
PHYSICAL REVIEW E 96, 023004 (2017)

Predicting mining collapse: Superjerks and the appearance of record-breaking
events in coal as collapse precursors

Xiang Jiang,1,2,3 Hanlong Liu,1 Ian G. Main,4 and Ekhard K. H. Salje2,*

1School of Civil Engineering, Chongqing University, 400044 Chongqing, People’s Republic of China
2Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom

3State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 400044 Chongqing, People’s Republic of China
4School of Geosciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom

(Received 23 February 2017; revised manuscript received 21 May 2017; published 9 August 2017)

The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model
tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability
distribution function of radiated energy P ∼ E−ε , with exponent ε = 1.5. Impending major collapse is preceded
by a reduction of the energy exponent to the mean-field value ε = 1.32. Concurrently, the crackling noise increases
in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These
latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment
of previously collected extensive collapse data sets using “record-breaking analysis,” based on the statistical
appearance of “superjerks” within a smaller spectrum of collapse events. Superjerks are defined as avalanche
signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but
other “near collapse” events equally qualify. In this way a very large data set of events is reduced to a sparse
sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of
energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the
temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as
self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence
Esj ∼ nδ with δ = 1.79. They are less robust in identifying the precise time of the final collapse, however, than
the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the
major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.
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I. INTRODUCTION

Jiang et al. [1] showed that the imminent collapse of
coal mines is predictable by careful analysis of the acoustic
emissions (AEs) of crackling noise during compression. This
result was obtained by extensive laboratory experiments on
samples obtained from anthracite coal seams. The criterion
for imminent system-sized collapse was the reduction of the
power-law exponents of the avalanche energy P (E) ∼ E−ε

from ε = 1.5 to ε = 1.32 (see [2,3] for nomenclature). A
concurrent increase of the acoustic emission activity was
equally observed when approaching the final failure event,
which could also act as a “warning signal” for the impending
major collapse. This increase relates to an increase of the
emitted AE energy and the reduction of waiting times between
subsequent signals. None of these effects were previously ana-
lyzed quantitatively. Note that we measure avalanche energies
in our AE experiments, while some model calculations [4] use
the more easily obtainable avalanche amplitude; for the close
relation between these quantities see [2]. Strain intermittency
due to avalanches in ferroelastic and porous materials has
been studied for slowly increasing compressive uniaxial stress
[5] for a large set of compounds. It was shown that some
materials, such as charcoal, shale, and calcareous schist,
also possess ε values bigger than the mean-field exponent
ε ∼= 1.3 [2].
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Pál et al. [4] proposed to analyze the amplitude and
waiting time of the AE signals and published the results of
computer simulations of the collapse of porous materials.
In their analysis they reduced the AE spectrum from the
totality of all avalanche signals to a subset of “superjerks.”
A superjerk is defined as an avalanche signal with energy
greater than any previous event of the series. Recently,
such statistics of superjerks (also called “record-breaking”
events) has attracted great attention due to its relevance for
climate and earthquake research [6–9]. Related analytic results
have been obtained for the statistics of the sequences of
independent identically distributed (IID) random variables for
a randomly sampled stationary process [9–11]. The statistics of
“records” has previously been applied to understand correlated
processes emerging in various types of random walks [12–14],
superconductors [15], domain wall dynamics in spin glasses
[16], and in chaotic processes [17]. The record statistics of the
bursting activity has also been studied in models exhibiting
self-organized criticality (SOC) [11] and in a mean-field
model of fracture [18]. Record statistics were applied to reveal
spatiotemporal clustering of seismicity either by focusing on
the interevent times [9] or using both the spatial and temporal
distance of events [7,8] during earthquakes. The experimental
data of avalanche sequences in collapsing porous pillars of coal
[1] show a similar increase of the AE energies as in simulations
[4] so that it was tempting to reanalyze these data in terms
of superjerks and record statistics. This analysis is important
for other materials where the collapse under uniaxial stress
equally showed the shift of the energy exponent and systematic
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changes of the AE activity and, sometimes, waiting times.
These materials are shale [19], SiO2 based minerals [3,20],
berlinite [21], alumina [22], and goethite [23]. In no case was
a quantitative analysis of superjerks undertaken.

We argue in this paper that the collapse of coal seams
relates to two mechanisms, namely, the collapse around
spatially isolated avalanches and, when the final collapse is
imminent, the clustering of such avalanche localities along
major fault lines. The two mechanisms are consistent with
the existence of two separate populations of avalanches with
distinct fixed-point exponents ε. We will discuss additional
parameters of the superjerk analysis, which can be used as
additional criteria for imminent collapse.

The analysis of shifting exponents appears different from
traditional approaches where continuous evolutions are ad-
vocated [4]. The difference with [1] and the data given in
this paper is likely due to the different selection criteria
for sampling populations: The gradual changes of exponents
reported in the literature may result from mixing of the
fixed points allied to small sampling windows, both on a
laboratory scale (as investigated here) and on a field scale (as
demonstrated by Roberts et al. [24]) and are hence artifacts.
Our much larger data set allows a full analysis of the collapse
mechanism and a clear “early warning scenario” using the
change of the energy exponent as indicator. It is also the
purpose of this paper to describe the difference between
continuous and abrupt changes of the energy of superjerks
and the waiting time between subsequent superjerks and their
assessment as additional indicators for imminent collapse.

II. ANALYSIS OF RECORD-BREAKING EVENTS:
THE SUPERJERKS

Figure 1 shows the previously published AE events in
coal samples undergoing deformation [uniaxial compression
under constant stress rate, dσ/dt = 8.5 kPa/s (1 kN/min)]
in the laboratory. The coal samples’ shapes were cylindrical
with 50 mm diameter and 100 mm length. AE signals were
measured during compression by two or more piezoelectric
sensors fixed on the sample’s round surface by rubber bands.
The acoustic signal was preamplified (40 dB) and transferred
to the AE analysis system. The threshold for detection was
chosen as the threshold of an empty experiment (45 dB).
More details are given in [1]. A total of 18 968 events
were recorded. Statistical analysis showed that the data are
power-law distributed P (E) ∼ E−ε with energy exponents
ε = 1.5 (early stage) and ε = 1.32 (late stage) [1]. As in most
porous materials, we find that increasing strain loading triggers
larger events so that the average burst size increases towards
failure. We identify 21 superjerks in Fig. 1 as bursts with
energies greater than any previous event. They are numbered
by their “rank” k = 1,2, . . . ,21, namely, as the kth superjerk
event of the complete time series, Nn is the number of
superjerks in a given interval, and n counts the nth jerk in
the full data set. Table I lists the detail data for superjerks in
Fig. 1. Every superjerk has a rank k and is also the nth jerk.
For example, the 12th superjerk (k = 12) is also the 681th
jerk at a time t12 = 18.123 s with an energy 1 564 000 aJ
(1 aJ = 10−18 joules). Figure 1 illustrates that superjerks form
a monotonically increasing subsequence of all jerks and divide

FIG. 1. Time sequence of jerk events in coal under uniaxial
stress. The spectrum contains 18 968 jerks (blue) and 21superjerks
as record-breaking events. Superjerks are more energetic than any of
the previous jerks. (a) shows the full data set; (b), (c) are enlarged
images for initial and last stages.

the time series into segments of varying number of smaller-size
events. Table I also shows that the number of jerks between
two subsequent superjerks is small until k = 13. For several
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TABLE I. List of superjerks, their rank k, their equivalent jerk
number n, their occurrence time tk , and their energy Ek .

k n tk (s) Ek (aJ)

1 1 0.086888 18.96
2 5 0.8342943 65.80
3 6 1.0185958 77.48
4 7 1.3714062 182.14
5 11 1.9169895 445.36
6 17 2.2591618 4389.00
7 35 3.7108055 4484.00
8 50 4.5064265 13699.00
9 86 5.7838585 21850.00
10 169 8.552759 184309.00
11 200 9.715405 1254000.00
12 681 18.1231702 1564000.00
13 715 18.498928 14021000.00
14 3135 583.1427885 15059000.00
15 3827 842.1353625 33438000.00
16 8904 2596.877502 44600000.00
17 10578 2839.405836 165027000.00
18 18608 3234.458162 206865000.00
19 18656 3234.625663 251367000.00
20 18783 3234.94593 296159000.00
21 18858 3235.111935 1386000000.00

statistical analyses in the rest of the paper we focus on data
with k > 13 because the statistical relevance of the data at
k < 13 is too weak.

We observe, in accordance with Pál et al. [4], that the
moving average of the event energy tends to increase near
some superjerks (e.g., k = 8, 10, 11, 17 in Fig. 1), with a
precursory increase in the average burst size, followed by a
decrease after the superjerk has happened. To characterize
how superjerks evolve during the loading process, we consider
the energy increments δEk and the waiting times mk between
consecutive superjerks defined as

δEk = Ek+1 − Ek, (1)

mk = tk+1 − tk, (2)

where Ek (tk) is the energy (occurrence time) of the kth
superjerk.

We now analyze the internal statistics of superjerks and
compare them with the overall jerk statistics. The increasing
average event energy and decreasing waiting time between
consecutive events in Fig. 1 shows that the jerk series during
collapse is highly nonstationary. The difference between
stationary and nonstationary event series stems from the lack of
correlations in stationary sequences and spatial and temporal
correlations in nonstationary sequences [25–29]. It has been
shown for sequences of independent identically distributed
random variables that the statistics of record breakings has
universal features [10]. The average number of superjerks 〈Nn〉
is calculated as follows: We identify all subsets of data with n

events and find all superjerks in each of these subsets. For each
value of n we identify the number of superjerks and average
this number over all subsets. The average number of superjerks

FIG. 2. Average number of superjerks 〈Nn〉 that occur before the
nth jerk as a function of n (as double logarithmic plot). The line
represents a power law with an exponent α = 0.29. The relative
increase of 〈Nn〉 at the highest value of n may be correlated
with the occurrence of the superjerk with k = 17 which is indicated
by the broken line.

grows in stationary series logarithmically with n:

〈Nn〉 ∼ κ + ln (n) + O

(
1

n

)
for n → +∞, κ ≈ 0.58.

(3)

This distribution is independent of the specific form of the
probability density of the random variables [10]. In contrast,
correlations between the nonstationary superjerks lead to
power-law jerk statistics, with

〈Nn〉 ∼ nα. (4)

To identify the distribution 〈Nn〉 that applies for the collapse
of coal samples, we plot the number of all superjerks with
rank � 21. The sequences are not unique as it depends on the
energy of the initial starting jerk. Starting from a jerk with a
higher energy leads to a smaller number of superjerks. Only the
largest series (starting at the first observable jerk of the 18 968
observed jerks) produces 21 superjerks; for all other series we
used fixed windows for the intervals in n of 100, 150, 300,
600, 1000, 1500, 2500, 4000, 6000, 10 000, and 15 000 jerks.

The distribution is shown in Fig. 2 and shows a clear power
law according to Eq. (4) with an exponent α = 0.29. This
value is in close agreement with the simulated value [4] of
α = 0.33 ± 0.03 and shows that the collapse events in coals are
indeed nonstationary, and do not occur in a random sequence
as in Eq. (3), even in the early stages. A similar analysis in [4]
showed deviations from the power law in the close vicinity of
the final collapse. A weak increase of 〈Nn〉 (near 7 in [4]) also
occurs in our data near k = 17 in Fig. 2.

The energy of superjerks Esj equally depends on the
number of jerks n that occur before the superjerk is triggered.
Figure 3 shows that this distribution of energy is again a power
law over eight decades in n. The power law is well described
by

Esj ∼ nδ with δ = 1.79.
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FIG. 3. Energy of superjerks Esj after the nth jerk as a function of
n on a double logarithmic scale. A power law Esj ∼ nδ with δ = 1.79
is found over a large energy scale of eight decades.

The energy distribution of superjerks is hence self-similar.
In particular, changing the size of the system does not change
the functional dependence on the total number of previously
elapsed jerks before a superjerk is observed. The energy of
superjerks for each rank k and the energy increment between
two subsequent superjerks of rank k and k − 1 (δEk) are shown
in Fig. 4. While this functional form is similar to that simulated
in [4], the energy scale is much larger and spans seven decades.
In this graph one can identify two regimes; namely, data at the
early stages show a simple exponential increase of the energy
of superjerks with increasing rank while those at the late stages
saturate the energy. The crossover between the two regimes is
also near k = 17 in Fig. 4. The big increment for the δE is
caused by the final collapse containing a very large energy.

The systematic increase of the number of superjerks with
the increasing number of jerks in Fig. 2 and the exponential

FIG. 4. Average value of the energy and the energy increment
δEk [see Eq. (1)] of superjerks as a function of the rank k. A weak
break of slope occurs near k = 17.

FIG. 5. Waiting time distribution functions for all events (black
circles) and for jerks between superjerks. The data have been
collapsed for large waiting times by a scaling factor λ. The probability
distribution has been normalized by the total number of waiting times
N (m) which has been measured in each interval [bin size for each
data set is twice the interquartile range divided by N (m)1/3]. The
(negative) exponents are near 2 for large waiting times and 1 for short
waiting times, as indicated by the slopes of the triangles. Data for late
events (18–21) in the dotted area show higher relative probabilities
for short waiting times than all other curves.

increase of the energy of superjerks with increasing rank k

in Fig. 4 precede the final collapse event. Simultaneously,
the waiting times between jerks decreases with the approach
to the final failure, indicating that avalanches do not only
become more energetic but also succeed each other more
rapidly when the structure approaches its final collapse.
Similar behaviors have been reported for shale [19], granite
[30], and gypsum [31] under uniaxial loading. The probability
distribution function for the waiting time, P (m) ∼ m−(1−ν)

for short waiting times and P (m) ∼ m−(2+ξ ) for long waiting
times, was determined in [1] for the totality of all jerks.
The exponents were 1 − ν ∼= 1 and 2 + ξ ∼= 2 in agreement
with previous observations [3,32]. We now analyze the same
waiting time distributions for intervals between superjerks.
We find that the maximum waiting times vary according
to the time evolution of the interval between superjerks.
Furthermore, the probability of a waiting time to occur is
proportional to the number of data points in that interval. It
is useful, therefore, to rescale the waiting time distributions
by appropriate scaling factors. The results in Fig. 5 are hence
collapsed first by a scaling factor λ that ensures that all curves
coincide for long waiting times. The probability function
P (m/λ) is then normalized with respect to the total number of
waiting times measured in each interval, N (m). The collapse
is excellent for long waiting times which demonstrates that
the functional form of the rescales waiting time distribution
is identical for all intervals between superjerks. The scaling
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FIG. 6. Probability distribution functions P (E) of AE energies
for sequences of events between consecutive superjerks. Curves were
fitted with simple power laws. The slopes of the curves correspond
to the energy exponents. The number of bins is 100 with bin width
100 aJ for each subset.

factor λ then measures the time evolution of the waiting times
over long time scales.

The collapse is indeed excellent for large waiting times but
less good for short waiting times where jerks below the thresh-
old may be missed in the analysis. Nevertheless, the higher
value for the normalized probability function for the waiting
times near the final collapse, 18–19, 19–20, 20–21, is obvious
and shows that in this regime the jerks follow each other much
more rapidly than for any interval with smaller rank k.

III. DISCUSSION

The main difference between our experimentally observed
avalanche distributions and those of the simulations in [4]
concerns the evolution of the energy or size exponent during
the course of the experiment. While the experimentally
observed changes of the energy exponent are relatively modest
(1.5–1.32), simulations showed huge variations of the size
exponent τ between 3.2 and 1, where “size” in [4] is defined
by the number of broken bonds, as a proxy for source
rupture area. The energy exponent is usually smaller than
the size exponent (the conversion in mean-field theory is
(τ − 1) = (ε − 1)(2 − συz) with συz between 0 and 0.5) [2]),
so we may estimate that the equivalent variation in the energy
exponent is between 2.1–2.5 and 1. This is an unusually large
range. To analyze this further we examine the PDFs of jerks
in different time periods between the superjerks with ranks
13–14, 14–15, 15–16, 16–17, 17–18, 18–19, 19–20, and 20–21
(Fig. 6). In these intervals we have two or more orders of
magnitude bandwidth of energy, and can hence have more
confidence in an underlying power law. We determine the
energy exponents for each power-law distribution and find a
decrease with increasing rank from 1.6 to 1.21, which spans the
values seen for coarser subsets [1], namely, from 1.5 to 1.32.
In a like-for-like comparison with [4] for equivalent ranks, the

equivalent range for τ is 2.0–1.0, and for ε is 1.67–1.0, closer
to the results presented here. This highlights the importance
of sampling over a wide bandwidth in determining power-law
behavior, but leaves an outstanding question of the discrepancy
at low implied values for ε in the model of [4].

All of the curves in Fig. 6 intersect near the energy
200 aJ. This makes all superpositions and mixing of power-law
distributions effectively also power law with intermediate
values of the energy exponent (Fig. 6). A linear behavior was
observed over four decades of probability and two in energy,
so the distribution of energies follows a power law in a good
approximation:

P (E)dE ∼ E−ε

E1−ε
min

dE E > Emin, (5)

where Emin is a lower cutoff needed for normalization
(and experimentally unavoidable). In order to examine the
distribution in more detail we apply the method presented in
[33]. For discrete systems, we use the equation for the energy

(a)

(b)

FIG. 7. Energy exponent as a function of the lower energy cutoff
recorded determined by ML. (a) Energy exponents determined by
the ML method for k intervals 13–14 and 20–21 with error bars and
estimate values; (b) energy exponents for all intervals between k = 13
and k = 21. Sparse data sets lead to less well defined plateaus. We
used data near 103 aJ to determine the energy exponents.
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FIG. 8. Evolution of the waiting time renormalization factor λ

and the energy exponent ε with increasing rank k of superjerks. Two
plateaus can be distinguished for large and small λ and exponents
near ε = 1.5 and ε = 1.32.

exponent,

ε(xmin) = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

, (6)

where xi , i = 1, . . . ,n are the observed values of x such that
xi � xmin a standard error

σ = ε(xmin) − 1√
n

+ O

(
1

n

)
. (7)

The technique consists of studying the behavior of the
power-law exponent ε determined using the maximum like-
lihood (ML) method, as a function of a varying lower cutoff
Emin. As shown in [1] this analysis leads to the two exponents
ε = 1.5 and ε = 1.32. We analyze the data for intervals
between superjerks (Fig. 7) and obtain power-law exponents as
values of the onsets of the plateaus. These values vary between
1.5 and 1.32 in agreement with the previous assessment [1].
The evolution of the energy exponent with increasing rank k

is shown in Fig. 8. These data are based on the height of the
first plateau in the ML curves in Fig. 7. Higher values of the
onset lead to the usual large fluctuations due to experimental
noise [4].

Figure 8 shows that the largest energy exponents ε occur at
the early stages and the smallest values near the final collapse.
The crossover is found near the rank k = 17 where the jerk
events are very sparse and the experimental uncertainties

are particularly large [1]. The crossover behavior does not
necessarily mean that no intermediate values of ε exist. Instead,
a simple superposition of avalanche signals from the two
regimes would mimic exactly such intermediate values of
the energy exponent, even though the probability distribution
function is not strictly a power law. It is easy to verify that
such superpositions of two power laws with similar exponents
yield functions that deviate from the power law by less than
the experimental resolution. The results in Fig. 8 fully agree
with the conclusions in [1]. Moreover, the scaling factor of the
waiting time λ shows a similar behavior as ε, which can also
be used to forecast the final collapse.

We now return to the assessment of the usefulness of a
statistical analysis of superjerks for the prediction of major
collapse events in coal mines and in laboratory experiments.
The possible indicators are the appearance of superjerks and
the reduction of waiting times near the major collapse event.
We do indeed observe both phenomena. Their predictive power
appears to be different, however. The appearance of superjerks
shows a nonstationary evolution towards catastrophe. This
criterion is insufficient for an early-warning signal, because
the increase of the energy of superjerks is continuous and
does not constitute a “critical” interval just before the major
collapse.

Superjerks are useful, however, in order to break the
evolution into smaller segments. Intervals between superjerks
contain sufficient information to identify the approaching final
collapse. The first weak effect is the change of slope in Fig. 4,
which may identify an interval of criticality after the 17th
superjerk. A second, much stronger warning is the reduction
of the waiting times in the same interval in Fig. 8. It is correct,
therefore, to identify the impending disaster by the sudden
decrease of waiting times between jerks and a weak increase of
the jerk energies. The most robust criterion is, nevertheless, the
reduction of the energy exponent as argued in [1]. However,
the criteria identified here from analyses of record-breaking
events may provide additional diagnostics that may increase
the reliability of such forecasts.
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