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Negative extensibility metamaterials: Occurrence and design-space topology
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A negative extensibility material structure pulls back and contracts when the external tensile load reaches a
certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function
responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase
diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all
possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The
sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless,
due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common
phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic
links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design
periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures.
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I. INTRODUCTION

Mechanical and structural metamaterials [1–18] are as-
sociated with the reversal of basic mechanical properties in
quasistatic loading cycles. In particular, auxetic metamaterials
[6–9] demonstrate a negative Poisson ratio, whereas for
origami-based metamaterials [10–12], a negative Poisson ratio
and negative bending and twisting stiffnesses can be expressed
analytically or observed numerically. Nicolaou and Motter
[15,16] also showed the possibility for engineered materials
with a longitudinal negative compressibility or extensibility
property that would contract in the direction of the applied
tensile load, Fig. 1. The same authors suggested that such a
contraction may occur only in an abrupt manner because of
the destabilization of the materials internal structure at the
unit cell level when the external load exceeds some threshold
value. Chen and Karpov [17] discussed an essential bistable
nature of negative extensibility structures and metamaterials,
whose forward and reverse transitions can be viewed as a
polymorphic phase transformation on the microscopic scale.
Such a solid-to-solid condensation process is reminiscent of
a superelastic phase transition, and it is accompanied by an
abrupt energy release in the structure. Two microstructural
polymorphs exhibit different stiffnesses, and therefore two
different stable states of equilibrium are possible for the same
external load. This behavior implies a hysteretic response of
the material to periodic loads [15–17].

A representative potential or strain energy function written
for a repetitive unit cell structure of a negative extensibility
metamaterial must possess rather exotic mathematical proper-
ties. In this paper, we discuss a path toward practical negative
extensibility metamaterials via the study of macroscopic
structural composites—periodical arrangements of unit cells
featuring bistable mechanical hysteresis. These cells are
made of linearly elastic springs and bars only, and they
can have their own interesting applications as mechanical
actuators, earthquake and explosion impact superdampers, or
reconfigurable civil infrastructure components. Furthermore,
once important mathematical criteria are understood and
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many practical examples of these structural metamaterials are
demonstrated in the first place, the knowledge gained will
facilitate the design of negative extensibility in materials on
the atomic scale.

From the known cases [15–17] it is clear that a representa-
tive (unit) cell of a periodic negative extensibility metastructure
may have several degrees of freedom (DOF), including at least
one internal degree of freedom, even for the case of chainlike
models. A systematic stability analysis of such unit cells
featuring an essential material or/and geometrical nonlinearity,
leading to a bistable hysteretic response, is highly challenging.

In this paper, we rely on geometrical nonlinearity only
and discuss an approach to elucidate many necessary features
of the potential energy function and to provide practical
guidelines toward a negative extensibility phenomenon in a
macroscopic metastructure made of linearly elastic elements
only. A practical mechanical metamaterial would employ this
metastructure as a main phase as well as damping elements
since the negative extensibility transitions are known to be
accompanied by the release of large amounts of kinetic energy
[17]. Thus, we focus on simple bistable unit cells that can
potentially be arranged in periodic arrays and that can be made
using only the following nonbuckling element types: (a) linear
springs or strings allowing for the large deformation described
by the engineering strain,

ε = l − l0

l0
, (1)

(b) linear elastic bars at moderate deformation measured with
the Green’s strain,

εG = l2 − l2
0

2l2
0

, (2)

and (c) rigid pivoted links with no strain. The potential energy
of the deformation of the spring and bar elements, respectively,
gives

πs = ks
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FIG. 1. Concept of the longitudinal negative extensibility. Elasti-
cally deformed material contracts abruptly in the direction opposite
to the force load when the load reaches a critical value inducing
a polymorphic phase transition. Effective elastic modulus and
mechanical extensibility (−�u/�F ) at a constant temperature are
negative around the transition point.

where k, l0, and l are the stiffness and the relaxed and deformed
lengths of the elements. The bar’s stiffness is kb = EA/l0 in
terms of its Young’s modulus E and cross-sectional area A.
Equation (4) represents the only approximation adopted in the
analysis, and it is good at moderate strains in the bars (0.05)
because εG = ε + ε2/2.

The strain energies (3) and (4) will lead to quartic (bistable)
potentials for the structure’s representative unit cells, whose
mathematical stability analysis is tractable. In the simplest
case of the Fig. 2(a) structure with one independent degree of
freedom, we may write the total potential energy as

� = kb

4(L2 + H 2)
(u2 − 2Hu)2 + 1

2
ksu

2 − Fu, (5)

where kb and ks are the bar and spring stiffnesses, respectively.
This expression can be written in a dimensionless form

U = x4 − ax3 + bx2 − f x, (6)

f = 4(L2 + H 2)

H 3

F

kb

, U = f

H
, x = u

H
,

a = 4, b = 4 + 2(L2 + H 2)ks

kbH 2
. (7)

A similar potential energy expression (6) can also be
written for the Fig. 2(b) structure, although using its own

dimensionless parameters,

f = L2 + H 2
2

H 3
1 (1 + γ )

F

k2
, U = f

H1
, x = u

H1
,

a = H2 + γH1

H1(1 + γ )
, b = H 2

2 + γH 2
1

H 2
1 (1 + γ )

, (8)

where γ = L2+H 2
2

L2+H 2
1

k1
k2

. In Eqs. (6)–(8), the dimensionless load

f is an external control parameter, the dimensionless dis-
placement x is a state parameter describing the state of
deformation, and the coefficients a and b are the system or
design parameters. This terminology is typical for catastrophe
theory [19–21] where design parameters of this type, though,
may serve the role of control parameters since they define
a desired system behavior. Note that the Fig. 2(a) structure
has only one independent design parameter since the value
a cannot vary in (7). A discussion of the Fig. 2(c) structure
and other examples leading to the potential energy form (6)
can be found in Ref. [22]. A phase diagram of the generic
system governed by (6) can be constructed for the system
parameters a and b, and it is shown in Fig. 3(a). Here,
three basic types of the mechanical response are possible.
One of them is monostable and two are bistable—when two
stable equilibrium configurations are possible for a same load.
The bistable (hysteretic) response can be either structural
superelasticity or structural superplasticity [22] depending
on whether the initial configuration is recovered upon load
removal. The term superplasticity implies that a full recovery
of the overall (structural) plastic deformation is still possible
upon load reversal, see Fig. 3(b).

The bottom line in the phase diagram, Fig. 3(a), represents
the onset of bistability because all designs above this line are
bistable and all those below are monostable. This line is a locus
of points {a,b} that represent simultaneously a mechanical
equilibrium, destabilization (zero stiffness), and an undulation
point or cusp singularity [22–21] of the potential,

U ′
x = U ′′

xx = U ′′′
xxx = 0 : 3a2 − 8b = 0. (9)

The upper curve in the Fig. 3(a) diagram represents designs
where the reverse destabilization and transition B → A occurs
at a zero load. These design points must satisfy the condition,

U ′
x = U ′′

xx = 0 ∧ f = 0 : 9a2 − 32b = 0. (10)

FIG. 2. Examples of bistable structures with one independent degree of freedom. Parameters k are linear stiffnesses of the spring or bar
elements.
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FIG. 3. (a) Phase diagram of the generic system governed by the quartic potential U = x4 − ax3 + bx2 − f x. (b) Three possible types of the
mechanical response: structural monostability (MS) or usual geometrical nonlinearity, bistable superelasticity (SE), and bistable superplasticity
(SP) when the recovery of structural deformation requires load reversal. Switching between states A and B occurs at a critical load f = fC .
Superelastic strain due to the transition εSE is proportional to �x. (c) and (d) Stability diagrams showing values of the critical forces fC at
specific values of the system parameters a and b.

The stability diagrams of Figs. 3(c) and 3(d) show the
critical loads f = fC at which structural destabilization will
occur at given system parameters. The curves shown were
plotted parametrically by fixing either b or a and using x as a
running variable,

U ′
x = U ′′

xx = 0 :

{
fC = x(b − 2x2), a = b

3x
+ 2x,

fC = x2(3a − 8x), b = 3x(a − 2x).

(11)

As can be seen, the Fig. 3 diagrams provide a panoramic
view of all possible basic types of mechanical behavior in the
bistable systems of the Fig. 2 type. These diagrams also enable
the design of a specific desired behavior as well as magnitudes
of the critical loads associated with the forward and reverse
transitions of the system. We note that negative extensibility
is not observed yet in the simplest bistable cells as in Fig. 2,
which can be described by the potential (6) and the Fig. 3(a)
phase diagram. Apparently, negative compressibility requires
a more complex form of bistability involving a greater number
of independent degrees of freedom per unit cell.

Nicolaou and Motter [15] and Chen and Karpov [17]
provided good reasoning that the sought negative extensibility
behavior must arise from at least one or more additional
independent internal degrees of freedom in a representative
unit cell of the metamaterial. In this paper, we suggest that
systematic studies of such bistable unit cells could employ
analytical reasoning similar to Eqs. (1)–(7), strengthened by
the numerical solution of nonlinear algebraic equations of the
type (8)–(10). We will derive a generic potential energy form
for a class of bistable structures with two independent degrees
of freedom, including one internal degree of freedom, followed
by a phase diagram derivation and a demonstration of the
negative extensibility property at a certain combination of the
system parameters.

More importantly, using this semianalytical approach we
will show that the negative extensibility is probably a more
common phenomenon than previously thought. It may occur
for rather simple structures made of several linear elastic
links although at some rare combinations of their physical
parameters.
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FIG. 4. Negative extensibility phenomenon in a five-element
bistable structure (unit cell) with linearly elastic members and two
independent degrees of freedom, the vertical displacements u and
v. L, H , and h are dimensions of the unloaded structure at F = 0,
and ki’s are linear stiffnesses of the bar and spring elements. The
structure contracts in the direction of the applied load when the latter
reaches a critical value that destabilizes the structure and induces the
transition. This transition is associated with the intermittent rotation
of the middle bar pulling back on the top and bottom bars of the
structure. The negative superelastic strain due to the A → B transition
is εSE = −2 �u/(H + h).

II. NEGATIVE EXTENSIBILITY PHENOMENON

Consider a five-element structural unit cell of the Fig. 4
type, composed of three inclined bars at moderate deformation
and two vertical springs allowing for large elongations. Pos-
sible periodic arrangements of such a unit cell in mechanical
metamaterials are shown further below in Fig. 10.

Using the engineering strain (1) for the springs k3 and the
Green’s strain (2) for the bars k1 and k2, we can write their

strain energies,

π1 = 2k1

L2 + (H − h)2 v2(v − H + h)2, (12)

π2 = k2

8(L2 + h2)
(u + v)2(u + v + 2h)2, (13)

π3 = k3

2
(u − v)2. (14)

The total potential energy of the Fig. 4 structure is

� = π1 + 2(π2 + π3 − Fu), (15)

In order to minimize the number of independent system
parameters, we may rewrite the potential (15) in terms of the
dimensionless quantities,

U = a(x + y)2(x + y + 2s)2 + by2(y − 1 + s)2

+ (x − y)2 − 2f x, (16)

U = �

k3H 2
, f = F

k3H
, x = u

H
, y = v

L
,

a = k2

4k3

H 2

L2 + h2
, b = 2k1

k3

H 2

L2 + (H − h)2 , s = h

H
.

(17)

By analogy with Eq. (6), the dimensionless force f is
the control parameter, x and y are two independent state
parameters, and a, b, and s are the system (design) parameters.

Interestingly, numerical minimization of the potential (16)
at certain combinations of the system parameters can pro-
vide a pinched hysteresis response with a sought negative
extensibility transition. A particularly large contraction at an
increasing tensile load was seen at a = 0.0665, b = 5.21, and
s = 0 when the A → B state switching occurred at the critical
load fC = 1.33, see Fig. 5. The figure shows a numerical
solution of Eq. (16) using a gradient method where the force
parameter f was varied from 0.0 to 1.7 and backward with
a step ±0.001, and the trial solution x0 = y0 = 0.001 was
set initially. Solutions from previous steps were used as trial
solutions at further iterations of the force parameter.

We explored the Fig. 4 type structures of different skew-
nesses s = h/H using the analysis to follow and found that
the maximal magnitude of the negative extensibility effect has
a weak dependence on s in the range from −0.5 to 0.5 and it
is better pronounced in rectangle-shaped cells. For a concise
discussion, we therefore set s = h = 0 in (16) and (17) and
write the final form of the potential in question,

U = a(x + y)4 + b(y2 − y)2 + (x − y)2 − 2f x,

a = k2

4k3

H 2

L2
, b = 2k1

k3

H 2

L2 + H 2
, (18)

The Fig. 5 behavior is qualitatively similar to the negative
extensibility observed in some hypothetical atomic systems
governed by much more complex potentials [15–17]. We point
out, though, the existence of a secondary (superelastic type)
hysteresis at higher loads not mentioned in the earlier publica-
tions. We will see below that it should be characteristic for all
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FIG. 5. Load-unload cycle of the Fig. 4 bistable structure gov-
erned by the potential (16) or (18) showing a pinched hysteresis and
a negative extensibility transition at the critical force fC = 1.33 or
critical strain εC = 2.385. The negative superelastic strain solely due
to the transition εSE = −0.063. A secondary hysteresis also exists
at the higher loads. States A and B are two structural polymorphs
with different stiffnesses. The overall path of load-induced switching
between the states is A → B → A → B → A.

bistable structures with a negative extensibility transition, and
therefore their overall path along the switching equilibrium
states could be A → B → A → B → A in larger amplitude
load cycles. Also, simplicity of the potential (18) will enable
us to determine an entire range of the system parameters a and
b leading to this remarkable mechanical behavior.

III. STRUCTURAL DESTABILIZATION AND
BIFURCATION POINTS

Stationary points of the scalar potential (18) are defined by
the simultaneous conditions,

U ′
x = 0 : g1(x,y,f,a,b) = x − y + 2a(x + y)3 − f = 0,

(19)

U ′
y = 0 : g2(x,y,a,b)

= y − x + 2a(x + y)3 + by(y − 1)(2y − 1) = 0, (20)

which correspond to a mechanical equilibrium of the structure.
We will refer to these conditions as the equilibrium set
conditions. Specific equilibrium states {x,y} will depend on
the combinations of the control and system parameters {f,a,b}.
The equilibrium set is an intersection of the hypersurfaces g1

and g2.
Structural destabilization and switching to a new stable

equilibrium configuration occurs in a snap-through action
when the external load reaches some critical value of fC .

Mathematically, this corresponds to an inflection point sin-
gularity on the potential (18) or a saddle node bifurcation in
the solution space. A necessary mathematical condition for an
inflection point can be written in terms of the determinant of
the Hessian matrix of second-order derivatives of the potential
(18) [19–21],

det H =
∣∣∣∣∣U

′′
xx U ′′

xy

U ′′
yx U ′′

yy

∣∣∣∣∣ = U ′′
xxU

′′
yy − U ′′

xyU
′′
yx = 0 :

g3(x,y,a,b) = 24a(x + y)2 + b(6y2 − 6y + 1)

× [1 + 6a(x + y)2] = 0. (21)

The condition (20) replaces U ′′
xx = 0 used in (11) for the

analysis of structures with one independent degree of freedom.
In an immediate vicinity of a limit point, the structure is in
equilibrium, and therefore the criterion for an inflection point
(structural destabilization) is the following:

g1(x,y,fC,a,b) = g2(x,y,a,b) = g3(x,y,a,b) = 0. (22)

The locus of all the limit points {fC,a,b} satisfying (22)
is a three-dimensional (3D) surface �L(fC,a,b) = 0 that we
may call the limit set. Also, the term bifurcation set from the
catastrophe theory [19–21] could be used since �L(fC,a,b) =
0 contains absolutely all bifurcation points of the potential (18)
including the higher-order pitchfork bifurcations discussed
below. Using the term bifurcation set, one should be aware of
a possible confusion; indeed, a bifurcation point in structural
analysis is where an equilibrium solution splits rather than
jumps.

In a practical sense, the criterion (22) can provide values
of the critical (destabilizing) loads fC for any specific
system parameters a and b. Thus, geometry of the limit set
�L(fC,a,b) = 0 is interesting, although difficult to realize for
2DOF systems, and we will discuss it in more detail in Sec. II
B. Note that the limit set geometry for the 1DOF potential (6)
was well represented by the stability diagrams in Figs. 3(c)
and 3(d) showing its two plane cross sections at some fixed
values of a and b.

When the system parameters a and b are varied in a design
process, a stable equilibrium solution {x,y} of the equilibrium
equations (18) may lose uniqueness at a point of supercritical
pitchfork bifurcation [23] and split into two stable and one
unstable solutions. For the systems with one degree of freedom,
this occurred at the cusp points (9) within limit set (11) of
the potential (6), and these points satisfied the additional
condition: U

′′′
xxx = 0, see Ref. [22] for more details. We suggest

that such a condition should generally apply to an internal
degree of freedom responsible for the destabilization. For the
Fig. 4 structure, this degree of freedom is the rotation of the
middle bar k1 on the plane of the structure, and therefore, we
will require

U ′′′
yyy = 0 : g4(x,y,a,b) = 24a(x + y) + 12b(2y − 1) = 0.

(23)

Thus, the criterion for a cusp point (solution splitting) can
be written as the following:

g1(x,y,f,a,b) = g2(x,y,a,b) = g3(x,y,a,b)

= g4(x,y,a,b) = 0. (24)
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The locus of all the cusp points {a,b} satisfying (24) is
a plane curve �S(a,b) = 0, and we will call it the cusp set.
Individual points {a,b} of the cusp set are independent of
the load f because a supercritical pitchfork bifurcation is an
outcome of design modification rather than the loading change
as it was for the saddle-node bifurcations (22). Availability of
a nontrivial solution to the equation set (24) in the form of an
actual plane curve �S(a,b) = 0 will indicate that the structure
can be bistable as in principle. One may further assume that the
curve �S itself should represent a boundary of the bistability
region in the ab-parameter design space, similar to the 1DOF
systems, see Eq. (9) and Fig. 3(a). However, using the Fig. 4
structure as an example, we will later see that the true onset
of bistability in 2DOF systems may correspond to a condition
weaker than (24).

A. Limit set geometry

For the potential (18), it was possible to derive a unique
analytical solution for the limit set equations (22) in terms of
fC = fC(y,b), a = a(y,b), and x = x(y,b) via algebraic sub-
stitution, see Eqs. (A1) and (A2) in the Appendix. Therefore,
using y as a varying parameter, we may draw a parametric
plane curve �b(fC,a) = 0 to represent the (f,a)-stability
diagram for a given fixed value of b. Two examples of it

are shown in Figs. 6(a) and 6(b). Such a diagram shows a
relationship between the system parameter a and the critical
loads fC upon which the switching between two stable
equilibrium configurations would occur. It also represents a
planar cross section of the limit set �L(fC,a,b) = 0 at the
fixed value of b.

It is also interesting to see a cross section of the set
�L(fC,a,b) = 0 for a fixed value of a, leading to the (f,b)-
stability diagram. However, for the potential (18), it is not
possible to derive an exact algebraic solution for (22) in
terms of fC = fC(y,a) and b = b(y,a), and we employed
a numerical Newton-Raphson iterative procedure for the
nonlinear equations set (22) at various instances of y. It was
possible to obtain smooth curves when y varied from 0.22
to 0.78 with a step of 0.002. Solutions from previous steps
were used as trial solutions for each next iteration of y. Two
examples of the curve �a(f,b) = 0 are shown in Figs. 6(c)
and 6(d) for a = 0.04 and 0.0665. Noteworthy, each of
these curves contains two cusp points and a local maximum.
Therefore, a range of the system parameters a and b exists
at which we can observe switching between states A and B

four times (in the manner of A → B → A → B → A) at
four different values of the critical force fC during a single
load-unload cycle. An example of such a mechanical response
was shown earlier in Fig. 5.

FIG. 6. Stability diagrams of the Fig. 4 bistable structure governed by the potential (18). Up to four critical forces fC are possible for some
selections of the system parameters a and b. The bistable response can be either SE when the original configuration is fully restored upon load
removal or SP when the recovery requires load reversal by analogy with Fig. 3.
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B. Negative extensibility behavior

The most important consequence of the double cusp points
mentioned in the previous section is the possibility for a pinch
hysteresis required for the negative extensibility behavior.
Indeed, values a and b can be selected so that the first transition
A → B leads to a contraction of the structure in the direction
of the applied load, see Fig. 5. Availability of the four-step
transition during a load-unload cycle for an elastic structure
seems to be a common feature to accompany the negative
extensibility behavior.

C. Bistability region clarified

As was mentioned earlier in Sec. II A, a single stable
solution to the equilibrium equations may split into two stable

and one unstable solutions at a cusp point in the ab-parameter
space. For such a special point, four simultaneous conditions
(24) must be satisfied. The locus of all the cusp points is the
cusp set, a plane curve �S(a,b) = 0. It was possible to get a
smooth numerical solution of Eqs. (24) for the potential (18)
in terms of a, f , x, and y, depending on the parameter b

with the Newton-Raphson method applied to (24) for each
specific value of b. The resultant dependence �S(a,b) = 0 is
shown in Fig. 7, where b was varied from 0 to 6.5 with a step
of 0.02.

Some important disclaimers have to be made prior to
adopting the curve �S = 0 in Fig. 7 as the onset of bistability.
From the bifurcation set geometry discussed in the previous
section, we may see that, for some values of b, the bifurcation
curve is bent down in a “beak” shape, see Fig. 6(b). This

FIG. 7. Principal regions of mono- and bistability in the space of design parameters of the potential (18) and a graphical explanation of the
second stable solution’s nucleation and accessibility change with a decrease in parameter a along the line 1-2-3-4. The second stable solution
becomes accessible when the new stable-unstable solution loop on the fy plane coalesces with the old solution forming an access channel.
The lines �S , �N, and �O represent the locus of the cusp, nucleation, and coalescence points of the potential (18) accordingly.
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indicates that the structure may start to demonstrate a bistable
behavior (with a decrease in a) earlier than the cusp point.
Indeed, it is sufficient that the value of a is found lower than the
local maximum on the upper branch of the �b(fC,a) = 0 curve
in Fig. 6(b). At this point, another pitchfork bifurcation occurs
leading to solution splitting into two stable and one unstable
configurations. However, the second stable solution nucleates
as shown in Fig. 7 to coexist independently in a neighbor region
of the solution space inaccessible by the loading of the Fig. 4
type. It can only be accessed by applying certain coordinated
loads to all four nodes of the structure, which is not practical.
The points of nucleation of the inaccessible second stable
solutions can be determined as those corresponding to the local
maximum on the upper branch of the curve �b(fC,a) = 0 in
Fig. 6(b), and they are plotted in the Fig. 7 diagram as the
dashed line �N .

As can be seen from the Fig. 7 plots, this second solution,
in a pair with an unstable solution, forms a loop on the fy-
plane section of the solution space. This loop grows with a
decrease in a, until it coalesces with the first stable solution,
followed by formation of an access channel between them.
This channel makes state B accessible in a usual load-unload
cycle. The locus of the coalescence points on the ba plane can
be determined from the local maximum on the lower branch

of the curve �b(fC,a) = 0, and they are plotted in the Fig. 7
diagram as the dashed line �O .

The line of coalescence points �O merges with the cusp
curve �S at b = 4 forming a single continuous boundary of
the region of the true physical bistability, observable in load-
unload cycles of the Fig. 4 structure. This boundary is shown as
the continuous solid line in the Fig. 7 diagram. In accordance
with the stability diagrams of Fig. 6, the dotted section of the
cusp curve �S below the line �O separates the region of the
fourfold switching cycles A → B → A → B → A. We will
narrow it to a region of the negative extensibility behavior in
the section to follow.

IV. STRUCTURAL PHASE DIAGRAM

The plot of Fig. 7 is a prototypical phase diagram of
the structure showing a boundary between two principal
types of structural behavior, bistability and monostability, in
the design space. We may now further clarify the behavior
subtypes within the bistability region. Since the negative
critical forces exist in Fig. 6 stability diagrams, the superelastic
(reversible on load removal) and superplastic responses should
be distinguished, and we saw a negative extensibility response
of the structure in the Fig. 5 plot. Thus, two more boundary

FIG. 8. Phase diagram of the Fig. 4 structure and all mechanical systems governed by the potential U = a(x + y)4 + b(y2 − y)2 +
(x − y)2 − 2f x. The most interesting behavior is the NESE in a small region of the design space bounded with the curves �O , �M, and �E .
The region of the NESP is somewhat larger.
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lines should be added to the Fig. 7 diagram in the region of
bistability to complete a structural phase diagram. A region of
the negative extensibility behavior of superelastic type (NESE)
will be our primary interest as leading to the most interesting
mechanical metamaterial applications.

The elasticity boundary showing the onset of superelastic
behavior when the structure recovers its original configuration
upon load removal can be determined from the condition that
the critical force fC at the corresponding destabilization point
(22) is equal to zero,

g1(x,y,0,a,b) = g2(x,y,a,b) = g3(x,y,a,b) = 0. (25)

A Newton-Raphson procedure was used to solve these
equations for a, x, and y at each particular value b, which
was varied from 0 to 5.21 with a step of 0.01. Solutions
from the preceding values of b were used as trial solutions
for the successive values of b. The result is a relationship
between parameters a and b given by the curve �E(a,b) = 0 in
Fig. 8.

We may now determine the negative extensibility boundary
or metastructure behavior boundary showing the onset of the
most interesting bistable behavior when the structure contracts
upon the tensile load increase as a result of the first transition
in the cycle A → B → A → B → A. The formal condition
to determine this boundary is the following: the transition
A → B can give a large rotation to the middle bar k1 of
the structure, see Fig. 4, whereas the overall height of the
structure must not change. We can write this conditionx as the

following:

g1(xA,yA,f,a,b) = g2(xA,yA,a,b) = g3(xA,yA,a,b) = 0

∧g1(xB = xA,yB,f,a,b) = g2(xB = xA,yB,a,b) = 0,

(26)

where xA and yA are the values of state parameters x and y in
configuration A right before the switching and xB and yB are
their values right after the switching. These five simultaneous
equations can be solved numerically with the Newton-Raphson
method for a, f , xA, yA, and yB at a fixed value of b. Varying
b from 4.5 to 7.5 with a step of 0.01 gives a relationship
between a and b shown as the curve �M (a,b) = 0 in Fig. 8. As
can be seen, the interesting region of the NESE is bound with
the lines �O , �E, and �M . The continuation of this region into
superplasticity is denoted on the phase diagram as the negative
extensibility of superplastic (NESP) type. The NESP behavior
may also find interesting applications in mechanical shape-
memory systems, thermomechanical actuators, and impact
dampers, alongside the NESE.

Finally, we look more closely onto the negative extensibility
region and draw the contour lines to represent a relative
intensity of the NESE effect,

INESE = εSE

εC

, (27)

where εC is the critical elastic strain and εSE is the negative
superelastic strain at the NESE transition A → B, see the
Fig. 5 inset. This parameter describes the relative contraction
of the structure due to the transition. Noting that the effect
intensity is zero along the curve �M (a,b) = 0, we can relate
the dimensionless displacements right before (xA) and right

FIG. 9. (a) The vicinity of the NESE, a zoom of the Fig. 8 phase diagram. Shown are the contour lines of the NESE effect intensity defined
in (27). The maximal intensity of −2.64% is observed for the triple point (a = 0.0665, b = 5.21) at the intersection of lines �E and �O . The
dotted line marked r shows the drift of this point for a structure, governed by the accurate potential (28), with an increase in the structural
aspect ratio r = H/L. (b) and (c) Strain-to-load curves of actual structures designed near the triple point at r = 0.1 and 0.2, compared to the
theoretical prediction discussed in the paper that uses the approximation (4) and corresponds to the limit r → 0.
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FIG. 10. Possible periodic arrangements of the NESE cells of the Fig. 4 type in a periodic mechanical metamaterial or metastructure.
Examples of responses observed in imperfect metastructures of the first type (top left) with random member stiffnesses at a relative standard
deviation of 0.3%; a = 0.0708, b = 5.15, r = 0.2; periodic boundary conditions are used on the vertical edges, and the loaded nodes are
constrained to move synchronically in the vertical direction only; the dashed line is the corresponding single-cell response.

after (xB) the transition as the following:

xB = xA(1 + INESE). (28)

This condition can be used in (26) instead of xB = xA

to obtain the contour lines corresponding to various fixed
values of INESE with the similar Newton-Raphson iterative
procedures. The results are presented in Fig. 9, and we may
conclude that the maximal effect should be expected in the
vicinity of the triple point formed by the superelasticity (�E)
and bistability (�O) boundaries.

Figures 7 and 8 together represent the final phase diagram
of the Fig. 4 structure made of five linearly elastic members in
terms of the dimensionless system (design) parameters a and
b defined in (18). As can be seen, the negative extensibility is a
rare behavior occurring only for a small and narrow region in
the design space. On the other hand, simplicity of this structure
suggests that the negative extensibility is a more ubiquitous
property, achievable for a greater range of material systems
than previously thought.

V. ERROR ANALYSIS AND OTHER PARAMETERS

In order to understand the error introduced in the analysis
with the Green’s strain approximation (4), we define an
accurate Fig. 4 structure potential using only the engineering
strain measure (1),

� = π1 + 2(π2 + π3 − Fu),

π1 = k1

2
(
√

L2 + (H − 2v)2 −
√

L2 + H 2)2, (29)

π2 = k2

2
(
√

L2 + (u + v)2 − L)2, π3 = k3

2
(u + v)2.

It is more challenging to perform a systematic analysis of
this system because a dimensionless form of the potential (29)
will require three independent system parameters. Indeed, the
mechanical behavior also will depend on the aspect ratio of
the Fig. 4 structure,

r = H

L
, (30)
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and the Fig. 8 diagram will only represent a cross section of
the 3D design space of the actual structure at r → 0. Thus,
the approximation (4) is good at small aspect ratios when the
maximal strain in the bar elements remains low in the hysteretic
(bistable) load-unload cycles.

The location of the triple point on the phase diagram
representing the maximal NESE effect will drift with r in
the hypothetical 3D design space as shown in Fig. 9 with the
dashed line. We also found that the greatest discrepancy in the
behavior at various r > 0’s is seen for the critical (switching)
force values, see Figs. 9(b) and 9(c). All other features of
the structural response, including the maximal effect intensity
are well reproduced for values of r up to 0.30. It is safe to
conclude that the approximation (4) and the proposed analysis
can provide starting points for a quick search for the negative
extensibility or negative compressibility property in the design
space of bistable material systems.

The present methodology is also applicable to other accu-
rate potentials of the type (29) without using the approximation
(4) when only two variable system parameters can be identified
as interesting ones and other parameters are maintained
constant. Several successive procedures of this kind could
provide useful planar cross sections of the corresponding
multidimensional design spaces to identify regions of the
negative extensibility behavior. For example, several nonzero
values of the skewness parameter,

s = h

H
, (31)

of the potential (16) also were considered in the range from
−0.5 to 0.5. This parameter was found to have a weak influence
on the maximal achievable NESE effect magnitude, although
it was slightly better pronounced in rectangular unit cells.

VI. CONCLUSIONS AND OUTLOOKS

We discussed the negative extensibility phenomenon in a
simple unit cell structure made of five nonbuckling linearly
elastic members, which can be used to fabricate periodic
mechanical metamaterials with similar properties. This in-
teresting phenomenon is associated with a special type of
bistability transition in the equilibrium solution space of these
structures of a more complex type compared to the usual
superelastic or superplastic transitions. Simplicity of the unit
cell structure studied here suggests that the NESE as a highly
interesting property of material systems is probably more
ubiquitous than earlier thought. It may exist in simple bistable
structures with linear material properties, although a thorough
analysis would typically be required to identify the relevant
suitable ranges of the design parameters for each system
type. Furthermore, caution should be taken to avoid losing
this property entirely when attempting to increase the effect
intensity by approaching (on the phase diagram) the region of

apparent monostability where the bistability is inaccessible in
usual load-unload cycles, see Figs. 7 and 8. The reason is the
directional nature of negative extensibility property as defined
originally in Fig. 1. By mental extension of the contour lines
in the Fig. 9 diagram, that region should contain “hidden”
negative extensibilities of greater intensities. These behaviors
could be unleashed with small additional forces acting on
the internal degrees of freedom and making an interesting
mechanical device reminiscent of an electronic switch.

Finally, Fig. 10 shows possible arrangements of multiple
NESE cells in a periodic metamaterial structure. The collective
NESE response of a perfect periodic structure with no
randomness in element properties should be equivalent to the
unit cell response. However, inevitable small imperfections of
elastic member properties in different unit cells may introduce
significant deviations from the basic unit cell response. Some
of our pilot studies suggest that the critical force value at
the NESE transition may shift in both directions, whereas
the reverse transition typically shifts toward the center of the
hysteresis, and a steplike character of the transitions can also
be expected, see Fig. 10. Collective behavior of the bistable
periodic NESE medium will certainly have many interesting
properties of its own and should be studied more systematically
in a separate effort using nonlinear dynamics methods [23,24].
Among these properties are the switching wave propagation
speed [25], self-synchronization capabilities, influence of
damping components, relaxation transients, effect boundary
conditions and loading constraints, and other interesting
features. Other simple types of the NESE unit cells should
also be sought in the future.
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APPENDIX

Analytical solution of Eqs. (22) for the potential (18),

f (y,b) = by(4 − 6y + bP2)

2P1
,

a(y,b) = − 8b(1 − 6y + 6y2)P 2
1

27y2(2 + b − 3by + 2by2)2(1 + P1)3
,

x(y,b) = y[12 + 2b(7 − 24y + 18y2) + 3b2P2]

4P1
. (A1)

Here, the following notations are used:

P1 = 3 + b − 6by + 6by2,

P2 = 1 − 9y + 26y2 − 30y3 + 12y4. (A2)
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