. III. For the
time being, in order to provide a mean-field-like approach to
Eg. (13) (see also Refs. [46,47]), we will replace the distance-
dependent coupling G(r — r’) by a term that is dependent only
on r’, i.e., the fluctuating term is supposed to be unique for all
sites in the system. Then we write the mean-field equations in
the form (we drop the subindex 2, for simplicity)

o = fulea) + 0 +k(yt —eq) + w(t), a7

w(t) =Y hoea, (18)

where « = 1, ...,N labels the N sites in the system, and the
variables A, (with )~ A, = 0) define how the self-consistent
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TABLEI Summary of values of the flow exponent 8 found in this
work, for the two kinds of potentials analyzed. Approximate results
from numerical simulations are preceded by “~”. Other values are
exact.

Flow exponent 8 Parabolic Smooth
potential potential
Full simulation ~1.5 ~2.0
PT model 1 3/2
Stochastically driven PT 2 5/2
Self-consistent PT ~1.5 ~2.0

driving term w(¢) is constructed in a unique way for the whole
system [48]. In the limit of N — oo, the precise distribution
of A, values in Eq. (18) becomes irrelevant, and the values of
Ao can be taken from a normal distribution [49]. To ensure a
correct thermodynamic limit we must choose (A2) ~ 1/N.

Before analyzing this mean-field model form for particular
distributions of the variables A,, we want to consider a
simplified version of it for which we have found analytical
expressions for the flow exponent 8. This version is obtained
by breaking the self-consistency condition, and taking the
value of w(¢) in Eq. (18) to be externally prescribed. In order
to define the statistical properties of w(#) in this case, we note
that each e, must increase in time following the applied strain
yt, with jumps when passing from one potential well to the
next. We will consider that each e, is thus a cumulative Poisson
process, and that w(¢) is a sum with variable signs of many of
these processes, so w(?) turns out to be a random walk process.
Concerning the amplitude of the process w(¢), we notice that
as this process is originated in the values of e in different
parts of the sample, the time scale must also be related to the
average strain y¢. This can be incorporated as a proportionality
of the amplitude of w(¢) with »/y. Summarizing, breaking the
self-consistency condition, the mean-field equation leads to
the truly one particle model (now we also drop the « label, the
equations apply to a generic site)

e= fe)+o+k(yt—e)+ w@), (19)

b = vy/yn0), (20)

where 7(¢) is an unitary variance delta correlated white noise:
(n®)) =0, (n(t)n(t")) = 8(t —t'), and v is a global amplitude
of the fluctuating term.

The analysis of this stochastically driven PT model
[Egs. (19) and (20)] is presented in Appendix B, where it
is shown that the stochastic term produces a decrease of the
critical stress, and, more importantly, a modification of the §
exponent. The value of 8 without and with the stochastic term
changes from 8 =1 to 8 = 2 for parabolic potentials, and
from 8 = 3/2 to B = 5/2 for smooth potentials (see Table I).

We will now analyze the self consistently driven case and
see that it generates intermediate values of 8. Unfortunately
we have not been able to find an analytical solution for the
self-consistently driven PT model and had to rely on numerical
simulations of Egs. (17) and (18) in order to investigate the
values of g they provide.
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FIG. 9. Flow curves for the iterative implementation of the self-
consistently driven PT model, for parabolic and smooth potentials.
The first iteration gives the results of the standard PT model, and the
second one corresponds to the stochastically driven PT model. After
a few iterations the flow curves converge to a limiting curve with an
intermediate value of the 8 exponent.

We implemented a successive approximation scheme to
solve (17) and (18) that goes as follows. We take an ensemble of
sites e, and drive them with the uniform driving eo(¢) = yt +
o/ k alone. We call the results eV(¢). From them, a stochastic
driving term is calculated as

wV(t) = Zkaeg})(t). Q21

Then a fresh set of sites e, are evolved under the driving
eo(t) + w(z), obtaining new values e (¢), and the process is
repeated.

We present results of this iterative scheme for a system
of N =1000 sites, with k = 0.5 (parabolic) and k = 0.1
(smooth), and values of A, taken from a normal distribution of
zero mean and variance 1/N (parabolic) and 0.2/N (smooth).
In Fig. 9 we show the values of o as a function of y at
the successive steps of the iteration procedure. The first step
reproduces the behavior of the pure PT model. The second step
corresponds to the stochastically driven case (see Appendix B)
as the driving comes from the composition of the driving of
the uncorrelated PT particles of the first step. Successive steps
converge rapidly towards a flow curve with an intermediate
value of the 8 exponent.

In order to provide a numerical estimation of the self-
consistent 8 value, we average the results from steps (10)
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FIG. 10. The data from the previous figure corresponding to the
first and second iteration, and the average from iterations 10 to 20,
plotted as a power law around o = o,. Dotted lines are guides to the
eye, drawn with the indicated slope.

to (20) for which the data show already a good convergence,
and fit them with expressions of the form y ~ (o — o.)?. The
results are presented in Fig. 10.

The obtained values of the exponent B are clearly in
between those of the normal PT model and those of the
PT model with stochastic driving, indicating first that
the self-consistent driving is a nontrivial ingredient that affects
the behavior of the system. The numerical values are estimated
as B =1.540.2 in the parabolic case, and 8 =2.0£0.2
in the smooth case. These values, obtained in a mean-field
model, and taking into account the numerical uncertainties,
strongly suggest the possibility that the exact values are 3/2
and 2. Unfortunately, at present we have no proof of this
conjecture. Moreover, we also note that the values found
with the self-consistent PT model are compatible with those
obtained in the simulation of the full model (Fig. 3 and Table I).
The question then remains if this indicates just a proximity of
the values, or if the values of § in the full and mean-field
models are exactly the same.

Beyond the dependence of the 8 values on the particular
approximation scheme used, the results in Table I strongly
support the existence of systematic differences between the
values obtained using smooth or parabolic potentials. We argue
on the reason of this difference in the next section.
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V. COMPARISON WITH THE DEPINNING CASE

Depinning models with local elastic interactions are typi-
cally described by equations like

dx,- _1 "
E:fi(xi)—i—k n ;xj—x,- + o, (22)

where x; are the elastic deformations, the sum runs over the n
neighbors to site i, and f; is the local pinning force. The “fully
connected” version of this model (in which any site interacts
equally with any other of the N sites in the system) leads to
the “mean-field-like” equation

% = f(xi) +k(x — x;) + o, (23)
where X = ) x;/N. This equation has the form of a PT
model, and so it provides different values of 8 for parabolic
and smooth pinning potentials (namely B =1 and 3/2,
respectively). This was already pointed out by Fisher in
his seminal studies of depinning of charge density waves
[45,50]. Yet, for depinning with short-range elastic interactions
[Eq. (22)] the value of B is known to be independent of
the kind of potential used. In particular, 8 = 1 represents
the correct mean-field exponent, for both kinds of potentials.
The reason is very subtle, and it has to do with the analysis
of the model upon renormalization. It is demonstrated using
functional renormalization group theory [51-53] that even if
local smooth potentials are used, the effective pinning potential
becomes singularly correlated upon renormalization, and the
renormalized potential develops cusps that make the result
independent of the detailed form of the starting potential.

On the other hand, for the case of yielding the results of
the present numerical simulations show persisting differences
between the two kinds of potentials used, in particular the
values of g differ for smooth and parabolic potentials. Our
interpretation of this behavior is related to the existence in the
effective scalar equation of the model [Eq. (13)] of the infinite
range term proportional to k. Note that this term appears
as a consequence of the elasticity of the system and is not
originated in any kind of mean-field approximation. This kind
of term has been obtained in other contexts, for instance, in
Refs. [40,43,44]. The dependence of the value of 8 on the
smooth or parabolic form of the potential in Eq. (13), is exactly
the same dependence that Eq. (23) displays, with the additional
ingredient given by the Eshelby elastic interaction in Eq. (13).
This term, having also a long-range effect (~r~2), seems to be
capable of modifying the values of 8 that would appear if it
was absent. Yet, it does not erase the differences between the
two kinds of potentials.

VI. CONCLUSIONS

In this work we have studied a mesoscopic model for the
yielding transition of a two-dimensional amorphous material
under an externally applied deviatoric deformation. The model
incorporates in a realistic way the elastic deformations of the
material, and in particular the way in which these deformations
at some part of the sample affect other regions of the material.
Plastic deformation is accounted for by introducing local
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disordered “plastic potentials” for the deformation, allowing
for each piece of the system to jump among different minima of
these potentials, representing different structural configuration
with different strain.

We have observed that this model displays a well-defined
yielding point, i.e., a minimum shear stress o, has to be applied
in order for the system to deform at a constant strain rate y,
no matter how small. Around the yielding point, the strain
rate and the stress are power law related: y ~ (o — 0.)?. The
main result we have obtained is that the value of 8 depends
on the form of the plastic potential that is used. For smooth
potentials we find 8 ~~ 2.0, whereas for potentials formed by a
concatenation of parabolic pieces, a value 8 =~ 1.5 is obtained.
These results indicate that there is more than one universality
class associated to yielding, contrary to the well-established
result of a single universality class for the related problem of
elastic depinning in low dimensions.

In addition, we have derived a simplified scalar version of
the model that has the form of a set of Prandtl-Tomlinson
particles, coupled by a quadrupolar Eshelby interaction. We
have done a mean-field approximation on the quadrupolar
term, finding values of 8 compatible with those of the full
simulation, and in particular a persistent difference between
the values for smooth and parabolic potentials. We interpret
this persistent difference as originated in the global coupling of
the Prandtl-Tomlinson particles to the mean global coordinate.
This interaction is a direct consequence of the material
elasticity and does not emerge from any kind of approximation.

Although we have obtained differences in other exponents
for the smooth and parabolic cases, the numerical quality of
those results is not satisfactory at present. Further studies are
thus necessary to elucidate if this problem can in fact be
consistently described as possessing two different universality
classes with two different sets of critical exponents.
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APPENDIX A: DETAILS OF THE FORM OF THE
PLASTIC POTENTIALS

Here we provide details on the way in which the plastic
potentials (sketched in Fig. 2) are actually constructed. For
each site i in the system a potential V;(x;) is constructed,
which has a stochastic ingredient. For different sites, the
stochastic component is chosen in an uncorrelated way. A
generic potential V(x) is constructed piecewise, by dividing
the x axis in segments through a set of values a, (see Fig. 11).
In each interval a, — a,4 [defining @ = (a,+1 + a,)/2, and
A = a,4+1 — a,] the potential is defined as

V() = 3l(x —a)’ — A%] (A1)
in the parabolic case, and
_ AN 2n(x —a)
Vix) = —<§> {1 + cos [T]} (A2)
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(b) a X

FIG. 11. Typical plastic potentials that are generated for the
parabolic case (a) and the smooth case (b). Note that the curvature of
the potentials at all minima is the same.

in the smooth case. Note that even in the smooth case the
potential is not analytic, but it has a continuous second
derivative, which is enough for our purposes. Also, the
curvature of the potential in all minima is the same, and
this is chosen to have an isotropic elastic medium in the
harmonic approximation. The separation A between a, and
a,+1 18 stochastically chosen from a flat distribution between
Ampin = 2 and A = 4.

APPENDIX B: THE STOCHASTICALLY DRIVEN
PRANDTL-TOMLINSON MODEL

In this appendix we make a dimensional analysis of a
generalized PT model, in which in addition to the deterministic
driving at a constant velocity, there is also a stochastic term
with the characteristics of a random walk, as represented by
Egs. (19) and (20). For the present purposes, these equations
can be conveniently written as

e= f(e) + klw() —e], (B1)

W=7y +v/yn). (B2)

Note that the deterministic part of the driving was included in
the equation for w.

In the case v = 0 the problem reduces to the usual PT
model. This model displays a nonzero critical force o,
(at vanishingly small y) when the pinning force f(x) is
sufficiently strong. For finite y the friction force increases
according to o — o, ~ y'/#. We recall the arguments leading
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to the determination of the value of 8, taking advantage of a
dimensional analysis. The time scale of the dynamics at very
small y is dominated by the surpassing of the energy barriers
of the pinning energy, namely, by the maxima of f(e). Around
one of these maxima (assumed to occur at ¢ = () we can write
f(e) = Dl|e|*. For smooth pinning potentials « = 2, whereas
for a concatenation of parabolas o« = 1. We keep a general
exponent « for the analysis.

For a narrow interval of the variable e around zero the last
term in Eq. (B1) can be neglected, and equation of motion for
e can be written as

¢ = Dle|* + kw(r) = Dle|* + kyt, (B3)

where time is set as zero at the moment in which the driving
is able to overcome the energy barrier. For y — 0, e reaches
the top of the barrier (i.e, e = 0) at + = 0. For finite y there
will be a delay in reaching the e = O point. This delay is the
main responsible of the increase of the friction force with y.
In order to obtain the dependence of the delay with y we can
rescale Eq. (B3) in order to eliminate y. Defining

¢ = (k)= D¥e, (B4)
f = (ky)iot DEg, (B5)

Eq. (B3) can be written as
é =161 +17. (B6)

In this form it is clear that there will be a single solution é(f)
for all values of y. The time at which e reaches the instability
value 0 will correspond to a single value £ of 7. In the original
units this will give the time values as 7(y) ~ )'/2%. By this
time, the value of the driving w(¢) has reached a value w(r) =
yT(y) ~ y %1, and this represents an increase of the friction
force compared to the y =0 case of 0 — o, ~ )'/2677—1, ie.,
B=2—1/a. Weget § =3/2fora = 2 (the standard case of
smooth potentials) and § = 1 for @ = 1 (for a potential that is
constructed as a concatenation of parabolas). Both these values
of B are well known in the context of the PT model.

Now in the presence of a stochastic component of the
driving, the equivalent to Eq. (B3) reads

é = Dlel® + kw(z) (B7)

with
(D) =y + vy/y(0), (BS)
where 7(¢) is an uncorrelated noise, i.e., (n(t)) =0,

(n(®n(")) = 8(t — t'). The dominant contribution to calculate
the flow exponent B8 comes in this case from the fluctuating
term in the driving, and searching for this contribution we can
neglect for the moment the linear part of the driving. In this
way, we can analyze the case in which

() = v/yn(@). (B9)
Proceeding as before, we rescale e and ¢ in order to eliminate

y from (B7)—(B9). Defining

5 — (12020
e = (kvy)w-TD3x-e, (B10)

F = (K*v2y)sr Duoit, (B11)
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FIG. 12. Results for the standard (v =0) and stochastically
driven (v = 1) PT model [Egs. (B1) and (B2)], for the case of
parabolic and smooth potentials. Panels (a) and (b) are the results
in linear scale, whereas (c) and (d) are in logarithmic scale, with o
shifted in each case by the numerically determined o... The asymptotic
forms (dotted lines) display the exponents predicted by the analytical
treatment. The numerical data tend to match the analytical behavior
in the small y limit.

Equations (B7)—(B9) read

é=12|* + w(, (B12)

()= (@), (B13)

and this shows there will be a single value £ of the delay time
for any y. In the original variables we obtain the dependence
of the delay time with y as t(y) ~ )'/31%1. By this time, the
stochastic driving attains a value ~./yt(y) ~ )'/3077—1, from
which we obtain in this case § =3 — 1/a, which is 2 for
parabolic potentials, and 5/2 for smooth potentials.

To our knowledge, the PT model in the presence of this
kind of stochastic driving has not been analyzed before. It
seems thus appropriate to present results of direct numerical
simulations in order to verify the previous analytical estima-
tions and to see how the full curve o (y) looks like. We simulate
Egs. (B1) and (B2), with the particular choice f(e) = sin(2mwe)
for the smooth potential case, and f(e) = —(2e — [2e])/2
(where [x] is the nearest integer to x) for the parabolic potential
case. Simulations are straightforward and are done with a
first order Euler method, with time step 1073 and k = 1.
Results are contained in Fig. 12. They show that the presence
of the stochastic term reduces the value of o, and, most
importantly, changes the value of 8. The values B =2 and
B = 5/2 for parabolic and smooth potentials, respectively, are
accurately obtained in the simulations in the limit of very
small y.
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