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Simulating ice crystal growth is a major issue for meteorology and aircraft safety. Yet, very few models
currently succeed in reproducing correctly the diversity of snow crystal forms, and link the model parameters to
thermodynamic quantities. Here, we demonstrate that the new three-dimensional phase-field model developed in
Demange et al. [npj Comput. Mater. 3, 1 (2017)] is capable of reproducing properly the morphology and growth
kinetics of snowflakes in supersaturated atmosphere. Aside from that, we show that the growth dynamics of snow
crystals satisfies the selection theory, consistently with previous experimental observations. Finally, we link the
parameters of the phase-field model to atmospheric parameters.
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I. INTRODUCTION

The formation process of snowflakes keeps challenging the
scientific community [1] as the growth mechanism remains
yet misunderstood [2]. Indeed, snowflake morphology at milli-
metric scale results from the interplay of complex phenomena,
from quantum mechanics at a atomic scale [3], to facet kinetics
at a macroscopic scale. Beyond theoretical consideration, ice
crystal morphology has also piqued interest of industrials.
Notably, meteorology and aircraft safety require the devel-
opment of metrologies such as interferometric imaging [4,5],
to estimate ice water content in clouds. The calibration of such
devices relies upon the preliminary compilation of realistically
simulated snowflakes and the dependence of their morphology
on atmospheric conditions.

The study of snowflake morphology was addressed exper-
imentally first. In a pioneering work, Nakaya observed that
the vapor-ice phase transition resulted in a wide manifold of
patterns and sizes of snowflakes [6]. The systematic indexation
of snowflake morphologies to temperature and humidity
resulted in the most famous Nakaya diagram [7]. More recent
meteorological classifications can also be found in other
studies [8–10]. In spite of the vast amount of experimental
data, the physics behind ice crystal growth remains thoroughly
debatable [11]. Even now, various models are still being
considered, such as the layer nucleation rates [12] and the
quasiliquid layer [13].

Alternatively, the first step toward the understanding of
ice crystal growth was provided by molecular dynamic
simulations [14]. However, these studies are currently confined
to space and time scales several orders of magnitude smaller
than the characteristic scales of snowflake growth [10]. Then,
the cellular automaton model was used to reproduce several
snowflake morphologies [15–18]. Yet, this model is very
sensitive to numerous numerical parameters, sometimes hard
to relate to thermodynamics quantities. This shortcoming was
withal relieved in Ref. [17]. Nevertheless, it is not perfectly
clear how additional physical mechanisms can be added to the
procedure. For instance, introducing fluid dynamics might be
required to simulate the impact of air flow on the morphology
of snowflakes.

Continuous models are promising to palliate the shortcom-
ings of cellular automata. Among such, the sharp interface

model of Barrett et al. [19] succeeded in simulating various
snowflake morphologies. However, this method could not ac-
count for characteristic snowflake features in three dimensions,
such as side branching [20], surface markings [21,22], and
snow crystal aggregation [23]. Aside from that, only small
supersaturations could be prospected, due to the numerical
cost of interface parametrization [24]. Now, the phase-field
model [25–28] has the decisive advantage to overcome the
explicit tracking of the sharp boundary, by spreading out the
interface over a small layer, and reduce the computation load of
simulations. And yet, it was only with Barret et al. in Ref. [29]
first, and Demange et al. [30] more recently, that the phase-field
approach succeeded in simulating the growth of snow crystals
in three dimensions.

In Ref. [31], the growth process of simulated snowflakes
was assumed to result from the synergistic effect of a highly
anisotropic surface tension, and a kinetic attachment vertical
anisotropy [31]. A major hypothesis in this model was to
free itself from the constraint of the slow growth regime
[32]. The challenge of this work is to investigate if under
these hypotheses, the model is capable of simulating the
formation of snowflakes, while preserving a consistent growth
process and realistic morphologies. The underlying objective
is to provide experimentalists with a reliable and versatile
numerical tool that predicts snowflake growth and morphology
in supersaturated atmosphere. To our knowledge, this was
never achieved before.

This work is structured as follows. First, an overview of
the phase-field model developed in Ref. [30] is provided. It is
accompanied by the regularization procedure for the highly
anisotropic surface tension. Second, the numerical growth
process of simulated snowflakes is studied in the fast and slow
growth directions. Then, the growth kinetics of simulated ice
dendrites is confronted to the solvability theory. Finally, the
simulations are linked to experiments by the intermediate of a
morphology diagram of snowflakes.

II. OVERVIEW OF THE PHASE-FIELD MODEL

1. Kinetic equations

The kinetics is described by an order parameter φ re-
ferring to the ice (+1) and vapor (−1) phases, and the
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reduced supersaturation of water vapor u = (c − cI
sat)/c

I
sat.

Here, cI
sat(T ) is the saturation number density of vapor

above ice, at temperature T . At initial time, the reduced
supersaturation u0 is homogeneous. The growth kinetics of
snowflakes is governed by two nonconservative phase-field
equations:

A(n)2∂tφ = −f ′(φ) + λB(n)g′(φ)u

+ 1

2
∇� ·

{
|∇�φ|2 ∂[A(n)2]

∂∇φ
+A(n)2∇�φ

}
(1)

∂tu = D̃∇� · [q(φ)∇�]u − Lsat

2
B(n)∂tφ, (2)

where space and time are scaled by the ice-vapor interface
width W0 and the relaxation time of the interface propagation
τ0, respectively. In Eq. (1), the double well potential f (φ) =
−φ2/2 + φ4/4 is the free energy density of the ice-vapor
system, at temperature T , and saturation concentration c =
cI

sat. g′(φ) = (1 − φ2)2 is an interpolation function introduced
in Ref. [25]. λ is a numerical coupling parameter. The first
source of anisotropy B(n) = (n2

x + n2
y + �2n2

z)1/2 is a kinetic
anisotropy function accounting for different water molecule
attachment rates on the basal and prismatic faces of snowflakes
[32], where n = −∇φ/|∇φ| is the unit normal vector of φ.
In B(n), the parameter � > 0 governs the preference between
horizontal (� < 1) and vertical (� > 1) growth. The second
source of anisotropy A(n) = 1 + εxy cos(6θ ) + εz cos(2ψ) is
the surface tension anisotropy function. Here, εxy and εz are
the anisotropy constants, and θ and ψ are the polar and
azimuthal angles of the contour normal vector n, defined
by θ = arctan[ny/nx] and ψ = arctan[(n2

x + n2
y)1/2/nz]. A(n)

accounts for the only common symmetries to most snowflake
morphologies. These are the horizontal sixfold symmetry and
the vertical planar symmetry. To mimic faceting in the hori-
zontal plane or in the vertical direction, one of the anisotropy
constants εxy or εz must be chosen so that the equilibrium
crystal shape (ECS) associated to A(n) displays missing
orientations. It should be noted that it is technically possible
to impose the symmetry of the crystal, as well as faceting, by
the intermediate of a purely kinetic anisotropy, as it is the case
in Ref. [33]. However, we believe that the sixfold hexagonal
symmetry of snowflakes cannot be explained by kinetic effects,
but only by surface tension anisotropy (even weak), inherited
from the crystal structure of ice. In Eq. (2), q(φ) = 1 − φ

prohibits diffusion within ice. D̃ is the reduced diffusion
coefficient. Lsat is the depletion rate of water molecules in
vapor, due to ice phase growth. Finally, the vertical scaling
of interfaces is introduced via anisotropic space derivative
∇� = (∂x,∂y,�∂z), which reduces the interface width in the
slow growth direction. The constants λ, W0, τ0, and D̃ are
entangled with each other by the thin interface limit approach
[25,26]: W0 = d0λ/a1, D̃ = a2λ, where d0 is the isotropic
capillarity length, a1 = 0.8839, and a2 = 0.6267 [27]. Be-
sides, the anisotropic interface width W0A(n) is linked to the
characteristic time of interface propagation τ0A(n)2, where
τ0 = a2λW 2

0 .

2. Simulation method

1. Highly anisotropic surface tension

In this work, snowflake facets were mimicked by rounded
faces with a large radius of curvature. This can be achieved by
providing the surface tension anisotropy function A(n) with
high energy directions, which generate unstable orientations in
the equilibrium shape of the crystal (ECS) [34]. These unstable
orientations correspond to sharp corners in the ECS, pairing
with the nonconvexity of the parametric plot of 1/A(n). For
these orientations, the phase field [Eq. (1)] becomes ill posed,
and A(n) must be regularized. In this work, we supposed that
unstable orientations were produced either in the vicinity of
the vertical direction (ψ close to 0 and π ) or in the vicinity
of six equiangular horizontal directions for θ . This hypothesis
allowed us to use the two-dimensional (2D) regularization
algorithm of Eggleston et al. [35,36] in three dimensions,
either for the θ variable or for the ψ variable. The principle
is as follows. In two dimensions, the reduced anisotropy
function A(n) reduces to A(θ ). Unstable crystal orientation
is simply characterized by a negative stiffness A + ∂2

θθA < 0
[37], when the anisotropy constant ε reaches a threshold value
εm. However, this formalism is not valid for higher dimensions
in the general case [38]. That being said, considering that the
two variables θ and φ of A(θ,ψ) are decoupled, such criterion
can be transposed to three dimensions, provided only one of
the anisotropy constants εxy or εz reaches its threshold value
εm
xy or εm

z . This threshold value is defined as the minimum
value of εxy (resp. εz), for which the equation A + ∂2

θθA = 0
(resp. A + ∂2

ψψA = 0) admits solutions. εm
xy and εm

z follow:

εm
xy = 1 + εz cos(2ψ)

35
, εm

z = 1 + εxy cos(6θ )

3
. (3)

Considering this set of equations, regularizing the missing
orientations in three dimensions raises two issues. First, εm

xy

and εm
z depend on ψ and θ , respectively. Second, εm

xy and
εm
z are entangled with εz and εxy . Consequently, raising the

horizontal hexagonal anisotropy εxy also enlarges the range of
missing orientations in the vertical direction, and vice versa.

Invoking the rotation periodicity of A(θ,ψ), we restrict the
procedure to θ ∈ [−π/6,π/6] and ψ ∈ [0,π ]. When εxy or
εz is locally superior to εm

xy(ψ) or εm
z (θ ), missing orientations

(θ,ψ) emerge, within a certain angular sector [−θm,θm] or
[−ψm,ψm] [see Figs. 1(a) and 1(b)]. The bounds θm and
ψm can be detected by a local inversion of the convexity of
1/A(n). For each coordinate, the concave part of the curve is
determined by the tangent construction of Eggleston et al. [35].
Following this procedure, θm and ψm, respectively, satisfy
the following conditions: ∂θ [cos(θ )/A(θ,ψ)]|θ=θm = 0 and
∂ψ [cos(ψ)/A(θ,ψ)]|

ψ=ψm = 0. This provides the following
implicit definition of θm and ψm:

6εxy sin(6θm)

sin(θm)
= 1 + εxy cos(6θm) + εz cos(2ψ)

cos(θm)
,

2εz sin(2ψm)

sin(ψm)
= 1 + εxy cos(6θ ) + εz cos(2ψm)

cos(ψm)
. (4)

This set of equations shows that θm = θm(ψ) and ψm =
ψm(θ ). Now, missing orientations are identified and can be
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FIG. 1. Inverse plot of the anisotropy function A(n), for εxy = 0.2
and εz = 0.7. Top left: 1/A(θ,π/4), limit angle θm(π/4), and tangent
construction between θm and −θm. Top right: 1/A(π/12,ψ), limit
angle ψm(π/12), and tangent construction between ψm and −ψm.

regularized. For that purpose, A(n) must be continuously
spliced in the corresponding directions. In this work, A(θ,ψ)
was prolonged by a trigonometric function:

A(θ,ψ) =
⎧⎨
⎩

A1 + B1 cos(θ ), |θ | < θm,|ψ | � ψm

A2 + B2 cos(ψ), |θ | � θm,|ψ | < ψm

1 + εxy cos(6θ ) + εz cos(2ψ), otherwise.
(5)

In Eq. (5), the functions A1, A2, B1, and B2 are set to ensure
continuity of A(n) and its derivatives:

A1(ψ) = 1 + εxy cos(6θm) + εz cos(2ψ) − B1 cos(θm),

B1(ψ) = 6εxy sin(6θm)

sin(θm)
,

A2(θ ) = 1 + εxy cos(6θ ) + εz cos(2ψm) − B2 cos(ψm),

B2(θ ) = 2εz sin(2ψm)

sin(ψm)
. (6)

The result of the regularization procedure is summarized
in Fig. 2, in case of unstable orientations along horizontal
directions (εxy = 0.1 > εm

xy and εz = 0.3 < εm
z ) and along

the vertical direction (εxy = 0.02 < εm
xy and εz = 0.6 > εm

z ).
Before regularization, the 2D Wulff shape (WS) for the ECS
displays “ears” corresponding to unstable orientations [Figs.
2(a)–2(c)]. The associated inverse 2D polar plot is concave in
these directions [inside blue curve in Figs. 2(j)–2(l)]. After
regularization, the ears are removed [Figs. 2(d)–2(f)], and
the inverse polar plot becomes convex [outside red curve in
Figs. 2(j)–2(l)]. Aside from that, the resulting 2D polar plot
is regular and coincides with the original 2D polar plot where
the curvature was already positive before the regularization
procedure [red curve in Figs. 2(g)–2(i)].

2. Numerical scheme

To model the growth of ice crystals, Eqs. (1) and (2)
were solved in three dimensions, using a semi-implicit time
integration. Besides, the Fourier collocation treatment of space
was used [39]. This allows to get rid of the second order
derivatives, thus achieving faster computation. The correct
estimation of the angles θ and φ that appear in A(n) required
to use directional derivatives. Indeed, centered derivatives
dramatically raise the truncation error, when n is aligned with

(a) WS (ψ = π
2 ) (b) WS (ψ = π

4 ) (c) WS (θ = 0)

(d) ECS (ψ = π
2 ) (e) ECS (ψ = π

4 ) (f) ECS (θ = 0)

(g) A (ψ = π
2 ) (h) A (ψ = π

4 ) (i) A (θ = 0)

(j) 1/A (ψ = π
2 ) (k) 1/A (ψ = π

4 ) (l) 1/A (θ = 0)

FIG. 2. 2D Wulff construction in the horizontal plane for εxy =
0.1 and εz = 0.3 in ψ = π/2 (a) and ψ = π/4 (b), and in the
vertical direction for εxy = 0.02 and εz = 0.6, in θ = 0. (d)–(f)
Corresponding ECS after regularization. (g)–(i) Corresponding polar
plot before (outside curve in blue), and after (inside curve in red)
regularization. (j)–(l) Corresponding inverse polar plot before (inside
curve in blue), and after (outside curve in red) regularization.

the grid. This discrepancy is amplified near the front most tip
of the dendrite, in case of highly anisotropic surface tension
[35]. This issue is crucial, as the dendrite tip velocity sets the
size of the dendrite. In the present case of sixfold symmetry,
all branches cannot benefit from equal precision. This can
lead to a symmetry breaking, and even snowflake instability.
Hence, decentered derivatives were used within a fixed angular
sector centered in (Ox), (Oy), and (Oz), where grid effects are
the strongest. The decentering direction was the same as the
phase flux [35]. Remaining derivatives were centered. Finally,
periodic boundary conditions were used.

3. Parameter setting

For horizontal growth, simulations were performed using
the grid spacing �x = �y = �z = 0.8, and the time step
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�t = 0.05 [27], on a 400 × 400 × 64 simulation box (800 ×
800 × 96 for * in Fig. 13). Vertical growth simulations
required a refined discretization grid. The grid spacing was
thus reduced to �x = �y = �z = 0.4, and the time step
was set to �t = 0.01, as in Ref. [27], on a 128 × 128 ×
256 simulation box. The growth of snowflakes was initiated
by a circular-disk shape germ (φ = 1), within water vapor
(φ = −1) of homogeneous reduced supersaturation u0. The
simulation germ cannot be assimilated to the nanoscopic
nucleus of experimental snowflakes, as such nucleus is by
several orders of magnitude smaller than the characteristic
space scale of phase field. However, it can be seen as the early
stage of real snowflake grown in supersaturated atmosphere
[40]. In this work, we opted for a circular disk germ rather than
a sphere because it accelerates the formation of flat snowflakes
in case of horizontal growth. The disk germ radius was set to
8�x. The coupling constant was set to λ = 3.0 as in Ref. [27].
Other parameters are given in Ref. [30].

III. RESULTS

A. Snowflake growth process

In this model, the growth process rooting the morphology
of snowflakes results from the joint influence of the vertical
kinetic anisotropy B(n) and the highly anisotropic surface
tension A(n). The vertical anisotropy contribution sets a slow
and a fast growing direction, leading to planar or columnar
morphologies. The surface tension is responsible for the
hexagonal symmetry, the faceted aspect of the crystal in the
horizontal plane, and the twofold symmetry in the vertical
direction [30].

1. Surface tension and branching instability
in the fast growth direction

In the fast growing direction, two processes compete: the
highly anisotropic surface tension and the branching insta-
bility. The highly anisotropic surface tension is responsible
for the horizontal hexagonal symmetry and vertical twofold
symmetry, and the faceted aspect of the simulated crystal. As
for the branching instability, it relates to the Berg effect, stating
that the supersaturation field around a crystal remains regular
[41]. For instance, the crystal displays sharp edges in Fig. 3(b),
but the supersaturation level set u = 0.3 is very smooth (black
lines). As a consequence, the supersaturation is largest at edges
(u � 0.25) and weakest at face centers (u � 0). A divergent
feedback process of vapor diffusion eventually increases the
growth rate in the vicinity of corners. At some point, the
difference of supersaturation between edges and face centers
becomes too large to be offset by surface tension anisotropy.
The velocity eventually becomes smaller at the face center,
and the facet breaks.

The competing effect of the highly anisotropic surface
tension and the branching instability is responsible for the
formation of primary branches. In the horizontal direction
first [Fig. 3(a)], the effect of the surface tension predominates
when the crystal is small (t � 50). The shape of the snow
crystal thus aligns on the hexagonal ECS associated to the
anisotropic surface energy function A(n). Above some critical
crystal radius (t ∼ 50), the branching instability occurs, and

t = 0

t = 50

t = 250

t = 500 t = 1000

(a) Horizontal growth

0.0 0.8

u = 0.3

u = 0.74

u

(b) Berg effect

t = 0

t = 70

t = 80

t = 110

(c) Vertical growth

FIG. 3. Growth process of simulated snowflakes. (a) Contour
representation (φ = 0) of a fern dendrite growth. (b) Early growth of
a fern dendrite and supersaturation field u. (c) Contour representation
(φ = 0) of a capped column growth. Time in τ0 units. Visual rendering
uses the software Blender.

horizontal dendrites are formed. In some cases of horizontal
growth, the branching instability is horizontal, resulting in a
“sandwich instability” [16], as observed in Ref. [42]. When
the growth is vertical, the branching instability is involved in
the formation of a curved tip on column snowflakes, and the
formation of a hollow on the basal faces of prisms [30]. The
branching instability is also involved in the formation of caps
in Fig. 3(c), when the atmospheric conditions are changed
during the growth.

The competing effect of the highly anisotropic surface
tension and the branching instability is also responsible for
side branching. In our simulations, the side branching process
is qualitatively similar to that of experimental ice crystals with
a faceted tip (see Fig. 5 in Ref. [43]). As can be seen in Fig. 4,
the corner of the primary branch (black circle) is prominent.
It thus undergoes the divergent feedback process described
above. Meanwhile, a new primary branch emerges from the
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t = 100 t = 110 t = 120

side
branch

primary
branch

FIG. 4. Side branching process for highly anisotropic surface
tension. The simulations correspond to the fern dendrite. Time is
in τ0 unit.

initial primary branch (red dashed circle). As such, the red
dashed circle in the simulation process indicates the formation
of “concaves” on real faceted ice crystals [43]. Finally, the
original corner of the primary branch (black circle) becomes
the nucleus for a side branch. The present mechanism for
side branching results from the highly anisotropic surface
tension, which leads to the formation of sufficiently sharp
corners on the sides of the primary branch. Therefore, it differs
from the side branching process in case of weakly anisotropic
surface tension, stemming from infinitesimal fluctuations of
supersaturation or temperature in the vicinity of the dendrite
tip [44].

In a nutshell, the kinetics of real snowflake growth in air is
phenomenologically reproduced in the fast growth direction.
However, the mechanism of faceting which is suspected
to result from the slow growth limits in real snowflakes
[45] is mimicked in our simulations by the effect of a
highly anisotropic surface tension in the horizontal plane.
The consequence of this choice on the dendrite tip velocity
is addressed in the following.

2. Kinetic anisotropy and terrace growth
in the slow growth direction

In the slow growth direction, solid-vapor interactions are
strongly reduced, due to the kinetic anisotropy function
B(n). The first consequence is the quasi-impossibility for
the branching instability to take place. However, the growth
is slow, but not stopped. It produces terraces, separated by
“macrosteps,” also simulated in Refs. [16,17]. These can be
seen in Fig. 5. Similar surface patterns were observed on
experimental snowflakes by the intermediate of interference
fringes [22].

0 50 100 150 200
0

2

4

6

8

10

x

y

t = 850

t = 900

t = 1000

FIG. 5. Terrace growth and terrace-step-kink propagation in our
simulations. The simulations correspond to the sectored plate. Time
is in τ0 unit. The interface width is close to 3.

expt.

pf

1

2

(a) Sectored plate

expt.

pf

1
2

3

(b) Stellar dendrite

FIG. 6. Principal growth stages of (a) a sectored plate and (b)
a stellar dendrite. Blue line: real snowflake from [46]. Red circles:
phase-field simulation [30]. 1,2,3: growth stages.

In details, the terrace is perpendicular to the slow growth
direction. The terrace-step kink moves outward as it is plotted
in the surface cut of Fig. 5. The propagation mechanism of
the step is the following: the water molecule attachment in
the direction normal to the terrace is strongly reduced because
of the kinetic anisotropy function B(n). Thus, water molecule
attachment is effective at the step only. Moreover, the diffuse
interface is scaled by � in the slow growth direction, so
that the vapor-ice interface thickness is reduced. As a result,
the surface of the terrace is phenomenologically smooth,
while the surface of the step is phenomenologically rough.
This description of macrosteps is similar to the model of
branch growth in Ref. [47]. At a completely different space
scale, this growth process is reminiscent of the formation of
2D islands on the surface of ice facets [21]. Nonetheless,
this comparison is qualitative only, as molecular attachment
processes at atomic scale are not addressed by the phase-field
model.

The macrosteps that are produced by brutal transitions
in the growth process, such as the branching instability, are
particularly well defined. We thus suggest that the succession
of flat basal planes on both real and simulated snowflakes
reflects the main stages of the snowflake growth history. This
idea was previously formulated in Ref. [47]. Figure 6 compares
the main stages of growth, between the real snowflake (blue
line) and the simulation (red line and circles) for the sectored
plate [Fig. 6(a)] and the stellar dendrite [Fig. 6(b)]. In the case
of the sectored plate [Fig. 6)], the system keeps memory of the
solid hexagonal plate (stage 1) before the branching instability
appears (stage 2). In that case, experimental and numerical
results are in good agreement. Besides, both transient solid
plates have a similar size, relative to the size of the snowflake.
This suggests that the branching instability occurred at the
same stage of their development. This observation indicates
that the present model reproduces well the real phenomenon.
This is even more striking with the stellar dendrite [Fig. 6(b)].
Here, three growth stages (1, 2, and 3) can be identified. Once
again, the three corresponding basal steps match between
the real snowflake and the simulation. The first step is the
vestige of a solid plate. During the second step, six small
sectors are formed. The last step consists of the dendrite
growth.
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(a) Multicrystal (b) 12 arm star

FIG. 7. Simulation of the simultaneous growth of multiple
snowflakes. (a) Three fern dendrite snowflakes grow simultaneously
in the plane. (b) 12 arm star. Surface plot uses the software Blender
for visual rendering.

3. Multiple seed growth process

Under certain atmospheric conditions, snowflakes aggre-
gate and form clusters [48]. The phase-field model developed
in Ref. [30] was thus provided with the multiple seed
growth procedure developed in Ref. [49]. In this approach,
each snowflake grows from a different seed, with a specific
orientation defined by a tilt angle θ0 in the anisotropy function
A(n). Two examples of multiple seed growth are presented in
Fig. 7.

First, Fig. 7(a) shows the planar growth of three fern
dendrite snowflakes. Each snowflake is characterized by a
different tilt angle: θ0 = 0 (bottom), θ0 = π/12 (top), and
θ0 = π/6 (left). It can be observed that the growth is perturbed
when snow crystals are too close from each other. The neigh-
boring branches are abnormally packed, and they are deprived
from side branching. This stems from the local decrease in
supersaturation between snowflakes, and consequently the
chemical driving force. When the supersaturation goes to 0,
the growth is blocked. This observation is consistent with
experimental data in Ref. [49]. A second example is provided
by the 12 arm star in Fig. 7(b). In that case, two seeds grow in
parallel, until it aggregates at their basal faces. It was observed
in Ref. [23] that the two coalescing halves of the 12 arm star
are tilted by a 30◦ angle in nature. In our simulation, this tilt
angle was imposed to one of the two halves.

B. Parabolic growth and solvability theory
for simulated snowflakes

1. Ivantsov framework for ice needles and dendrites

The dendrite tip model of Ivantsov [50] provides a useful
analytical framework to study the growth kinetics of dendrites.
At the root of it, the approximation of the dendrite tip by
a revolution paraboloid. In both our simulations (4) and
experiments (3), needles are nearly axisymmetric. Aside from
that, the longitudinal cut of the needle tip can reliably be fitted
(ρ > 0.99) by a parabola of parameter R. This is displayed in
the inset of Fig. 8(b) for the simulated needle (red circles).

On the contrary, ice horizontal dendrites are not cylindri-
cally symmetric [see Fig. 3(a)]. However, a link with analytical
models can be made, when the morphology of the ice dendrite

snowflake

parabol

envelop

R1

(1) Real snowflake

(2) Simulation

a

b

a

b

(a) Dendrite top shape

snowflake

parabol

(1) Real dendrite

(2) Simulated dendrite

(3) Real needle

(4) Simulated needle

R2

R

(b) Dendrite profile shape

FIG. 8. Tip morphology of a fern dendrite. (a) Contour represen-
tation (blue line) of a fern dendrite in the horizontal direction, from
experimental (1) snowflakes [22,46] and our simulations (2). Inset:
zoom on the dendrite front most tip. (b) Fern dendrites (1) and (2)
in the vertical direction, and column snowflake from experimental
(3) snowflakes [46] and our simulations (4). Red circles: Ivantsov
parabola fit of dendrite tip. Green line: envelope for side branching.

is considered separately in the horizontal [Fig. 8(a)] and
vertical planes [Fig. 8(b)]. Here, the contour of the simulated
stellar dendrite from [30] is compared to the real snowflake
from [46] (top view) and [22] (profile view).

In the horizontal direction [Fig. 8(a)], despite the sharp
and faceted shape of the dendrite, the front most tip [inset in
Fig. 8(a)] remains curved, and can also be fitted by a parabola
of parameter R1. This procedure is physically acceptable, as
snow crystals growing in highly supersaturated atmosphere
display a round tip as well [43]. However, the curved area of the
simulated dendrite tip is small. This generates an uncertainty
on the estimation of R1, resulting in an important dispersion of
measures. In the vertical direction [Fig. 8(b)], albeit extremely
sharp, the simulated dendrite tip (1) can reliably be fitted by a
parabola of parameter R2 (red circles in the top right inset). As
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FIG. 9. Time evolution of the tip velocity V and tip curvature
radii R, for the column growth (blue circle) and the fern dendrite in
the horizontal (red triangle) and vertical (black square) directions.
Vertical growth: u0 = 0.4. Horizontal growth: u0 = 0.65.

a result, the three-dimensional (3D) tip shape of ice horizontal
dendrites can be modeled by two parabola: horizontal of radius
R1 and vertical of radius R2. From R1 and R2, it is also
possible to define the geometric mean radius

√
R1R2 of a

virtual cylindric paraboloid [51]. A more accurate description
of the situation would be provided by the elliptical paraboloid
model of Horvay and Cahn [52]. However, this approach is
beyond the scope of this work, and is left to a future study.

In passing, the side branching morphology is also character-
ized in Fig. 8(a). In particular, the linear envelope (green lines)
for side branches [18] is recovered. In the region neighboring
the dendrite tip (a), the growth rate of young side branches
is small because branches restrain each other. At some point,
“winning” side branches are selected, and the growth rate is
increased (b). As a result, the slope of the linear envelope is
changed.

2. Ivantsov solution, stability theory, and universal law

The time evolution of the dimensionless dendrite tip
velocity V (t) and curvature radius R(t) are shown in Figs. 9(a)
and 9(b). Here, R was defined by the intermediate of the
parabola fitting of the dendrite tip introduced in Fig. 8. The
simulations were performed with u0 = 0.4 for the vertical
growth (blue circles) and u0 = 0.65 for the horizontal growth.
For the latest, the curvature radius in the horizontal direction
R1 (red triangle) and in the vertical direction R2 (black square)
were studied. It can be seen that after a short transition regime
(t � 100), V (t) and R(t) become stationary. This is consistent
with the steady-state theory for dendrite growth [50]. This
framework was originally defined for a nearly paraboloid tip
growing at constant velocity without change in shape, but
it is also satisfied experimentally by nonaxisymmetric and
faceted dendrite growth, especially snowflakes [32]. It should
be noted that the fluctuations of R1(t) most likely result from
the uncertainty of the curvature radius estimation. This is due
to the small sector of the horizontal dendrite where the front
most tip is curved [see Fig. 8(a)].

The steady-state values of V (t) and R(t) are written V s

and Rs for a given supersaturation u0. In the case of the
horizontal ice dendrite, Rs may refer to Rs

1, Rs
2, or

√
Rs

1R
s
2.

Repeating the same procedure for different values of u0, the
evolution of V s and Rs with u0 could be plotted in Figs. 10(a)

0.3 0.4 0.5 0.6 0.7 0. .9
0

0.1

0.2

0.3

0.4

u0

V
s

V s (column)

V s (dendrite)

(a) Dendrite tip velocity

0.3 0.4 0.5 0.6 0.7 0.

8 0

8 0.9
0

2

4

6

8

10

u0

R
s

Rs (column)

Rs
1 (dendrite)

Rs
2 (dendrite)

Rs
1Rs

2 (dendrite)

(b) Dendrite tip curvature radius

FIG. 10. Steady-state values V s and Rs of the tip velocity and
tip curvature radii, as a function of the supersaturation u0, for the
column growth (blue circle) and the fern dendrite in the horizontal
(red triangle) and vertical (black square) directions. Green diamond
in (b): geometric mean radius

√
Rs

1R
s
2. Continuous line: linear fit.

Dashed line: regression based on Ivantsov solution and the stability
theory (each curve differs from the other by a translation only).

and 10(b). For the needle growth (blue circle), the relation
between V s and u0 is linear, with a slope 0.42 [blue line in
Fig. 10(a)]. Moreover, Rs is stable [blue line in Fig. 10(b)].
This relation between V s and u0 was experimentally observed
during needle dendrite growth in supersaturated atmosphere
[53]. For the horizontal dendrite growth, it was suggested in
[30] that the relation was linear as well for low to intermediate
supersaturations (u0 � 0.55). This is indeed consistent with
the data on this range of supersaturations, with a slope 0.22
(red line). Besides, a linear relation was also observed in
Ref. [19] for u0 � 0.5. However, when one considers the
complete range of tested supersaturations (0.3 � u0 � 0.8),
the relation between the tip velocity and the supersaturation
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the geometric mean (d) radius. Straight line in (a): linear regression.
Dashed line in (b)–(d): fitting with Ivantsov solution.

rather satisfies the universal law adapted from [54], following
[51]: u0 ∼ −α

√
V s ln[α

√
V s] [red dashes in Fig. 10(a)],

where α = [a1/(2D̃λs∗)]1/2 (fitting value α = 0.17). Here,
the constant s∗ is the stability parameter. Moreover, contrary
to the needle tip, Rs

1 (red triangle), Rs
2 (black square), and√

Rs
1R

s
2 (green diamond) decrease, in accordance with the

relation adapted from [54]: u0 ∼ −γ /Rs ln[γ /Rs] (dashes),
where γ = a1/(λs∗) (fitting value γ = 0.09).

The behavior of both needle and horizontal dendrite kinetics
can be discussed in the framework of the solvability theory
[55,56]. First, the Ivantsov’s solution [50] relates a product
V sRs to the supersaturation u∞, far from the dendrite tip. In
this work, the simulation box was sufficiently big to ensure
the condition u∞ = u0. The following approximation of the
unmodified Ivantsov formula can thus be derived for small
values of u0 [51]:

u0 = −V sRs

2D̃
ln

[
V sRs

2D̃

]
. (7)

This relation is numerically satisfied by V sRs
1 [Fig. 11(b)],

V sRs
2 [Fig. 11(b)], and V s

√
Rs

1R
s
2 [Fig. 11(b)] products, to a

multiplicative constant.
The second relation is the selection of a unique (Rs,V s)

couple, by the intermediate of an additional length scale in
the growth kinetics [44]. This length scale is necessary to
produce dendrites that grow stably with a constant velocity
and tip radius. It can be provided by capillary effects or kinetic
anisotropy. When the additional length scale is set by surface
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1Rs
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FIG. 12. Steady-state stability parameter A/(V s[Rs]2), as a func-
tion of the supersaturation u0, for the column growth (blue circle), and
the fern dendrite using the horizontal (red triangle), the vertical (black
square), and the geometric mean curvature radius (green diamond).
Dashed line: power law regression.

tension, the “marginal stability hypothesis” [44] provides the
following stability criterion:

A

V s[Rs]2
= s∗, (8)

where the stability parameter s∗ is essentially a constant term
with respect to extrinsic variables, and A = 2a1D̃/λ. As can
be seen in Fig. 12, the quantities A/(V s[Rs

1]2), A/(V s[Rs
2]2),

and A/(V s[Rs
1R

s
2]) remain roughly constant when u0 varies.

Equation (8) is hence satisfied by all (Rs
1,V

s) (red triangle),
(Rs

2,V
s) (black square), and (

√
Rs

1R
s
2,V

s) (green diamond)
couples, but with different values for the stability parameter
s∗. These are, respectively, s∗

1 = 1.7, s∗
2 = 4.3, and s∗

12 = 2.7.
Combining Eqs. (7) and (8) provides the universal laws for
V s and Rs , used to fit the numerical results in Fig. 10.
Noteworthy, the fitting value for α in Fig. 10(a) is α = 0.17.
Now, α = [a1/(2D̃λs∗)]1/2 = 0.28/

√
s∗, so that the expected

numerical value for s∗ is s∗ = 2.9, which is close to the
numerical value we obtained for the couple (

√
Rs

1R
s
2,V

s):
s∗

12 = 2.7. Notwithstanding, this good consistency should be
taken with caution. Indeed, numerical results for V s , Rs

1,
and Rs

2 also match the 2D version of Ivantsov solutionbrk
V sRs = 2D̃/πu2

0, so that V s increases as u4
0/(πα)2, and Rs

1
and Rs

2 roughly decrease as πγ/u2
0, consistently with the

predictions of Brener and Melnikov [57,58] for zero kinetic
effects in two dimensions.

When capillary effects are negligible compared to the
kinetic anisotropy, Libbrecht showed [53,59,60] that the
unperturbed Ivantsov solution could be approximated by

V sRs = Au∞

[
1 − R∗

Rs

]
. (9)

For the needle growth, Eq. (9) is numerically satisfied in
Fig. 9(a), as V sRs depends linearly on u0(1 − R∗/Rs). Here,
the linear fit was obtained for R∗ = 0.35 (straight line).
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Besides, when the selection of the dendrite tip radius is gov-
erned by attachment kinetics, the stability criterion becomes
[32,61]

A′

V s[Rs]2
= r∗

u∞
, (10)

where r∗ is another stability parameter, and A′ = 2R∗D̃.
In the case of needle ice crystals growing in supersaturated
atmosphere, σ s = A′/(V s[Rs])2 was plotted versus u0 (blue
circle) in Fig. 12. Despite the dispersion of the results of
simulations, the tendency is consistent with Eq. (10), as
σ s ∼ u−α

0 , with α = 0.85 ± 0.15 (blue dashes). Combining
Eqs. (9) and (10) imposes that V s should increase linearly with
the supersaturation u0. Moreover, the tip radius Rs should be
independent on u0. This is in agreement with our observation
of V s and Rs for the needle growth simulation in Fig. 10.

Several remarks can be formulated here. First, this work
was performed in the framework of diffusion limited growth.
As proof, the Péclet number P s

e = RsV s/(2D̃) is comprised
between 0.01 and 0.1 in our simulations. This means that the
vapor field adapts very fast to the growth of the snowflake.
Moreover, the diffusion length �s

diff = 2D̃/V s is always at
least one order of magnitude bigger than the curvature radii of
the snowflake. However, the present range of Péclet numbers is
several orders of magnitude superior to that of real snowflakes
in supersaturated atmosphere (P s

e ∼ 10−7–10−5), and the slow
growth limit for snowflakes is not reached. As it was discussed
before, faceting in the dominant growth direction thus cannot
result from kinetic effects in the present model, and a highly
anisotropic surface tension was required in the model [30].
This explains why the horizontal dendrite tip velocity follows
a roughly quartic law in the supersaturation. This is compatible
with other phase-field studies using a highly anisotropic
surface tension, such as [36].

Second, in the case of needle growth, it is intriguing that the
(Rs,V s) couple satisfies the stability criterion in Eq. (10) for
dendrite growth governed by kinetic effects. Indeed, Eqs. (1)
and (2) were obtained by canceling the kinetic coefficient
β, that is present in the Stefan problem. This allowed to
identify the anisotropic time scale τ (n) to the anisotropic space
scale W (n), consistently with the thin interface limit [25,26].
However, a strong kinetic anisotropy was reintroduced ad hoc
in Eqs. (1) and (2) by the intermediate of the function B(n)
and the kinetic parameter �, in order to limit the attachment
of water molecules in the slow growth direction. Considering
that capillary effects are very weak in the needle tip vicinity
(εz = 0.01), we suggest that the growth of the needle is driven
by the kinetic anisotropy. Hence, the introduction of B(n) in
Eqs. (1) and (2) might be responsible for the linear dependence
of V s on u0, and the validity of Eqs. (9) and (10).

Regarding the solvability theory, an important result is
the dependence of the stability parameter s∗ on the stiffness
parameter ε. It was notably demonstrated [62,63] that s∗
increases as ε7/4, for ε,Pe 
 1. This result was extended
to arbitrary Péclet numbers and rapid solidification thereafter
[64,65]. However, these studies originally focused on crystals
having the fourfold symmetry. It was only recently [51]
that the solvability theory was adapted to the underlying
sixfold symmetry of snowflake morphology. This general
framework remains qualitatively valid for a high stiffness [66],
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FIG. 13. �-u0 morphology diagram for simulated snowflakes.

consistently with our numerical observations, but it seems that
no explicit relation between s∗ and ε can be found in that case.

Finally, the solvability theory as it was developed in
Ref. [63] assumes that the diffusion is symmetric between
solid (S) and vapor (V) phases. In this work, the situation is
different. Water molecules stay still in ice, and the diffusion
is one sided. Conveniently, an extension of the 3D solvability
theory for nonsymmetric diffusion can be found in Ref. [66]. In
this work, the stability criterion in Eq. (8) was proved to remain
valid for one-sided diffusion, but with a different stability
parameter s∗ = 2s∗

sym, where s∗
sym is the stability parameter in

the symmetric diffusion case. This latest relation was already
derived analytically for the 2D growth of needle crystals in
[67], after it was observed numerically in Ref. [68].

C. Link with experiments

1. Morphology diagram in reduced units for snowflakes

The morphology of simulated snowflakes results from the
interplay of surface tension and kinetic attachment by the
intermediate of three principal parameters: �, u0, and Lsat.
In particular, the variation of the parameters � and u0 allows
to sketch the morphology diagram of snowflakes in the kinetic
parameter �-reduced supersaturation u0 plane. It is displayed
in Fig. 13.

The kinetic parameter � yields the attachment efficiency
of water molecules on the snowflake surface, in the horizontal
and vertical directions. Thus, it determines the “primary habit”
in our model [see Fig. 14(a)]. � < 1 produces flat snowflakes
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(a) Γ impact

u0
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Lsat

(c) Lsat impact

FIG. 14. Schematic representation of the main parameter impact
on snowflake morphology.

in the left column of Fig. 13, while � � 1 gives columnar
morphologies in the right column. In our simulations, the
primary habit switch was achieved by shifting � during
growth. This change accounts for the change of temperature
in atmosphere due to storms or snowflake fall during growth
[16]. This switch of primary habit is represented by a horizontal
arrow in Fig. 13.

The parameter u0 controls the intensity of the thermody-
namic driving force. Thus, lower values favor facetlike faces,
while higher values facilitate the branching instability [see
Fig. 14(b)]. When � < 1, no facet breaking is observed for
u0 = 0.4 (bottom left of the morphology diagram). Rising
supersaturation near u0 = 0.5 produces a branching instability
(middle of Fig. 13). Side branching on dendrites requires u0 �
0.7. This corresponds to the top-left domain in the morphology
diagram. For � > 1, u0 = 0.3 provides a prism (bottom right).
Rising u0 to 0.5 induces the branching instability (column at
the middle right). For the highest values of u0, a hollow is
formed at the tip (top right).

The parameter Lsat is the depletion rate of vapor induced by
the snowflake growth. It sets the amount of water molecules
that dendrites consume to grow. Thus, the greater Lsat, the less
water remains on the side of the dendrites for side branches to
grow, and the less developed side branches are. As a result, it
controls the convexity of the crystal’s envelope [see Fig. 14(c)].
For low values of Lsat (Lsat = 1.0), side branches are fully
developed, and the envelope of the snowflake is weakly convex.
Then, raising Lsat reduces the side branching instability and
convexifies the snow crystal envelope. Noteworthy, when Lsat

is close to 1, side branches overlap and form clusters. It is
actually for Lsat ∼ 1.6 that side branches are simultaneously
developed and distinct.

2. Morphology diagram in experimentally accessible units

The morphology diagram in reduced units displayed in
Fig. 13 can be transferred to real coordinates. It is represented
in the experimental temperature-absolute humidity plane in
Fig. 15 (colored domains). Experimental snowflakes from [8]
are also spotted on the diagram (color marks).

The absolute humidity refers to the density excess over
vapor-water equilibrium �ρW = ρ − ρW

sat (g m−3), where ρW
sat

is the vapor-water equilibrium density. First, the quantitative
link between the reduced supersaturation u0 used in our
simulations and the density excess over vapor-water equilib-
rium �ρW is given by u0 = (�ρW + ρW

sat − ρI
sat)/ρ

I
sat, where

ρI
sat is the vapor-ice equilibrium density. ρW

sat and ρI
sat are

converted from tabulated saturation vapor pressures in the
perfect gas framework, using ρ

I,W
sat = CP

I,W
sat (T )/T . Here,

C = 2.167 g m−3 Pa−1 K (see Appendix). As a result, the
reduced supersaturation u0 is a function of both �ρW and
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T . Level sets of u0 thus correspond to curves in the diagram.
Second, the parameter � is related to the dimensionless attach-
ment coefficient αkin, encompassing the molecular kinetics at
the solid-vapor interface [69]. The evolution of αkin with the
temperature was established in Ref. [69]. It notably accounts
for the alternation of vertical and horizontal growth preference
with the temperature. However, the physical interpretation of
this dependence is still unclear [32]. In this work, the link
between � and the temperature was simplified, as only two
values of � were used: � ∼ 0.5 for horizontal growth and � =
3.0 for vertical growth. This rough phenomenological setting
of � reduces to � < 1 or � > 1, depending on the temperature.

This parametrization provided the morphology domains
of simulated snowflakes on the diagram. Each domain is
delimited by the intersection of vertical dashed lines in blue
for � < 1 or � > 1 inversion, and blue lines for u0 level sets.
As a result, our simulation domains roughly cover experi-
mental observations in the case of hexagonal plates (green
circles) and columns (black triangles). The sector formation
domain is also properly placed on the diagram, compared to
experimental sector observations (red diamonds). However,
the associated range of temperatures is too large, and the range
of supersaturations is too narrow. The same shortcoming is
observed for dendrites (blue stars). In addition to this, the
numerical dendrite domain is shifted vertically by 0.15 g m−3

compared to observations. This disparity is amplified at high
temperatures. Consequently, the simulated needle domain and
the experimental needle spots do not overlap.
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The global upward shift of the simulated morphology
domains compared to observations shows that the u0 values
used in simulations were too high. This problem may be
solved by rising the parameter λ, at the price of increased
simulation resources. However, this discrepancy diverges
when the temperature draws to 0. This suggests that the
influence of the temperature on snowflake growth is more
complex than an alternation between vertical and horizontal
morphologies. First, the evolution of � with the temperature
cannot be reduced to two domains defined by � > 1 or � < 1.
It should be precisely fitted on αkin. Besides, αkin also depends
on the supersaturation [69]. This additional dependence might
explain the horseshoe shape of experimental plate formation in
the diagram. Second, the dependence of Lsat on the temperature
was neglected in this work, although it might play a significant
role in the parametrization of the model. Indeed, this parameter
is involved in the branching instability of ice crystals, which
is notably responsible for the transition from prisms to
needles. The parametrization of Lsat might hence allow to
achieve needle growth for lower supersaturations. Besides,
it may also explain the absence of dendritic morphologies
close to the limit between horizontal and vertical growth
(T � −9◦ and −20◦). Finally, small vapor supersaturations
ρI

sat < ρ < ρW
sat are beyond reach of the model, except for

very small temperatures. This limitation suggests our model is
complementary to the model of Barrett et al. [19].

3. Characteristic size of snowflakes

When it is possible, the dimensionalization of a phase-
field model consists in computing the space scale W0 =
d0λ/0.8839. Here, d0 � 2 nm [32] is the capillary length of
ice, and the coupling parameter λ embodies the the free energy
barrier between vapor and solid phases, which is not known
precisely. In this work, λ = 3.0 was treated as a numerical
parameter, consistently with the standard phase-field approach
for dendritic growth [27]. Hence, λ cannot be used to go back to
W0. For that reason, we propose an alternative parametrization
of the space scale. Figure 6 shed light on similar growth stages
for simulated and real snowflakes. Hence, if the real size of a
particular simulated snowflake can be determined, we assume
that the corresponding space scale W0 can be transferred to
other simulated snowflakes.

In our simulations, the hexagonal plate (bottom left of
Fig. 13) reaches a stationary state. Besides, its shape is identical
to the ECS of snowflakes observed by Colbeck et al. for T =
−15◦ in Ref. [40]. The size of this experimental hexagonal
plate is 0.2 mm. Now, the size of the corresponding simulated
plate is 40�x = 32W0. This gives the following order of mag-
nitude for the simulation space scale: W0 ∼ 0.006 mm. This
approach provides consistent results with experiments [10,70]
in Table I. We believe that this result is encouraging as for the
capacity of the present model to predict the morphology and
the size of snowflakes, depending on atmospheric conditions.
Yet, one should keep in mind that the comparison between
snowflake sizes is mostly qualitative, as most snow crystals do
not reach a steady-state dimension. In Table I, the characteristic
size of each snowflake shape was estimated at the first moment
when the shape of the snowflake is definitive, so that further
evolution consists of a scaling of this morphology.

TABLE I. Comparison of snowflake characteristic size between
experiments on free falling snowflakes [10,70] and our parametriza-
tion based on a reference equilibrium snowflake (ref.) in Ref. [40].

Size
Simu. (W0 ) 32 24 130 64 120 640
Simu. (mm) 0.2 (ref.) 0.15 0.8 0.4 0.72 3.84
Expt. (mm) 0.2 (ref.) 0.1 1 0.5 0.4 4

IV. CONCLUSIONS

In this work, we addressed the challenging issue of
snowflake growth simulation in three dimensions. It was
demonstrated that the new phase-field method developed in
Ref. [30] could provide an efficient, accurate, and predictive
tool to investigate snowflake morphology and growth kinetics
dependence on supersaturation and temperature. The most
significant achievements are the following:

(i) The growth kinetics of snowflakes was simulated in
three dimensions using the phase-field model.

(ii) The morphology of most experimentally observed
snowflakes was faithfully reproduced.

(iii) The growth process was proved to embody the
competition between surface tension and branching instability
in the fast growth direction and terrace growth in the slow
growth direction. In the slow growth direction, the formation
of macrosteps was observed to reflect the main stages of
snowflake growth history.

(iv) Ice crystal growth velocity was found to satisfy the
solvability theory, consistently with former simulations and
experiments on ice crystals.

(v) A morphology diagram for simulated snowflakes in re-
duced coordinates was connected to experimentally accessible
units. The size of simulated snowflakes is in good agreement
with experimental ones.

In the future, the present approach will be extended to pin-
point more subtle features of snowflake growth in atmosphere,
such as the effects of air flows on the morphology. This model
has thus vocation to merge the phase-field formulation with
the equations of Navier-Stokes [71].
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APPENDIX: SUPERSATURATION
DIMENSIONALIZATION

The water vapor density ρ (g m−3) is defined by

ρ = m

V
= nM

V
= M

R
× P

T
,
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where m (g) is the mass of water in the volume V (m3) of
vapor, P (Pa) is the partial pressure of vapor, T (K) is the
temperature of vapor, M = 18.02 g mol−1 is the molar mass
of water, R = 8.314 m3 Pa mol−1 K−1 is the ideal gas constant.
Here, we used the ideal gas relation. This gives ρ = CP/T ,
where C = M/R = 2.167 m−3 g Pa−1 K. The relation remains
the same for vapor-ice equilibrium density ρ

I,W
sat :

ρ
I,W
sat = C

P
I,W
sat (T )

T
,

where the saturation vapor pressures above ice and water
P

I,W
sat (T ) were tabulated in the literature. Besides, the reduced

supersaturation u0 is defined by u0 = (c − cI
sat)/c

I
sat, where

cI
sat(T ) (m−3) is the saturation number density of vapor

above ice, at temperature T . Using that ρ = mH2Oc, where
mH2O is the mass of a molecule of water, u0 can be written
u0 = (ρ − ρI

sat)/ρ
I
sat. This provides the parametrization of the

reduced supersaturation u0, with respect to the density excess
over vapor-water equilibrium �ρW and the temperature T :

u0(�ρW,T ) = �ρW + ρW
sat − ρI

sat

ρI
sat

= �ρW + CP W
sat (T )/T − CP I

sat(T )/T

CP I
sat(T )/T

.
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