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Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
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In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under
the assumption that the density is given along lines normal to the interface. Within this approximation, which
may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for
frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting
density profile yields results consistent with renormalization group calculations in the one-loop approximation.
The thermal average over capillary waves may be expressed in terms of a modified convolution approximation
where normals to the interface are Gaussian distributed. In the absence of an external field we show that the
phenomenological density profile applied to the square-gradient free energy functional recovers the capillary
wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems
with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface
tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the
Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up
an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution
observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed
expressions for the surface tension and the interface width. We show the external field contribution to the surface
tension may be given in terms of the film’s disjoining pressure. From literature values of the Hamaker constant,
it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer
range. The film height dependence of the surface tension described here is in full agreement with results of the
capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface
fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for
the Landau-Ginzburg-Wilson Hamiltonian in an external field.
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I. INTRODUCTION

The structure of the liquid-vapor interface and the corre-
sponding capillary wave fluctuations continue to receive a
great deal of attention after many decades of research [1–3].
Under the mean field approximation, the statistical mechanics
of interfaces is most conveniently expressed in terms of density
functional theory [4,5]. This approach provides an intrinsic
density profile, which only depends on molecular details of
the fluid under study. A wide-reaching implication is the
Fisk-Widom scaling hypothesis, which suggests that close to
the critical point the density profile becomes universal [6,7].
However, already within the mean field approximation, a more
detailed study of density correlations indicates that liquid-
vapor interfaces exhibit a long-wavelength instability, hence
divergent fluctuations in the thermodynamic limit (however far
from the bulk critical point) [2,8–10]. This situation implies
that an accurate description of the interface must be carried
out within the framework of renormalization group theory.
Explicit calculations for simple models show that the correct
averaged density includes the mean field intrinsic density
profile as the leading order contribution. However, to second
order a new term appears which does not conform to the
Fisk-Widom scaling, but is rather extrinsic; i.e., it depends
also on the system size, at least on scales smaller than the
parallel correlation length, ξ‖, that is of macroscopic range
for a fluid interface under gravity [9,11–14].
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A far more intuitive approach to the study of interface
fluctuations may be achieved in terms of capillary wave theory
[15–17]. Here, one assumes that surface fluctuations may be
singled out from bulk fluctuations by performing a pre-average
on the length scale of the bulk correlation length [16,18]. The
properties of the undulated film profile that results may be
then studied analytically, and it is found that the origin of
the diverging structure factor may be traced to capillary wave
fluctuations of the interface [2,9,10]. The thermal average of
such fluctuations provides an extrinsic interface width that is
proportional to ln ξ‖, in agreement with renormalization group
theory and exact calculations [9,11,13,19].

X-ray scattering experiments as well as computer sim-
ulations have confirmed the predictions of renormalization
group and capillary wave theories, but also indicate that the
divergence of fluctuations is in practice a minor concern for
typical macroscopic samples [20–26].

Be this as it may, the presence of an extrinsic interface
width indicates an important conceptual limitation of the usual
mean field approach. For this reason, efforts have been devoted
to incorporating the parallel interface fluctuations within
density functional theory and to account for capillary wave
fluctuations at the microscopic level [27–32]. Particularly,
recent studies have emphasized the need to account for
the interface curvature, and indicate that it is possible to
recover an effective capillary wave Hamiltonian from fully
microscopic functionals, provided one considers an extended
wave vector dependent surface tension [30,32]. Unfortunately,
it has also been argued convincingly that it is not possible
to determine unambiguously these wave vector dependent
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corrections to the surface tension from x-ray scattering
experiments [2,33,34]. The reason is that surface and bulk
fluctuations entangle at the large wave vectors that would be
required to measure such corrections. Hence, the only way to
study interface fluctuations at small length scales is adopting
an arbitrary but consistent prescription for the interface
location and measuring its fluctuations by means of computer
simulations [35–37].

An apparently unrelated issue is the study of short-range
wetting, i.e., the transition that takes place when the only
driving force to wetting is a very short range attractive
interaction of the fluid to the substrate [38,39]. In this limit,
as the film thickens the liquid-vapor interface fluctuations
become large, and are akin to the usual capillary wave
fluctuations of a free interface. Theoretical studies on this
topic indicate that the substrate distorts the liquid-vapor profile
[40,41] and therefore conveys a film height dependence to the
surface tension (also known as position dependent stiffness)
of which there are currently strong indications from computer
simulations [42,43].

Recently, we studied the interface fluctuations of an
adsorbed film in the presence of a long-range external field
[44–46]. In this case, the liquid-vapor interface feels the
substrate directly via the long-range forces, rather than
indirectly, via weak substrate-fluid correlations. As a result,
the surface tension picks up a strong film height dependence,
which increases with the intensity and range of the external
field [47]. Indications of this effect observed already some
time ago [48] have been confirmed by a number of recent
simulations, which show that the film height dependence may
be related to the film’s disjoining pressure [44–46].

Already a while ago, Davis suggested that a microscopic
explanation of capillary waves may be achieved by assuming
the density is given in terms of the perpendicular distance
to the interface position [27]. This idea, which looks quite
intuitive and may be justified from microscopic free energy
functionals [18,49,50], has been henceforth explored in depth
[30–32]. However, it appears that some of its implications
may have been overlooked. In a recent paper, we showed
that in fact it is able to explain accurately the interface
fluctuations in the presence of long-range external fields,
and particularly, the relation of the surface tension with the
disjoining pressure [46]. A more direct test of this hypothesis
may be obtained from calculations of density profiles of
absorbed films [51–53]. Particularly, accurate density func-
tional calculations of the density profile in the vicinity of the
three phase contact line (i.e., the rim of sessile droplets) by
Nold et al. have confirmed that the hypothesis is valid for
adsorbed films even a few molecular diameters away from the
substrate [54].

In this paper we try to work out in detail the implications of
a microscopic theory for capillary waves under the assumption
that the density is given along lines normal to the interface [27].
Our study provides interface Hamiltonians for adsorbed films
in a variety of systems, and shows that the corrections to the
classical capillary wave spectrum are of the same order as
the surface tension. Whereas it seems difficult to disentangle
the signature of such corrections in surface scattering experi-
ments, they seem to be in full agreement with recent computer
simulations [44–46]. Interestingly, our study also sheds some

light on the nature of the liquid-vapor interface in the absence
of external fields and allows us to reconcile the Fisk-Widom
scaling hypothesis with capillary wave theory.

In the next section we make some general remarks that
motivate the phenomenological approach that is adopted here.
We then formalize the approximation and discuss its implica-
tions as regards the structure of the density profile (Sec. III).
The study follows with the formulation of effective interface
Hamiltonians for a variety of fluid-fluid and fluid-substrate
interactions (Sec. IV), which are then applied for a simple
intrinsic density profile with the shape of an error function
(Sec. V). Finally, in Sec. VI we compare our predictions with
exact solutions for the Landau-Ginzburg-Wilson Hamiltonian.
Our findings are summarized in the conclusion.

II. PRELIMINARY DEFINITIONS

A. Symmetry

Consider an atomic fluid in a state of vapor-liquid coex-
istence. A configuration of the system may be specified in
terms of the instantaneous density ρ̂(r), as dictated by the set
of atomic coordinates of the fluid. This density field is highly
discontinuous, but a related continuous density ρ(r) may be
determined as a thermal average of ρ̂(r) on the scale of the
correlation length. Having ρ(r) at hand, it is possible to define
an interface as the loci of points with a prescribed density
laying between bulk liquid and vapor densities. Alternatively,
from a given configuration, the interface location may be
specified using a smooth density operator with width equal to
the bulk correlation length [55] or by a suitable percolation
algorithm [36,37]. In either case, a hypothetical situation
may be envisaged where the thermal fluctuations of the
interface position have been suppressed. A point in space,
r, may be given in terms of x and z, where the latter is
a direction perpendicular to the interface, and x is a vector
perpendicular to z. Choosing a suitable dividing surface, the
corresponding planar film profile, say π , located at position
z = �, is completely flat and devoid of any roughness at all
length scales beyond the bulk correlation length, as sketched
in Fig. 1(a). The density, ρ(r), which will generally depend
on r in this case is a single function of the distance s away
from the interface. This serves to define an intrinsic density
profile ρπ (s), which is defined here as the mean field density
profile obtained from the underlying microscopic free energy
functional.

By virtue of rotational invariance, the density of a tilted
interface, as in Fig. 1(b), will be still given by ρπ (s), but now
s will no longer be a single function of the vertical distance
z − �, but will also depend on x. Whence, in the absence of an
external field, the only relevant direction in the hypothetical
system of Figs. 1(a) and 1(b) is the perpendicular distance to
the interface, and densities along that line are invariant to the
choice of reference frame [27,56].

In practice, the length scale relevant for the action of an
external fields is often much larger than the length scale
of density correlations. Such is the case of a liquid-vapor
interface, where the density profile decays in the length scale
of a few angstroms, while the capillary length, which sets the
scale of action of gravity, is of the order of millimeters. Hence,
the full density profile may be described perturbatively as that

022801-2



CAPILLARY WAVE THEORY OF ADSORBED LIQUID . . . PHYSICAL REVIEW E 96, 022801 (2017)

0
p

O1 O2

O1

O2

0
p

xΔ

r

r0

h

s

(a) (b)

(c) (d)

FIG. 1. Sketch of simple model interfaces. (a) For a flat interface
profile (full line), choosing a reference frame O1 perpendicular to
the interface, one finds that isodensity lines (dashed) are given by
the vertical distance z − �. (b) For an arbitrary reference frame,
O2, the interface appears tilted, and the isodensity lines depend
simultaneously on x and z. (c) At a microscopic scale a smooth film
profile may be defined after averaging at the scale of the correlation
length. (d) At a scale (circle) that is smaller than the curvature of L
but larger than the correlation length, the interface looks flat but tilted.
The perpendicular distance from the film to a point r0 = (x0,z0) may
be determined approximately as a local function of x0.

pertaining to a free interface, plus a small correction which
will depend on the direction along the external field.

B. Nonlocality

In practice, interfaces are not flat as in Fig. 1(a), but rather,
have a rough profile that results from thermal fluctuations
[Fig. 1(c)]. Consider now a hypothetical case were we could
constrain a given realization of the film profile L(x), with
average 〈L〉 = �. Clearly, the resulting constraint density
profile ρ(r;L) can no longer be expressed in terms of a single
variable, but rather, depends on all three Cartesian coordinates
r [Fig. 1(c)]. Likewise, ρ(r;L) can no longer be expressed in
terms of the simple intrinsic density, but rather must pick up
a functional dependence of the full film profile, as indicated
by the second argument L of ρ(r;L) [57]. Such must be the
case when the film profile exhibits a finite local curvature,
1/R, for the observer locally will not be able to tell whether
that curvature corresponds to a fraction of a droplet or bubble
of radius R, or rather, to a piece of an undulated film profile
[30,32]. Hence, the density in the vicinity of the curved film
must conform to the Laplace equation and deviate from the
resulting planar interface. It is expected that such density
distortions could be described by the Laplacian of the film
profile, at least for small curvatures [58,59].

If, however, the local radius of curvature is much larger
than the bulk correlation length and we are interested in the
density at a point r0 = (x0,z0) at distances much smaller than

R away from the interface, the fluid feels locally a tilted film
with no curvature [Fig. 1(d)]. Following the arguments of the
previous section, the density along a line perpendicular to the
film profile should then be approximately given in terms of ρπ

and the single variable s, hence, as a local function of s [27].
Let r⊥ = (x⊥,L(x⊥)) be the point on L(x) that is closest

to r0. The perpendicular distance of r0 to the film profile may
then be given as s2 = �x2(1 + m⊥), where |�x| is the distance
between points x⊥ and x0 on the plane perpendicular to the z

axis, while m⊥ is the slope of a vector perpendicular toL at r⊥.
Clearly, the slope m⊥ is a local property of L at point

r⊥. If, however, one can describe L(x) at x⊥ in terms of a
Taylor expansion about x0 with sufficient accuracy, then we
can give s fully as a local function of L, ∇xL, ∇2

xL, etc., at
x0. In this favorable case, we can then describe the density
profile as ρπ (s), hence, also as an extended local function at
x0 [Fig. 1(d)].

In the most general case, however, L(x) at an arbitrary point
cannot be given as a Taylor expansion at sufficient distances
away from x0. Hence, the location of x⊥ and, accordingly, the
norm |�x| will become a highly nonlocal property, which can
only be determined if the full film profile is known all the
way from x0 to x⊥ [30]. Furthermore, there could emerge
several perpendicular distances to a given point, only one
corresponding to the shortest distance to that point. As a result,
even if the density profile ρ(r;L) could be given in terms of
the intrinsic density profile, the function ρπ (s) would become
a highly nonlocal function.

The relevance of nonlocal effects on the density profile
of rough interfaces has been emphasized at length by Parry
and collaborators [38,41,47,60]. Such effects are particularly
important in the study of short-range critical wetting, where the
external field is zero at all distances beyond the bulk correlation
length.

In what follows, we will argue that for films subject to
external fields of range greater than the bulk correlation
length, an extended local approximation to the density profile
is sufficient to capture the leading order corrections to the
classical capillary wave theory.

The origin of the extended locality is introduced in the
theory under the assumption that the density is a single variable
of s. The observation that the density profile is best expressed
as a function of the perpendicular distance to the interface has
already been stressed previously [27,30–32,49,50,56,61]. In
the next section we will show that for small deviations away
from planarity, s may be expressed easily in terms of a film
profile and its gradient, and explore the consequences of this
assumption.

III. DENSITY PROFILE

In the classical theory of capillary fluctuations, the density
of a rough instantaneous configuration at a point r is dictated
merely by the vertical distance of that point from the film
profile L(x). Accordingly, the density profile ρ(r;L) may be
expressed in terms of an assumed intrinsic density profile ρπ (z)
of the single variable h(z,x) = z − L(x) as

ρ(r;L) = ρπ (h(z,x)). (1)

In the previous section, however, we argued that in the
low-curvature limit, the density at a point should depend on

022801-3



LUIS G. MACDOWELL PHYSICAL REVIEW E 96, 022801 (2017)

the perpendicular distance to the interface. Accordingly, the
starting point of our study is to consider that we can describe
the full density still in terms of a function of ρπ (z), but with a
more complex dependence given by the single variable s(z,x).
Therefore, we will henceforth explore the implications of the
following ansatz:

ρ(r;L) = ρπ (s(z,x)). (2)

As discussed above, this assumption will be accurate in the
low-curvature limit, where s(z,x) is then a purely local function
of L and (∇xL)2,

s(z,x) = z − L(x)√
1 + (∇xL)2

. (3)

Equation (2) together with Eq. (3) is the starting point of
our theoretical approach. Clearly, if we neglect the gradient,
Eq. (1) and Eq. (2) are equivalent and the only significant
fluctuations are given by the interface displacements away
from the average film profile δL(x) = L(x) − �, as in the
classical theory [15,16].

In fact, it has been shown that Eq. (2) is a systematic
low-temperature solution of the Landau-Ginzburg-Wilson
Hamiltonian for a rough interface [49]. Such statement holds
exactly to zeroth order, provided one defines the film profile L
as a collective coordinate obeying the condition [18,49,50]∫

ρ̂(r)
dρπ (z − L(x))

dz
dz = 0. (4)

As discussed recently, this definition of the film profile is
closely related to microscopic definitions employed to locate
L(x) in computer simulation experiments, and is close to the
optimal choice required to extract the capillary wave signature
from the spectrum of surface fluctuations [62].

A. Linearization

Although the ansatz embodied in Eq. (2) allows us to
remove the nonlocal character of the constraint density profile,
the problem is far more complex than in the classical theory,
since the variable s can no longer be interpreted as a translation
of the interface position. As a result, an expansion of s

about z − � to quadratic order does not satisfy the condition
s(z,x) = 0 for z = L(x). Ignoring this limitation, it is still
possible to expand s to quadratic order in the interface
fluctuations, and express it in terms of an effective translation
about the average planar interface as considered previously by
Stecki [61]:

s(z,x) = hπ (z) − δsπ (z,x), (5)

where

hπ (z) = z − �,

δsπ (z,x) = δL(x) + 1
2hπ (z)(∇xL)2. (6)

Accordingly, we can assume that the full density profile is
given in terms of effective translations, exactly as in the
classical capillary wave theory. However, the translation is
here along a direction perpendicular to the interface, rather
than merely along the vertical direction:

ρ(r;L) = ρπ (hπ − δsπ (z,x)). (7)

This result resembles a related approach by van Leeuwen and
Sengers, who hypothesized that the density profile could be
given in terms of a compressed shift of the interface position,
rather than by a mere translation; i.e., they assumed local
displacements of the form z − α(z)L, with α(z) an undeter-
mined compression factor which is evaluated a posteriori from
thermodynamic considerations [63]. A similar strategy has
been adopted by Robledo and Varea [29]. In our approach, the
compression factor is given directly in terms of the film profile
gradient, and has a clear physical origin.

Having written the normal distance in terms of a linearized
normal translation, we can now expand ρ(r;L) in powers of
δsπ up to second order as

ρ(r;L) = ρπ (z; �) − dρπ (z; �)

dz
δsπ (z,x)

+ 1

2

d2ρπ (z; �)

dz2
δs2

π (z,x). (8)

Since Eq. (5) is only accurate up to quadratic order in
deviations about L = �, we drop all higher order terms in
the above result and are left with the following equation:

ρ(r;L) = ρπ (z; �) − dρπ (z; �)

dz
δL(x)

− 1

2
(z − �)

dρπ (z; �)

dz
(∇xL(x))2

+ 1

2

d2ρπ (z; �)

dz2
δL2(x). (9)

The first, second, and fourth terms of the right-hand side are
exactly as those expected for the density profile of the classical
capillary wave theory up to second order. Extended capillary
wave theories have emphasized the need to account for terms in
the Laplacian [30,32]. However, our study suggests the need
to consider contributions on the film gradient. As we shall
see later, such terms feed into an effective surface tension at
a lower order than terms in the Laplacian. The presence of
next to leading order terms of order square gradient has long
been recognized [57,61], but its implications apparently not
explored explicitly.

In practice, we will be considering external fields that are
a function of z only. In such case, the relevant property is the
lateral average of the density profile. Since linear terms in δL
and ∇2

xL vanish because of reasons of symmetry, we are then
left with the following result:

〈ρ(r;L)〉x = ρπ (z; �) − 1

2
(z − �)

dρπ (z; �)

dz
〈(∇xL)2〉x

+ 1

2

d2ρπ (z; �)

dz2
〈δL2〉x. (10)

In Sec. IV, we will exploit this equation in order to estimate the
free energy cost of a rough interface subject to an external field.
We will show that the additional term in the square gradient
conveys information on the external field to terms linear in the
interface area. This will result in a coupling of the effective
surface tension to the external field.

For the time being, we notice that a thermal average
of the density profile over capillary wave realizations is
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formally equal to that performed laterally, albeit with the lateral
averages replaced by thermal averages:

〈ρ(r;L)〉	 = ρπ (z; �) − 1

2
(z − �)

dρπ (z; �)

dz
〈(∇xL)2〉	

+ 1

2

d2ρπ (z; �)

dz2
〈δL2〉	. (11)

This equation provides the capillary wave broadening density
profile resulting from Eq. (2). The first and third terms on the
right-hand side are exactly as in the classical theory, but the
second term provides a capillary wave broadening contribution
that depends on the film gradient. This explicit dependence was
identified recently [44,45] but is implicit in an older result by
Davis [27].

B. Modified “convolution” approximation

At this point, it is interesting to note that the small variable
δsπ has an average 〈δsπ 〉 = 1

2hπ 〈(∇xL)2〉, and to quadratic
order in L, has a variance 〈δs2

π 〉 = 〈L2〉. This suggests that
δsπ could be considered a Gaussian random variable with a
nonzero average.

Taking this into account, one notices that Eq. (11) may
be considered as the result of a “convolution approximation”
with a Gaussian kernel very much as in the classical theory
[12]. The difference is that rather than considering a Gaussian
distribution for vertical displacements, h, we consider that it is
the perpendicular displacements s which are Gaussian random
variables, with a first moment that is a function of the position

z along the interface,

〈ρ(r;L)〉	 = 1√
2π〈L2〉

∫
ρπ (hπ − δsπ )

× exp

[
−1

2

(δsπ − 〈δsπ 〉)2

〈L2〉
]
d(δsπ ). (12)

Clearly, by expanding ρπ (hπ − δsπ ) to second order and
performing the Gaussian averages, the above modified con-
volution recovers Eq. (11) exactly. Obviously, the truncation
to second order is only valid when the Gaussian kernel is
strongly peaked relative to the interface width. This shows, as
expected, that the accuracy of Eq. (11) is limited to the case
were 〈L2〉 is small compared to the bulk correlation length.

Notice that in principle it should be possible to calculate
the distribution of perpendicular distances by computer simu-
lations and test whether it follows Gaussian behavior [64].

C. Scattering from a rough interface

The structure of a rough interface may be probed using
grazing angle x-ray or neutron scattering [20,65]. For incident
sources at angles larger than the critical internal reflection, it
suffices to consider the first Born approximation; hence, we
consider the intensity of reflected radiation as [34]

I (Qx,Qz) =
∫

dx1dx2dz1dz2〈ρ(x1,z1)ρ(x2,z2)〉

× eiQz(z1−z2)eiQx·(x1−x2). (13)

Using the second order expansion for the density profile,
Eq. (8), we can estimate the density-density correlation
function as

〈ρ(x1,z1)ρ(x2,z2)〉 = ρπ (t1)ρπ (t2) + dρπ (t1)

d�

dρπ (t2)

d�
〈δsπ (x1)δsπ (x2)〉 + 1

2
ρπ (t1)

d2ρπ (t2)

d�2

〈
δs2

π (x1)
〉

+ 1

2
ρπ (t2)

d2ρπ (t1)

d�2

〈
δs2

π (x2)
〉 − ρπ (t1)

dρπ (t2)

d�
〈δsπ (x2)〉 − ρπ (t2)

dρπ (t1)

d�
〈δsπ (x)〉, (14)

where we have employed ti = zi − � for the sake of brevity. By plugging this result for the correlation function into the Born
approximation, we find that the spectrum splits into specular (Qx = 0) and diffuse (Qx �= 0) contributions as (Appendix A)

I (Qx,Qz) = Ispec(Qz)δ(Qx) + Idiff(Qx,Qz). (15)

The specular contribution provides information on height-height perpendicular correlations of the interface, and is given by

Ispec(Qz) =
∫

dt1dt2

[
ρπ (t1)ρπ (t2) + ρπ (t1)

d2ρπ (t2)

d�2

〈∑
q

L2(q)

〉
− ρπ (t1) t2

dρπ (t2)

d�

〈∑
q

q2L2(q)

〉]
eiQz(t1−t2). (16)

The diffuse contribution provides information of parallel
correlations of the film profile. It is given as

Idiff(Qx,Qz) =
∫

dt1dt2
dρπ (t1)

d�

dρπ (t2)

d�
〈L2(Qx)〉eiQz(t1−t2).

(17)

This results suggest that information on the film height fluctua-
tions may be extracted from the intensity of scattered radiation.
However, it is not possible to provide simplified expressions
without the introduction of further approximations. In Sec. V

we will introduce a model which will allow us to obtain a more
transparent interpretation of specular and diffuse spectrum.

At this stage it is convenient to remark on two effects that
have been neglected and that obscure the interpretation of
scattering experiments for large wave vectors. (1) First, the
splitting of purely perpendicular and purely parallel correla-
tions that occurs in the specular and diffuse contributions to the
scattering intensity is the result of the linearization of s, i.e.,
Eq. (5). A coupling of terms in the film [L(x)] and film gradient
[∇L(x)] occur both in the specular and diffuse contributions
if we retain the nonlinearized form of s, Eq. (3). (2) In the
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approximations of Eq. (2), where the density is expressed as
a function of the intrinsic density profile, there is implicitly
a pre-averaging of fluctuations with wavelength of the order
of the bulk correlation length. Accordingly, the expressions
above are only correct for small wave vectors, and will
certainly break down for wavelengths of the order of the bulk
correlation length. For larger momentum transfer, the spectrum
features a coupling of transverse and longitudinal modes,
as well as a coupling of bulklike and surface fluctuations,
which makes the interpretation of the results very difficult
and precludes the analysis of fine details of the capillary
wave fluctuations [2,33,34,66]. (3) A microscopic study of
the density correlations of a fluid interface for the Landau-
Ginzburg-Wilson Hamiltonian indicates that already for this
simplified model the contributions from the interface feature
not only the leading order translation mode of the interface
(which is correctly identified with capillary waves) but also
additional surface contributions which become important at
large wave vector transfer. Aside the bulk correlations, the
full spectrum may be expressed as a sum of Lorentzian
contributions [8]. Hence, fitting the surface contributions by a
single Lorentzian entangles the surface modes and obscures a
clear interpretation of the spectrum.

D. Consistency checks

1. Consistency with renormalization group theory and scaling

Let us now compare the result of Eq. (11) with expec-
tations from renormalization group theory in the one-loop
approximation [9,13]. This approach has the advantage over
capillary wave theory that bulk and capillary wave fluctuations
are treated ab initio within a unified framework, so that the
hypothesis of an ad hoc intrinsic density profile is not implied
a priori. As a caveat, however, it should be noticed that the
one-loop approximation is unable to deal with strictly infrared
divergences. Particularly, this limitation holds for the well
known translational Goldstone mode of the surface correlation
function, which diverges as 1/q2, independently of the distance
away from the critical point. This limits severely the scope
of this theory, which becomes completely invalid for a free
interface in the thermodynamic limit. For practical purposes,
considering the interface under a pinning field or within a
finite system provides a long-wavelength cutoff that serves
as a mathematical device to remedy the problem of infrared
divergences [12]. In spite of this mathematical trick, the results
from the one-loop approximation should be trusted only for
surface fluctuations of the order of the bulk correlation length,
which effectively is the case when the pinning field is strong
enough or the system size is small enough.

Baring this in mind, we consider results or the Landau-
Ginzburg-Wilson Hamiltonian, which exhibits the well known
tanh(z) intrinsic density profile. Jasnow and Rudnick first
performed the calculation for a fluid under the gravitational
field in the thermodynamic limit. Köpf and Münster performed
a related calculation for a fluid in a finite system of lateral
dimensions L×L and zero field. Whereas both results are
found to be consistent [13], we choose here to show the result
of Köpf and Münster, which is presented in a somewhat more
readable form.

Since renormalization group calculations are usually per-
formed in the language of the Ising model, we define a
normalized density which ranges between ±1, as is usual for
the Ising magnetization:

m(z) = 〈ρ(r;L)〉	 − 1
2 (ρl + ρv)

1
2 (ρl − ρv)

, (18)

where ρv and ρl are the vapor and liquid coexistence densities.
In terms of this normalized density, the thermally averaged
density profile exhibits two distinct regimes. For large systems
(or weak fields), the interface roughening is large, and the
density magnetization is given as a Gaussian convolution of
the intrinsic profile [12]. For large roughness, the Gaussian
is very broad, the intrinsic features are washed out, and m(z)
becomes an error function, in agreement with Eq. (12) [11].
Here, we are mainly interested in the opposite limit of small
systems or strong pinning fields, where roughening is small,
and intrinsic features of the density profile remain recognizable
even close to the average interface position z = 0. In that case,
the density profile is [13]

m(z) = tanh

(
1

2

z

ξR

)
+ kBT

8πγRξ 2
R

(
α − ln

L

ξR

)

× tanh

(
1

2

z

ξR

)
sech2

(
1

2

z

ξR

)

− (3 ln 3 − 13/4)
kBT

32πγRξ 3
R

z

ξR

sech2

(
1

2

z

ξR

)
, (19)

where a subindex R stands for the corresponding renormalized
quantities, and α = 1.832.

The first term on the right-hand side corresponds to a mean
field tanh(z) density profile. This form follows because the
one-loop approximation has been worked out for the Landau-
Ginzburg Hamiltonian, with the usual biquadratic free energy.
A more complicated form could be obtained if one used an
improved equation of state with built in critical exponents as in
the Fisk-Widom theory [6,7]. Be that as it may, it is found that
the resulting tanh(z) intrinsic profile obeys the Fisk-Widom
scaling hypothesis.

The second term no longer conforms to the scaling
hypothesis, but rather exhibits a logarithmic prefactor which
diverges very slowly, as L → ∞. This divergence occurs
in the calculations because of the lack of a pinning field.
In the results by Jasnow, it is replaced by a logarithmic
term in the gravitational field, which exhibits an equivalent
divergence in the limit where the field vanishes. With or
without external field, the prefactor takes precisely the form
expected for interface position fluctuations as described by
capillary wave theory. Accordingly, it is identified in both
Refs. [9] and [13] as a signature of capillary wave fluctuations,
which appear naturally in this theoretical framework with
no a priori assumptions. As a bonus of renormalization
group calculations, the spurious ultraviolet divergence of the
interface fluctuations which appears in capillary wave theory
is not an issue any longer.
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The third term also does not conform to the scaling
hypothesis, but has no clear physical interpretation in the
framework of renormalization group theory.

However, motivated by Eq. (11), we realize that Eq. (19)
may be actually written as

m(z) = tanh

(
z

2ξR

)
+ kBT

4πγR

(
ln

L

ξR

− α

)
d2

dz2
tanh

(
z

2ξR

)

− (3 ln 3 − 13/4)
kBT

16πγRξ 2
R

z
d

dz
tanh

(
z

2ξR

)
; (20)

hence, the renormalization group results conform exactly to
Eq. (11), provided we assume a Fisk-Widom intrinsic density
profile, and identify the prefactors of tanh′′ and z tanh′ with
the mean squared fluctuations of L and ∇xL, respectively.

Since Eq. (19) is consistent with Eq. (11), and the latter is a
systematic expansion of the ansatz Eq. (2), it follows that the
renormalization group result is actually compatible with the
following scaling form for the constrained magnetization:

m(r;L) = φ

(
s

ξR

)
, (21)

where φ is a suitable steplike single-variable function, while
m(r;L) stands here for a thermal average over bulk fluctuations
consistent with the imposed capillary wave constraint, L; i.e.,
the Fisk-Widom scaling survives bulklike fluctuations and
holds at least for the constrained density profile, provided
the density is expressed in terms of the normal rather than
the vertical distance to the interface. The scaling form is lost
only after thermally averaging over capillary waves, but the
significance of a collective coordinate for the intrinsic surface
would seem to hold up to the critical point, at least to the
accuracy of the one-loop approximation. Such separation of
surface and bulk fluctuations is consistent with the column
model of the interface suggested by Weeks [16,18] or the
field theoretical calculations by Delfino and Viti [14]. It also
resembles previous work by van Leeuwen and Sengers, who
stressed the need to introduce compressed shifts instead of
mere displacements in order to incorporate capillary wave
fluctuations into the Fisk-Widom theory [63].

2. Consistency with the capillary wave Hamiltonian

Since the ansatz of Eq. (2) was motivated from rather
general symmetry considerations, it is expected to hold
irrespective of the particular choice for ρπ , or alternatively,
of the assumed microscopic functional.

For convenience, let us consider here a free liquid-vapor
interface, as described by the square-gradient theory:

A[ρ] =
∫

dr
{
f (ρ) + 1

2
C(∇ρ)2

}
, (22)

where f (ρ) is some suitable local free energy.
For a frozen realization of the film profile, we assume that

the density is given as the Euler-Lagrange equation:

∂f

∂ρ
− C∇2ρ(r;L) = 0. (23)

Assuming the ansatz Eq. (2) for the extremal density, the
second term of the above equation is readily written as

∇2ρ(r;L) = d2ρπ (s)

ds2
(∇s)2 + dρπ (s)

ds
∇2s (24)

with

∇s(r;L) =
{

k√
1 + (∇xL)2

+
(

1 + (z − L)∇2
xL√

1 + (∇xL)2

) ∇xL√
1 + (∇xL)2

}
. (25)

Using this expression, and neglecting higher order contribu-
tions in the gradient and Laplacian, we find that (∇s)2 is equal
to unity. Accordingly, in the limit of small curvature with
which we are concerned, the extremal, Eq. (23), simplifies to

∂f

∂ρ
− C

d2ρπ (s)

ds2
= 0. (26)

This equation may be integrated along the single variable s,
as in the standard Cahn-Hilliard theory of interfaces. We can
then substitute the result into Eq. (22) and obtain a free energy
which has an explicit functional dependence on L:

A[L] =
∫

drC

(
dρπ (s)

ds

)2

, (27)

where the dependence of s onL has been omitted for the sake of
brevity. Considering that, for a free interface, the dependence
of ρπ (s) on s is exactly as that on z, and performing a change
of variables, the above result readily transforms into

A[L] =
∫

dzC

(
dρπ (z)

dz

)2 ∫
dx

√
1 + (∇xL)2. (28)

Since the first integral may be immediately identified with
the mean field surface tension, we find that the free energy
now transforms exactly into the capillary wave Hamiltonian,

H[L] = γcw

∫
dx

√
1 + (∇xL)2 (29)

with a bare surface tension, γcw, equal to the mean field
surface tension of the van der Waals theory, i.e., Eq. (2) is
the approximate expression for the density profile implied in
the capillary wave Hamiltonian of a free interface. This result
was already anticipated by Davis under the assumption that the
extremal condition, Eq. (23), is obeyed along the perpendicular
direction to the interface [27].

Using the method of collective coordinates, Diehl et al.
have shown the above result is as a systematic approximation
to the renormalized solution of Eq. (22) which becomes exact
in the low-temperature limit (corresponding to infinitely sharp
interface with infinite surface tension) [49].

IV. INTERFACE HAMILTONIAN

Previously, we have discussed free interfaces. We now
consider how to extend the ansatz of Eq. (2) to the special case
of wetting films adsorbed on a completely flat and structureless
substrate that is perpendicular to the z direction. In such
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case, the interaction of the substrate with the fluid may be
described by means of an external field V (z) which only
depends on z. Furthermore, we will assume that the wetting
film is sufficiently thick that a liquid-vapor interface can still
be identified as discussed in Sec. II. Accordingly, a film height
for each point x on the substrate may be defined as the distance
between the film profile L(x) and the substrate.

Before continuing, let us mention that in the classical
capillary wave theory, the free energy of an adsorbed wetting
film with a corrugated liquid-vapor film profile L(x) is given
by [5,7]

H [L] =
∫

dx{g(L) + γ (∇xL)2}, (30)

where, in our convention, g(L) is an unshifted interface
potential, which bears all of the free energy of the system
for a completely flat adsorbed film. Accordingly, in the limit
of an infinitely thick film it becomes g(L → ∞) = γsl + γlv ,
with γsl , the solid-liquid surface free energy, and γlv , the
liquid-vapor surface tension. The second contribution of the
integral accounts for the cost of increasing the liquid-vapor
interfacial area. The coefficient of the square gradient, γ , is
an effective liquid-vapor surface tension (also known as the
stiffness coefficient in specialized literature). In the classical
capillary wave theory, γ = γlv .

In this section, we use microscopic free energy functionals
in order to assess to what extent this equality is correct.

A. Short-range forces and external field

Let us now consider the case of an adsorbed liquid film,
exhibiting short-range forces only. Particularly, let us assume
that the interactions of the fluid with the adsorbing substrate
may be described by a short-range external field, V0(z), where
the subscript 0 indicates here the short-range nature of the
field (and also anticipates this system will be employed as a
reference state in a perturbation approach later on).

In the square-gradient approximation, the free energy
functional now reads

A0[ρ] =
∫

dr
{
f (ρ) + 1

2
C(∇ρ)2 + V0(z)ρ

}
. (31)

In principle, the density profile of a rough interface, with
roughness L, say ρ0(r;L), is obtained as the extremal of the
free energy functional, subject to the constraint given by the
film profile L. The stationarity condition amounts to the usual
partial differential equation:

∂f

∂ρ
− C∇2ρ0 + V0(z) = 0, (32)

together with an additional variational condition at z = 0 that
fixes the density at the wall [40].

Unfortunately, solving this partial differential equation
subject to boundary conditions is very difficult. At most, it
is possible to find solutions for the mean field profile with
flat liquid-vapor interface [67], which is identified with the
intrinsic density profile of an adsorbed film ρπ (z; �) of height
�. In order to impose the variational condition at the wall, the
solution of Eq. (32) must satisfy the full stationarity principle

of Eq. (31) in integral form, namely,∫
dr

{
∂f

∂ρ
δρ + C∇ρπ · ∇δρ + V0 δρ

}
= 0, (33)

where δρ is an arbitrary density variation (Appendix C).
Compared to the free interface, the presence of an external

field very much complicates the solution of Eq. (32), even for
the mean field case, since we can no longer assume that the
intrinsic density profile is a function of z − � alone. The sharp
transition from liquid to vapor density will still be governed
roughly by z − �, but the decay of wall-fluid correlations must
obviously depend essentially on the distance away from the
wall, which, assumed at the origin, now yields an explicit
dependence on z. For this reason, we must slightly generalize
our ansatz Eq. (2) to deal with this complication.

Considering that generally the intrinsic density profile of
an adsorbed film is a function of z and the interface position,
�, we now write

ρ0(r;L) = ρπ (z; � = L + δs), (34)

where δs is defined as the difference between the normal and
vertical distances to the interface, δs = s − h. In practice, to
the order of squared gradient terms in the film profile it amounts
to

δs = 1
2 (z − L)(∇xL)2. (35)

Notice that the above result is fully equivalent to Eq. (2) for
the case where the intrinsic density profile only depends on
the vertical distance z − � and reduces to the Fisher-Jin ansatz
in the limit where δs → 0 [57]. Physically, it assumes that the
relevant film height required to describe the density at a point
is given as the distance to the substrate along the normal to the
interface. This obviously cannot possibly be exact, and will
fail close to the substrate. However, it is very accurate close to
the liquid-vapor interface [54]. Since, in practice, large density
gradients occur mainly at this interface, the approximation is
justified.

In order to calculate the free energy, we now substitute the
above result into the square-gradient functional; hence,

A0[ρ0(r,L)] =
∫

dr
{
f (ρπ (z;L+δs))+1

2
C[∇ρπ (z;L+δs)]2

+V0(z)ρπ (z;L+δs)

}
. (36)

Despite the simplifying assumption embodied in Eq. (34),
we find that transforming the Cahn-Hillard functional into
an interface Hamiltonian can only be performed exactly in the
limit of small gradients

√
1 + (∇xL)2 → 1 + 1

2 (∇xL)2, and
even so only to order (∇xL)2. The reason is that making the
change of variables that was convenient in the absence of an
external field makes the external field a function of L and its
gradient, so one cannot get rid of this complicated dependence
by changing variables.

For this reason, we can only proceed by performing an
expansion of the density profile in powers of δs, to first order:

ρπ (z;L + δs) = ρπ (z;L) + ∂ρπ (z;L)

∂�
δs. (37)
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Substitution of this result into the first two contributions of Eq. (36), followed by a Taylor expansion, we find (Appendix B)

f (ρπ (z;L + δs)) = f (ρπ (z;L)) + ∂f

∂ρ

∂ρπ (z;L)

∂�
δs, (38)

[∇ρπ (z;L + δs)]2 =
(

∂ρπ (z;L)

∂z

)2

+ 2
∂ρπ (z;L)

∂z

∂2ρπ (z;L)

∂z ∂�
δs +

[(
∂ρπ (z;L)

∂�

)2

+ ∂ρπ (z;L)

∂z

∂ρπ (z;L)

∂�

]
(∇xL)2. (39)

By replacing Eqs. (37)–(39) into Eq. (36), and collecting
terms of order (∇xL)2, the free energy can be expressed as
a linearized interface Hamiltonian:

H0[L] =
∫

dx
{
g0(L) + 1

2
γ0(L)(∇xL)2

}
. (40)

The local free energy, g(L), contains terms that are indepen-
dent of the film gradient and may be readily identified with the
interface potential of a flat film of height L:

g0(L) =
∫

dz

{
f (ρπ (z;L)) + 1

2
C

(
∂ρπ (z;L)

∂z

)2

+V0(z)ρπ (z;L)

}
. (41)

Notice that in our definition, g0(� → ∞) = γsl + γlv . The
effective surface tension, γ0(L), with an explicit film height
dependence, contains those terms from Eqs. (37)–(39) which
are factors of the film gradient:

γ0(L) =
∫

dz

{[
∂f

∂ρ
+ V0(z)

]
(z − L)

∂ρπ (z;L)

∂�

+C
∂ρπ (z;L)

∂z

∂

∂z

[
(z − L)

∂ρπ (z;L)

∂�

]

+C

(
∂ρπ (z;L)

∂�

)2}
. (42)

In order to simplify the above result for γ0(L), we notice that
the first three terms on the right-hand side obey the stationarity
condition of the intrinsic density profile, Eq. (33), for the
particular choice δρ = (z − L) ∂ρπ

∂�
. Since Eq. (33) holds for

arbitrary density variations, it follows that these three terms
cancel each other exactly, and only the last term of Eq. (42)
survives:

γ0(L) =
∫

C

(
∂ρπ (z;L)

∂�

)2

dz. (43)

The above result corresponds to the position dependent
stiffness of the Fisher-Jin theory [40]. It provides corrections
to the surface tension that arises mainly from the distortion
of the liquid-vapor interface by the substrate. Accordingly, for
short-range systems in a Cahn-Hillard approximation, Eq. (34)
provides exactly the Fisher-Jin Hamiltonian, which merely is
the result for the approximation of Eq. (34) with neglect of δs.
It follows that our ansatz provides exactly the same predictions
for short-range wetting as the Fisher-Jin theory. Particularly,
it suffers from a stiffness instability close to the critical
wetting transition that seems inconsistent with simulations
[39]. Therefore, it does not seem that this approach can shed
any new light on this difficult problem. In such cases, as will

be discussed shortly for systems in a long-range field, the more
elaborated nonlocal model should be preferred [41,60].

B. Short-range forces and a long-range external field

Although not stated explicitly, the above results are in
principle only valid for fluids under short-range external fields.
Indeed, the ansatz of Eq. (34), implying a dependence of
density on the perpendicular distance to the film, holds strictly
in an isotropic system, as discussed in Sec. II. Furthermore,
use of Eq. (43) requires knowledge of the exact intrinsic
density profile of a fluid under an external field, which
is available usually only for external fields of very short
range [40,67].

The above results are still useful, because we can exploit
them as a reference system in a perturbation approach. Hence,
consider again a fluid with short-range forces, which, subject
to the short-range external field V0(z), is well described by the
free energy functional of Eq. (31). Let us now assume that on
top of the external field we allow for a long-range perturbation,
V (z). The full free energy functional is then well described as

A[ρ] = A0[ρ] +
∫

V (z)ρ(r)dr, (44)

where A0 stands for the free energy functional of Eq. (31). Let
us now assume that the density profile of the full Hamiltonian,
ρ, may be described without loss of generality as ρ = ρ0 + δρ,
where ρ0 is the density profile which extremalizes A0. Then,
plugging this series into Eq. (44), and expanding about ρ0,
yields, to first order,

A[ρ] = A0[ρ0] +
∫

V (z)ρ(r)dr + O[(δρ)2]. (45)

As noted by Parry and coworkers [47,60], the reference free
energy functional does not contribute to the free energy at
first order in the perturbation, because ρ0 is an extremal
of A0.

This result is still not convenient, because it is given in
terms of the unknown density, ρ. However, for adsorbed liquid
films the perturbation due to an external field is of order
δρ ∝ ρlκlV (z), where ρl and κl are the bulk liquid density and
bulk liquid compressibility, respectively [45,68,69]. Hence,
for liquids below the critical point, which are highly incom-
pressible, the perturbation is very small, and the zeroth order
approximation ρ ≈ ρ0 is very good.

Accordingly, we merely need to replace Eq. (34) into
Eq. (45). The free energy in excess to the reference state is
given by

W [L] =
∫

V (z)ρπ (z;L + δs)dr. (46)
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Unfortunately, the resulting expression does not follow exactly
the usual form of an interface Hamiltonian (i.e., it does not split
into a local interface potential and a surface tension term). This
problem has been emphasized by Parry et al. [41,47,60]. They
note than an interface Hamiltonian must rather be described in
terms of a binding potential which is of nonlocal nature (i.e., it
cannot be given merely as a local function of L). The attempt
to linearize this potential into the form of a classical interface
Hamiltonian fails to describe correctly the wetting properties
of strongly fluctuating systems [41,60].

In what follows, we shall be concerned only with fluids
subject to strong adsorption. Thus, the fluctuations are severely
reduced by the external field, and the binding potential W [L]
may be linearized safely. This can be achieved by replacing
Eq. (37) into Eq. (46) and Eq. (45), with the result

H [L] =
∫

dx
{
g(L) + 1

2
[γ0(L) + �γ (L)](∇xL)2

}
, (47)

where we have identified

g(L) = g0(L) +
∫

V (z)ρπ (z;L)dz (48)

and [46]

�γ (L) =
∫

V (z)(z − L)
∂ρπ (z;L)

∂�
dz. (49)

Thus, apart from the short-range dependence of the surface
tension, γ0, systems with a long-range external field will ex-
hibit also an explicit dependence on V (z) that was overlooked
by Davis [27]. However, it must be borne in mind that the this
effective surface tension has its origin in the nonlocal binding
potential; i.e., it is more akin to the external field than it is to
the liquid-vapor interface.

The explicit result of Eq. (49) relies on the linearization
of the density profile [cf. Eq. (37)], and this requires a word
of caution [70]. From the form of Eq. (46) it is clear that the
factor of V (z) inside Eq. (49) should decay as ρπ (z). However,
the long-range decay that results after linearization is rather
z ∂ρπ (z)/∂�. For systems under long-range external forces,
which is our main concern here, ρπ (z) decays algebraically
as z−3 [68], and the linearization does not upset the correct
asymptotic decay. For systems with only short-range forces,
the leading order decay for ρπ (z) is exponential; hence, the
linearization does not preserve the correct long-tail behavior
[70]. In such cases, it may be required to retain the form
of W [L] without linearization. However our checks with
an exactly solvable model indicate that the approximation
remains correct up to linear order in the external field even
for density profiles with an exponential decay. Such checks
also show that if the exact density profile for the system in
the external field is available, then the perturbative result of
Eq. (49) is consistent with Eq. (43) (cf. Sec. VI). At any rate,
our phenomenological approach is most likely unreliable for
strongly fluctuating interfaces, and the full nonlocal theory
should be preferred in that case [41,60].

Finally note that the dependence of the surface tension on
film height, as given in both Eqs. (43) and (49), is explicitly
dependent on the choice of dividing surface, since there is
an explicit dependence in L [41]. This is not altogether

surprising, since the surface area of a curved interface depends
on an arbitrary choice of the interface position, as largely
discussed in studies of nucleation and surface thermodynamics
[71]. Previously, Blokhuis has stressed the dependence of the
bending rigidity coefficient on the choice of interface position
[32].

C. Long-range forces and an adsorbing wall

Dealing with long-range fluid-fluid forces is far more
complicated. The reason is that the gradient expansion that
leads to the local square-gradient functional does not converge
in this case [5]. Accordingly, it is necessary to resort to a van
der Waals functional that features explicitly the fluid-fluid pair
potential, u(r21), with r21 = r2 − r1:

Avdw[ρ] =
∫

f (ρ)dr1 + 1

2

∫ ∫
u(r21)ρ(r1)ρ(r2)dr1dr2

+
∫

V0(z)ρ(r1)dr1. (50)

The double integral over the pair interactions makes this
functional less amenable to analytical calculations, but, more
importantly, implies the need to introduce a wave vector
dependent surface tension [28,30,32,72], as we shall see
shortly.

In principle, the optimal density profile ρ(r;L) must obey
the extremal condition, which for this functional has the form
of an integral equation:

∂f (ρ)

∂ρ
+

∫
u(r21)ρ(r2)dr2 + V0(r1) = 0. (51)

Solving this equation analytically is already impossible for a
flat film L(x) = �; hence, we cannot hope to obtain solutions
for the rough interface.

Again, we assume a priori that the extremal density obeys
our ansatz Eq. (34) for the density profile. In order to avoid
mathematical complications as much as possible, we expand
the density profile to first order about L, as in Eq. (37). Quite
generally, we can then write the free energy as a first order
density functional expansion:

A[ρ(r;L)] = A[ρπ (z;L)] +
∫

δA[ρ]

δρ(r)

∣∣∣∣
ρπ (z;L)

δρ(r)dr. (52)

Notice that the integrand of the second term on the right-hand
side does not vanish, because ρπ (z;L) is not a solution of
Eq. (51). However, the first functional derivative does indeed
vanish for the intrinsic density profile of the flat film, ρπ (z; �).
It follows that the integrand is at least of order L, while, from
Eq. (37), δρ is of orderL2. Accordingly, the zero order solution

A[ρ(r;L)] = A[ρπ (z;L)] (53)

is exact to order L3.
This rather general argument explains why our apparently

complicated ansatz Eq. (34) reduces to the Fisher-Jin Hamil-
tonian for the case of short-range forces (cf. Sec. IV A). The
simplification at this stage allows us to avoid very lengthy
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algebra in this case, and makes the problem tractable. Our task is now merely to extend the approach of Napiorkowski and
Dietrich to the case of an adsorbed film. Accordingly, we substitute ρπ (z;L) in Eq. (50) to get

Avdw[ρ(r;L)] =
∫

f (ρπ (z;L(x)))dr + 1

2

∫ ∫
u(r21)

[
ρπ (z1; �)ρπ (z2; �) + 2ρπ (z1; �)

∂ρπ (z2; �)

∂�
δL(x2)

+ ρπ (z1; �)
∂2ρπ (z2; �)

∂�2
δL2(x2) + ∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�
δL(x1) δL(x2)

]
dr1dr2 +

∫
V0(z)ρπ (z;L(x))dr. (54)

In order to arrange this expression into an interface potential (proportional to the projected area) and a surface term (proportional
to the interface area), we write for the product of film heights

δL(x1) δL(x2) = 1
2 {δL(x1)2 + δL(x2)2 − [δL(x2) − δL(x1)]2}. (55)

Replacing this into Eq. (54), we find that the free energy can be cast as

Avdw[L] =
∫

g(L(x))dx − 1

4

∫ ∫
u(r21)

∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�
[L(x2) − L(x1)]2dr1dr2 (56)

with the interface potential identified as

g(L) =
∫

f (ρπ (z;L))dz + 1

2

∫ ∫
u(r21)

[
ρπ (z1; �)ρπ (z2; �) + 2ρπ (z1; �)

∂ρπ (z2; �)

∂�
δL(x)

+
(

ρπ (z1; �)
∂2ρπ (z2; �)

∂�2
+ ∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�

)
δL(x)2

]
dz1dz2dx21 +

∫
V0(z)ρπ (z;L)dz. (57)

Notice that the contributions explicit in the pair potential are
approximated as a second order expansion aboutL. In practice,
all terms linear in δL vanish because of the extremal condition
for the intrinsic density profile.

The crucial difference between long and short range forces
lies in the second term of Eq. (56), which corresponds to the
free energy cost for roughening the interface. For the van der
Waals functional, it is not explicitly a function of the film height
gradient. The consequence is that it is not possible to decouple
the film height fluctuations from the pair potential. Of course,
powers of the gradient could appear explicitly by expanding
L(x2) about L(x1). Unfortunately, such expansion involves
moments of the pair potential which are not convergent for
long-range forces [5].

The way out is to manipulate the double integral of Eq. (56)
in a similar fashion to that performed for the calculation of the
structure factor (cf. Sec. III C and Appendix A), by replacing
L(x) with its Fourier representation. After some additional
calculations, it is possible to arrive at an expression for the
interface Hamiltonian in Fourier space:

Hvdw[L] = Ag(�) + 1

2
A

∑
q

[g′′(�) + γvdw(�; q)q2]L2(q),

(58)

where q is a wave vector in the reciprocal space of x, and g′′ is
the � derivative of the interface potential, Eq. (57). Because of
the coupling of the pair potential with the film fluctuations, the
only way of writing a free energy that conforms to the capillary
wave theory is by admitting an extra wave vector dependence

into the surface tension:

γvdw(�; q) =
∫ ∫

∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�

×
[
u(z21; q) − u(z21; q = 0)

q2

]
dz1dz2, (59)

where u(z21; q) is the lateral Fourier transform of the pair
potential. This result is the generalization of a result due to
Blokhuis for free interfaces [32].

In systems with short-range forces, it is possible to make
an expansion in even powers of q and truncate to second
order. To this order of approximation, γ (�; q) bares no
explicit q dependence, and becomes equal to the square-
gradient result for the surface tension, Eq. (43). In this
case, Eq. (58) merely becomes the Fourier representation
for the interface Hamiltonian of a system with short-range
forces, Eq. (40).

The situation is different when we deal with long-range
forces, because then u(z21; q) may exhibit a weak logarithmic
singularity. Particularly, for systems with dispersion forces,

u(r) = −C6/r6, (60)

the lateral Fourier transform is, to leading order [30,32,72],

u(z; q) − u(z; q = 0) = u2(z) q2 + πC6

32
q4 ln(qR)

+u4(z) q4 + O(q6), (61)

where u2(z) and u4(z) are the second and fourth derivatives of
u(z; q) with respect to q, while R is a constant of order the
molecular diameter.
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Using this expansion, one finds that the surface tension has
the form

γvdw(�; q) = γ0(�) + μ(�)q2 ln(qR) + κ(�)q2 (62)

with

γ0(�) =
∫ ∫

∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�
u2(z21)dz1dz2, (63)

μ(�) = πC6

32

∫ ∫
∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�
dz1dz2, (64)

and

κ(�) =
∫ ∫

∂ρπ (z1; �)

∂�

∂ρπ (z2; �)

∂�
u4(z21)dz1dz2. (65)

These equations are again a generalization of the result
expected for the free interface of a fluid with van der Waals
forces [28,30,32]. Alternatively, they may be considered a
generalization of results of adsorbed interfaces with short-
range forces [73] to the case of long-range forces. Recall also
that the expression for the bending rigidity κ(�) is incomplete,
since we have ignored from the start curvature terms which
contribute terms of order q4 into γ (�; q) [30,32].

D. Long-range forces and a long-range external field

Accounting for the effect of long-range wall-fluid interac-
tions is now an easy problem, since we can proceed exactly
as in Sec. IV B, by considering the Hamiltonian of Eq. (50) as
a reference system, and the influence of the long-range field
as a perturbation. The resulting Hamiltonian has the form of
Eq. (58), with a surface tension which is the sum of Eq. (62)
and Eq. (49).

E. Summary

Before ending this lengthy section, it will be convenient to
summarize the results for later use. In essence, using the ansatz
Eq. (34) for the density profile of an adsorbed liquid film of
height �, we find that the free energy of a rough realization of
the film profile may be generally given as

H [L] = Ag(�) + 1

2
A

∑
q

[g′′(�) + γ (�; q)q2]L2(q), (66)

where g(�) is the interface potential, g′′(�) is its second
derivative with respect to �, and γ (�; q) is a wave vector and
film height dependent surface tension. In the most general case
it may be written as

γ (�; q) = γ (�) + μ(�)q2 ln(qR) + κ(�)q2 + O(q4), (67)

where γ (�) is the zero wave vector surface tension:

γ (�) = γ0(�) + �γ (�). (68)

The leading order coefficient, γ0(�), may be interpreted as a
generalized surface tension that smoothly tends to the liquid-
vapor surface tension, γlv, as film height increases. The origin
of the film height dependence is the distortion of the liquid-
vapor density profile in the neighborhood of the substrate. It
is given by Eq. (43) in the square-gradient approximation, or
by Eq. (63) in the van der Waals approximation. The next
contribution, �γ (�), stems from the long-range interaction

of the substrate on the liquid-vapor profile, and is given by
Eq. (49), whether we conform to the square-gradient or the
van der Waals approximation. The contribution that is a factor
of μ(�) is a singular term that results from the presence of
dispersive interactions, and vanishes altogether for short-range
forces. Finally, κ(�) is the bending rigidity, and here it is given
by Eq. (65). It is finite whether the interactions are short or long
range, but vanishes within the square-gradient approximation.
Recall once more, however, that a more rigorous study shows
that density functional approaches based on phenomenological
models for the density profile are unable to provide the correct
physics for effects of order q2 in the surface tension [2].
Bearing this in mind, we will nevertheless retain the term of
order q4 and consider κ(�) as a phenomenological coefficient.
Notice that depending on the choice for the surface location
the sign of κ(�) may be either positive or negative, but it has
been shown that consistent definitions for the surface location
provide bending rigidities that are positive [1,36,37].

The free energy in Eq. (66) is quadratic in the Fourier
modes, equipartition of energy holds exactly to this order
of approximation, and the spectrum of fluctuations follows
immediately as

〈L2(q)〉	 = kBT

[g′′(�) + γ (�; q)q2]A
. (69)

This result is an improved expression for the spectrum of
surface fluctuations in the presence of an external field [7].
Relative to the classical result, the external field not only
provides a low wave vector bound to the surface fluctuations,
but also modifies the coefficient of q2 by an amount �γ which,
we will see, may be related to g′′(�) for systems subject to a
long-range external field.

From the results of Sec. III C, the surface spectrum is
accessible in principle via the study of density fluctuations
as determined from the structure factor [34]. In practice, for
reasons mentioned before it is difficult to single out purely
capillary wave contributions in x-ray scattering experiments.
Rather, computer simulations seem a more adequate means
of testing fine features of the surface structure [35–37].
Indeed, recent computer simulations of the spectrum of surface
fluctuations provide strong evidence in support of Eq. (69)
[1,44–46,72].

V. ERF MODEL FOR THE INTRINSIC DENSITY PROFILE

In the previous section we have obtained general expres-
sions that rely on the assumption of a model of normal
translations of the mean field density profile, Eq. (34). In order
to obtain more explicit expressions for the surface tension and
the spectrum of fluctuations, it is now required to specify the
intrinsic density profile.

The precise dependence of ρπ (z; �) on z and � is dictated
by the molecular model and the details of the substrate.
However, quite generally, we expect that for thick adsorbed
films sufficiently far from the substrate, the z dependence in
the neighborhood of z = � becomes independent of �. In this
limit, we can hope to obtain general expressions that will not
depend on precise details of the substrate.
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As suggested previously [44–46], we consider intrinsic
density profiles which satisfy the following constraint:

(z − �)
dρπ

dz
≈ −ξ 2

e

d2ρπ

dz2
, (70)

where ξe is a phenomenological length scale of the order of
the correlation length. It is expected that this approximation is
generally exact up to first order for free liquid-vapor interfaces,
provided the location of the interface is chosen at the point of
ρπ (z) with maximum slope. Particularly, the approximation
is exact for a model density profile with the shape of an
error function. For this reason, we will call this the Erf
approximation.

A. Film height dependent surface tension

As summarized in Sec. IV E, the surface tension of the
adsorbed film is given by Eq. (68). The first contribution, γ0(�),
is dictated by the distorted liquid-vapor density profile only
[i.e., Eq. (43) or Eq. (63)] and does not explicitly depend on the
substrate properties. In the Erf approximation, the liquid-vapor
density profile has attained already its asymptotic shape, so that
dρπ/d� is equal to dρπ/dz, and therefore γ0(�) is essentially
constant and equal to γlv . The only dependence on � arises
from the truncation of the Gaussian tail of dρπ/dz by the
lower bound of the integrals in either Eq. (43) or Eq. (63).
Obviously, such effect is negligible for �  ξe. For smaller
�, solving the integral explicitly would give an Erf function
for γ0(�). However, considering the crudeness of the model,
taking this result as a quantitative statement is not warranted.
Only the fact that the � dependence is in the range of the bulk
correlation length is to be trusted, in agreement with results
for the more elaborate double-parabola model in the Fisher-Jin
theory [40] and the nonlocal theory [41].

The second contribution to the surface tension, �γ (�),
results from the influence of the external field on the liquid-
vapor interface. By plugging the Erf approximation Eq. (70)
into Eq. (49), we obtain [44–46]

�γ (�) = ξ 2
e g′′

ext(�), (71)

where g′′
ext(�) is the second derivative of the external contribu-

tion to the interface potential

g′′
ext(�) =

∫
V (z)

d2ρπ (z; �)

d�2
dz. (72)

Notice that in the language of colloidal science, g′′ corresponds
to minus the derivative of the disjoining pressure. In this way, it
is possible to relate the � dependence of �γ (�) to a measurable
experimental property. Also note Eq. (71) is consistent with
predictions from the nonlocal theory of interfaces [47].

Hence, for wall-fluid interactions with a range larger than
the bulk correlation length, we expect that the zero wave vector
dependent surface tension will obey

γ (�) = γlv + ξ 2
e g′′

ext(�). (73)

For stable or partially stable wetting films, g′′
ext is always

positive, so that typically for thick films it is expected that
γ (�) > γlv . This prediction has been confirmed recently for
two different models of short-range fluids in the presence of
an algebraically decaying external field [44,46].

For real fluids, exhibiting long-range fluid-fluid interac-
tions, the interface potential is usually characterized in terms
of the Hamaker constant, Aw, as

gext(�) = − Aw

12π�2
(74)

with Aw < 0 for either stable or metastable wetting films.
Accordingly, we can write

γ (�) = γlv + ξ 2
e

|Aw|
2π�4

. (75)

Clearly, γ (�) falls steeply to its asymptotic value, but could
increase much for sufficiently thin wetting films.

To assess the length scale where the film height dependence
of the surface tension is significant, we define �1/8 as that film
height resulting in a 12.5% increment of γ (�). Accordingly,
we find

�1/8

ξe

=
(

4|Aw|
πγlvξ 2

e

)1/4

, (76)

where �1/8 is expressed in units of ξe, since it is not meaningful
to describe a film of thickness smaller than the interface width.

In order to assess �1/8, we need simple estimates for Aw

and γlv . Dietrich and Schick considered the general problem
of fluid adsorption on a substrate for systems dominated by
long-range dispersive forces. They obtained expressions for
the surface tension and Hamaker constants in terms of integrals
over pair potentials [76]. In order to exploit those results, we
consider a simple model with pair interactions made of a hard
sphere repulsive interaction of diameter σ , and a dispersion
term −εσ 6/r6 (Sutherland potential). Using integrals for the
r−6 dispersion tail borrowed from Ref. [77], it is possible to
quantify the results of Ref. [76] for Aw and γlv (Appendix D).
Replacing the corresponding expressions in Eq. (76), we obtain

�1/8

ξe

= 2
√

σ

ξe

(
εwσ 6

wρw − εσ 6ρl

εσ 6(ρl − ρv)

)1/4

, (77)

where εw and σw are energy and range parameters for the
substrate-fluid pair potential, while ρw is the substrate’s
number density.

At high temperatures, close to the adsorbate’s critical point,
the term in parentheses increases slowly, but since ξe scales as
the correlation length, the prefactor σ/ξe decreases at a faster
rate. As a result, �1/8/ξe vanishes close to the critical point.

For temperatures well below the critical point of the
adsorbed fluid, ξe ≈ σ , while ρl  ρv . As a result, it is possible
to relate the term inside the parentheses with a ratio of Hamaker
constants (Appendix D):

�1/8

ξe

= 2

( |Aw|
Al

)1/4

(78)

with Al the Hamaker constant of two liquid slabs interacting
across vacuum. The ratio Aw/Al typically falls in the range
10−1 to 101, so that the length scale where γ (�) differs
significantly from γlv is not larger than a few interface widths
(Table I). In fact, under the assumptions mentioned at the
beginning of the paragraph, the ratio Aw/Al is very nearly
equal to the spreading coefficient (Appendix D). Accordingly,
we expect �1/8/ξe to be larger for substrate/fluid pairs above
the wetting temperature.
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TABLE I. Table of surface properties for selected substrate-fluid
pairs and order of magnitude estimates of �1/8. Data for Aw from
Ref. [74], except (a) from Ref. [75] and (b) synthetic data from
Ref. [74]. Rest of entries obtained using Al = 45 zJ and γlv =
21.6 mN m−2 for n-octane at 292 K, γlv = 73 mN m−2 for water
at 292 K, and Al = 0.57 zJ and γl = 0.12 mN m−2 for He at 4
K [74]. �1/8 obtained from Eq. (76) (5th column) and Eq. (78)
(6th column), assuming ξe = σ = 0.35 nm. Note: 1 zJ = 10−21 J and
1 mN m−2 = 1 zJ nm−2.

Aw �1/8 �1/8

Substrate-fluid-vapor (zJ) |Aw |
γlv

(nm2) |Aw |
Al

(nm) (nm)

quartz-water-air −8.7 0.12 1.1
quartz-octane-air −7.0 0.32 0.16 1.4 1.3
rutile-water-air(b) −98 1.4 2.0
α-alumina–octane–air(a) −47.5 2.2 1.1 2.2 2.1
rutile-octane-air −94 4.3 2.1 2.6 2.4
CaF2–liq. helium–vapor −5.9 49. 10.3 4.8 3.6

Figure 2 displays γ (�) as a function of � for a number of
different fluid-substrate pairs with �1/8 ranging from about 1
to 5 times ξe. Clearly, the effect of the disjoining pressure on
γ (�) decays very fast, but can yield surface tensions several
times larger than γlv for systems exhibiting a large ratio of
Hamaker constants |Aw|/Al , such as the pair rutile-octane-air
and CaF2–liquid helium–vapor.

B. Capillary wave broadening

Using Eq. (70) in either Eq. (11) or Eq. (12), we obtain for
the thermally averaged density profile the following result:

〈ρ(r;L)〉	 = ρπ (z; �) + 1

2

d2ρπ (z; �)

dz2
�2

cw, (79)

where �2
cw dictates the amplitude of capillary wave broadening

of the intrinsic density profile. Here, it is given as the sum of

1 2 3 4 5 6
 l/ξe

0

1/8

0.5

1

 γ
(l)

/γ
lv

 - 
1

FIG. 2. Plot of γ (�) for a number of substrate-fluid pairs. From
left to right water on quartz (black), octane on quartz (red), water on
rutile (green), octane on α-alumina (blue), octane on rutile (orange),
and liquid helium on CaF2 (indigo). The dashed horizontal line
indicates a 1/8 increment over the asymptotic surface tension γlv .

two different contributions:

�2
cw = �2

0 + �2
1. (80)

The first one corresponds to the broadening due to mere
translation of the profile, and corresponds to the result of
classical capillary wave theory:

�2
0 = 〈δL2〉	. (81)

The second one stems from distortions of the profile due
to the finite gradient of interface fluctuations [44,45] and
unavoidably mixes intrinsic contributions (as dictated by ξe)
and capillary wave distortions (as implied by the fluctuations
of the film gradient):

�2
1 = ξ 2

e 〈(∇xL)2〉	. (82)

The intensity of specular reflectivity measurements con-
sistent with the above results may be obtained by replacing
Eq. (70) into Eq. (16):

Ispec(Qz) = ρπ (Qz)
2
[
1 + Q2

z�
2
cw

]
, (83)

where ρπ (Qz) is the Fourier transform of ρπ (z), while �2
cw is

now given by Eq. (80), with

�2
0 =

∑
q

〈L2(q)〉	 (84)

and

�2
1 = ξ 2

e

∑
q

q2〈L2(q)〉	. (85)

Because of Parseval’s theorem, the results Eqs. (81) and (84)
for �2

0, as well as Eqs. (82) and (85) for �2
1 are equivalent.

In order to obtain explicit results for �2
cw, we approximate

the sum of Fourier components in Eqs. (84) and (85) to
an integral, i.e.,

∑
q → A

4π2

∫
dq, and use Eq. (69) for the

spectrum of surface fluctuations; hence,

�2
cw = kBT

2π

∫ qmax

qmin

1 + ξ 2
e q2

g′′(�) + γ (�; q)q2
dq, (86)

where qmin = 2π/L is the lowest possible wave vector consis-
tent with the system’s lateral size, as dictated by L, while qmax

is an upper wave vector cutoff. A closed expression for the
general case of a fluid with short and long range forces (i.e.,
finite μ) is not possible. Fortunately, recent studies suggest
that the contribution of the singular term q ln q in γ (�; q) is
very small, so that most likely it is possible to describe �2

cw

assuming μ = 0 [72]. Also, notice that the requirement of a
finite interface width implies that κ(�) is a positive coefficient
[1,36,37]. In that case, the integral may be solved analytically
and approximated with good accuracy to the following result
(Appendix E):

�2
cw = kBT

4πγ (�)

[
ξ 2
‖ − ξ 2

e

ξ 2
‖ − 2ξ 2

κ

]
ln

(
1 + ξ 2

‖ q2
max

1 + ξ 2
‖ q2

min

)

+ kBT

4πκ(�)

[
ξ 2
‖ ξ 2

e − (
ξ 2
e + ξ 2

‖
)
ξ 2
κ

ξ 2
‖ − 2ξ 2

κ

]

× ln

(
ξ 2
‖ − (

1 − ξ 2
‖ q2

max

)
ξ 2
κ

ξ 2
‖ − (

1 − ξ 2
‖ q2

min

)
ξ 2
κ

)
, (87)
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where ξ 2
‖ = γ (�)

g′′(�) plays the role of a parallel correlation length

for interface fluctuations and ξ 2
κ = κ(�)

γ (�) may be interpreted as
the length scale below which bending the interface becomes
too expensive. Notice that the contributions of gradient
fluctuations in the interface roughening [Eq. (82) or Eq. (85)]
may be readily recognized as those terms linear in ξ 2

e .
In the limit where both ξ 2

e and ξ 2
κ are allowed to vanish,

Eq. (87) recovers the result of classical capillary wave theory,
albeit with a film height dependent surface tension. Relaxing
the constraint ξ 2

κ = 0 while keeping ξ 2
e = 0, Eq. (87) becomes

an extended capillary wave theory that naturally provides an
upper wave vector cutoff q2

max = ξ−2
κ . Taking into account the

fluctuations of the film gradient requires relaxing the constraint
ξ 2
e = 0, but in this case the bending rigidity coefficient κ is not

sufficient to provide for an ultraviolet cutoff.
In order to find plausible values for the unknown parameters

qmax and ξ 2
κ in terms of ξe, it seems natural to consider the result

for �2
cw in the limit of vanishing external field (ξ 2

‖ → ∞):

�2
cw = kBT

2πγlv

ln

(
qmax

qmin

)
− kBT

4πγlv

[
1 − ξ 2

e

ξ 2
κ

]
ln

(
1 + q2

maxξ
2
κ

)
.

(88)

This result may be now compared with the expectations for the
capillary wave broadening from the one-loop approximation,
which holds precisely in that limit [13]:

�2
cw = kBT

2πγlv

ln

(
2π

qminξR

)
− kBT

4πγlv

[
2α − π2

2
ln 3e−13/12

]
.

(89)

Since ξR and ξe describe the interface width of the intrinsic
profile, we set ξR = ξe. It is then natural to equate Eq. (88) with
Eq. (89) and to identify ln(qmax/qmin) in the first expression
with ln(2π/qminξR) in the second. This then yields readily
qmax ≈ 2π/ξe for the wave vector cutoff and provides for the
bending rigidity κ ≈ 4γlvξ

2
e as the solution of a transcendental

equation.

Taking now the limit of large system sizes, ξ 2
‖ q2

min � 1,
while allowing for a finite external field, which will usually be
the relevant experimental situation, we find for the capillary
wave broadening

�2
cw = kBT

4πγ (�)

[
ξ 2
‖ − ξ 2

e

ξ 2
‖

]
ln

(
ξ 2
‖ q2

max

)

+ kBT

4πγ (�)

[
ξ 2
e

ξ 2
κ

− 1

]
ln

(
1 + q2

maxξ
2
κ

)
. (90)

We test this equation for strong to moderate external fields by
setting qmax = 2π/ξe as suggested above, while allowing for a
choice of bending rigidities (Fig. 3). In the limit of very small
external fields, ξ 2

‖ → ∞, our result becomes equal to that of
classical capillary wave theory, except for an additive constant.
However, in the presence of a tunable external field, classical
theory predicts a broadening that is linear in ln ξ 2

‖ , while our
theory of normal interface translations suggests the prefactor
of the logarithmic term also depends on the external field.

In practice, the difference between Eq. (90) and the classical
result (which is recovered simply by setting ξe = 0) is mainly
dictated by the second term on the right-hand side of Eq. (90).
If the ratio ξe/ξκ differs from unity, it provides a nearly constant
shift of the capillary wave broadening that may be either
positive (ξκ < ξe) or negative (ξκ > ξe) and should be possible
to distinguish experimentally (Fig. 3).

If, on the other hand, ξe/ξκ → 1, the shift vanishes
altogether. In that case, the logarithmic contribution from
Eq. (90) is hardly distinguishable from the classical result
(Fig. 3).

In practice, ξκ must be considered an empirical parameter,
so that we cannot tell a priori the extent to which our
result differs from the classical theory. By performing x-ray
reflectivity experiments, it should be possible in principle to
measure �2

cw and confirm the expectations of Eq. (87) and
Eq. (90) and to provide an estimate for ξκ . Interestingly, several
x-ray diffraction experiments performed on fluid surfaces
report the need to account for a constant shift on the results for
�cw which would be consistent with the expectations from

2 4 6 8 10 12
 l/ξe

0

0.5

1

1.5

Δ cw
 / 

ξ e

(a)

2 4 6 8 10 12
 l/ξe

0

1

2

3

4

Δ cw
 / 

ξ e

(b)

FIG. 3. Plot of �cw as given by Eq. (90) (symbols), compared to the classical theory (lines) for two substrate-fluid pairs, (a) water adsorbed
on quartz and (b) liquid helium adsorbed on CaF2. Results are obtained for fixed qmax = 2π/ξe and a choice of bending rigidities, corresponding
to ξκ = ξe/2π (blue circles), ξκ = ξe (red squares), and ξκ = √

40/11ξe (green triangles). The latter choice is suggested by the one-loop
approximation. Notice that for intermediate film heights this choice requires evaluating �2

cw with the exact result in complex algebra (see
Appendix E). In all cases, ξe = 0.35 nm.
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Eq. (90) assuming ξκ < ξe [21,78,79]. Unfortunately, it is
not possible to distinguish whether this shift stems from the
intrinsic width of the interface or from gradient fluctuations to
the capillary wave broadening.

As a final remark, we note that whereas the result of
Eq. (88) for �2

cw is consistent with the result of the one-
loop approximation, Eq. (89), a stringent comparison of the
individual components as implied in Eq. (80) does not seem
to match so consistently.

Indeed, from Eqs. (81) and (82) and Eq. (87), in the limit
of vanishing external fields, we find

〈δL2〉	 = kBT

2πγlv

ln

(
qmax

qmin
(
1 + q2

maxξ
2
κ

)1/2

)
, (91)

〈(∇xL)2〉	 = kBT

4πγlv

ln
(
1 + q2

maxξ
2
κ

)
ξ 2
κ

. (92)

On the contrary, the comparison of Eq. (11) with the one-loop
result of Eq. (20) suggests the fluctuations should be, rather,

〈δL2〉	 = kBT

2πγlv

ln

(
2π e−α

qminξR

)
, (93)

〈(∇xL)2〉	 = kBT

4πγlv

3

2

ln
(
3 e− 13

12
)

ξ 2
R

. (94)

Matching Eq. (91) with Eq. (93) and Eq. (92) with Eq. (94)
provides a system of two equations with two unknowns,
qmax and ξκ , but unfortunately, the only solution yields the
result q−2

max = 244ξ 2
e and κ = −243γlvξ

2
e . The origin of the

unexpected small cutoff and negative κ lies in the result
for 〈(∇L)2〉	 in Eq. (94), which is close to zero (since
ln 3 − 13/12 ≈ 0) and can only match Eq. (92) if we accept a
negative κ .

The difference of this unsatisfactory comparison with
that performed previously, which provided results for qmax

and κ closer to expectations, is whether one interprets the
term − kBT

2πγ
α in Eq. (89) as belonging to either 〈(δL)2〉	 or

〈(∇L)2〉	. In view of this discussion, the latter interpretation
seems more justified.

VI. COMPARISON WITH EXACT RESULTS

Before closing, we test our results with an exact solution of
the Landau-Ginzburg-Wilson Hamiltonian under an external
field. A solution of this system for arbitrary external fields
V (z) is generally not possible. However, in an exceptional and
somewhat forgotten paper, Zittartz noticed many years ago that
this problem may be remedied for an external field of tanh(z)
form [8].

Particularly, Zittartz considered the free energy functional
Eq. (31) in the lattice gas analog, with the usual biquadratic
bulk free energy f (ρ) = αρ4 − ερ2 and an external field

V (z) = 2u

(
ε + u

2α

)1/2

tanh

(
1

2

z − �

ξu

)
, (95)

where

ξu = 1

2

(
ε + u

C

)−1/2

. (96)

This external field is unusual, because it has its origin at the
interface position. Accordingly, the free energy depends only
on the field strength u, and not on the interface position.

The exact mean field (intrinsic) density profile is [8]

ρπ (z) =
(

ε + u

2α

)1/2

tanh

(
1

2

z − �

ξu

)
. (97)

Notice that the role of V (z) is to pin exactly the interface at
z = � and set the interface width ξu.

Armed with this solution, we can now assess several of the
results of Secs. IV A, IV E, and V A.

First consider the surface tension as predicted by the Fisher-
Jin theory for a system with short-range forces in an external
field V0(z) equal to V (z) above. Using Eq. (43), with Eq. (97)
for the density, we obtain in closed form

γu = 2

3

C1/2

α
(ε + u)3/2, (98)

where we have added the subindex u next to γu in order to
stress the explicit dependence on the external field that we
have assumed.

Clearly, as u → 0, γu splits into γ0 = 2
3

C1/2

α
ε3/2, for the

surface tension in zero field, and �γ = (εC)1/2

α
u for linear

corrections in the field strength.
Now consider the perturbative result, Eq. (49), for the

correction of γ0 due to the external field V (z), which, using
again Eq. (97) for the density, yields

�γ = C1/2(ε + u)1/2

α
u. (99)

Clearly, in the limit u → 0, this result provides exactly the
same leading order correction to γu that was obtained using
Eq. (43) in the paragraph above. This attests to the consistency
of our approach. Particularly, it shows that the approximation
used in Eq. (49) remains very robust, even though Eq. (37)
does not yield the exact limit of density decay at infinity.

Now, consider the calculation of g′′, which can be per-
formed by plugging the density profile of Eq. (97) into Eq. (72).
Again, the result may be obtained in closed form as

g′′
ext = 4

3

(ε + u)3/2

αC1/2
u. (100)

Using the result for the bulk correlation length in zero field,
ξ 2

0 = 1
4C/ε, together with �γ = g′′ξ 2

0 [cf. Eq. (71)], we find,
to linear order in the field strength,

�γ = 1

3

(Cε)1/2

α
u. (101)

Hence, the approximate solution Eq. (71) provides also the
correct result, with an empirical measure of the interface width
ξe = √

3ξ0. This is a very handy result, because most often
neither the density profile nor the external field are known.
Therefore, the explicit results Eq. (43) or Eq. (49) are not
practical. On the contrary, the first derivative g′ is the negative
of the disjoining pressure and can be measured experimentally.

So far we have tested that the alternative results Eq. (43),
Eq. (49), and Eq. (73) for the film height dependent surface
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tension are consistent. But it remains to show that these
corrections to the surface tension have their signature stamped
in the spectrum of surface fluctuations, as suggested in
Eq. (69).

To show this, consider the density-density correlation
function predicted by capillary wave theory, Eq. (17):

Gcw(z1,z2; q) = dρπ (z1)

d�

dρπ (z2)

d�
〈L2(q)〉 (102)

with 〈L2(q)〉 given by Eq. (69).
This result may be compared with the correlation function

of the Landau-Ginzburg-Wilson Hamiltonian as discussed by
Zittartz and Jasnow [8,12]. Exact solutions exist in closed form
[8]. However, for this system it is more convenient to exploit
the fact that G(r1,r2) is a Green’s function. Accordingly, it
may be expressed as an eigenvalue expansion as follows:

G(z1,z2; q) =
∑

n

φ∗
n(z1)φn(z2)

λn

, (103)

where φn(z) and λn are the solutions of the eigenvalue equation:[
−C

d2

dz2
+ Cq2 − 2ε + 12αρ2

π (z)

]
φ(z) = λφ(z). (104)

In the quantum mechanical analogy, with ρπ (z) of hyperbolic
tangent form, this is the Schrödinger equation for a shifted
Pöschl-Teller potential, whose exact solutions are well known
[80].

The first two eigenvalues of the Pöschl-Teller well corre-
spond to states bound to the potential, which are naturally
related to purely interfacial contributions to the correlation
function. The remaining eigenvalues lay in the continuum
and may be considered as corresponding to bulk correlations
perturbed by the interface.

The bound state of lowest energy is a soft mode which
merely describes the displacement of the interface, without
change of the density profile [8,12]. Its eigenfunction is
φ1(z) = dρπ/dz, and the corresponding eigenvalue is

λ1 = 2u + Cq2. (105)

Clearly, in the limit of u → 0, λ1 ∝ q2, and we can therefore
identify this mode as the translation mode of the capillary wave
Hamiltonian. As the field is switched on, the first eigenvalue
merely describes how the translational mode is modified by
the external field.

From Eqs. (98) and (100), one readily finds that the ratio
1
2C/u is precisely the ratio of γu to g′′ in the Zittartz model.
Accordingly, it follows that, under the external field, Eq. (95),
the translational mode of the correlation function is

Gtras(z1,z2; q) ∝ dρπ (z1)

d�

dρπ (z2)

d�

kBT

g′′ + γuq2
, (106)

where γu is given exactly to linear order in the field strength
by either Eq. (43) or Eq. (49).

Comparison of this result with Eq. (102) in the limit of small
wave vectors q � κ indicates that our result for the spectrum
of interface fluctuations, Eq. (69), is also exact to linear order
in u.

This reveals clearly the strengths and limitations of the
capillary wave approach. On the one hand, we have showed

that considering explicitly perpendicular rather than merely
vertical translations of the interface is sufficient to describe
exactly to linear order in the field strength the long-wavelength
surface fluctuations of the translational mode. On the other
hand, capillary wave theory, up to this level of detail, cannot do
anything else; i.e., the remaining surface mode, with explicit
q dependence, is completely beyond reach, and cannot be
described at all without considering explicitly perturbations of
the intrinsic density profile. Likewise, modes in the continuum,
which can be identified with bulk correlations perturbed by the
interface, are also beyond the level of description that can be
achieved with capillary wave theory. Presumably, the nonlocal
theory of interfaces shares similar limitations, since there the
corrections to the density profile are given merely by the bulk
correlation function [47]. Some of these limitations have been
discussed by studying the correlation function of the double
parabola model, which, unlike more elaborate biquadratic free
energies, has only one bound surface state [2]. A promising
approach to single out the surface translation mode from the
full correlation function has been suggested recently [62].

VII. CONCLUSIONS

In this paper we have considered the phenomenological
extension of classical capillary wave theory to the case were
the density is dictated by the normal distance to the local
interface position [Eq. (2)]. This idea seems justified on
intuitive grounds and symmetry considerations, at least for
long-wavelength fluctuations in the absence of an external
field. Recently, it has been shown that the hypothesis remains
accurate even for liquid films close to the three phase contact
line [54]. Not surprisingly, the approach has been explored
previously, starting with an apparently overlooked contribution
by Davis many years ago [27,30,31,49,50,61]. However, it
would seem that some important consequences had not been
recognized. Other recent studies have rather attempted to
assess the role of interface curvature [30,32,81]. Such effects
can be incorporated as an effective wave vector dependent
surface tension, and appear as corrections of order q4 in the
capillary wave spectrum. Unfortunately, it would seem that on
both theoretical and experimental grounds the study of such
corrections from the spectrum of surface fluctuations poses
serious difficulties [2,37]. On the other hand, we have shown
that in the presence of an external field the assumption of an
interface profile along lines normal to the interface results in
the coupling of surface and bulk fluctuations. This produces
corrections of order q2 which feed into the surface tension and
are linear in g′′

ext(�) [44–46]. Comparing our results to a more
formal approach based on linear response theory indicates
that the simple phenomenological extension considered here
might be sufficient to identify the most relevant corrections to
the classical theory for flat substrates away from the strong
fluctuating regime [47].

The first and most immediate implication of our approach
is that already to first order in deviations from planarity, the
theory picks up an additional capillary wave broadening mech-
anism, with contributions that are given by the fluctuations of
the film profile gradient [Eq. (11)]. Such additional broadening
may be captured in terms of a “convolution” approximation,
by assuming that the normal distance of a point to the interface
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is Gaussian distributed [Eq. (12)]. The effect on the average
density profile could be measured in principle by the specular
contribution to x-ray surface scattering [Eq. (16)].

In the absence of an external field, we show that this phe-
nomenological theory is consistent with renormalization group
theory in the one-loop approximation [9,13]. The success of
this comparison indicates that it is meaningful to decouple bulk
and capillary wave fluctuations even close to the critical point,
or equivalently, that one can assume the Fisk-Widom scaling
form of a density profile prior to renormalization of capillary
wave fluctuations. This holds provided the density is given
along normals to the film profile [Eq. (21)]. Applying this
condition to a Cahn-Hillard square-gradient approximation,
one recovers the capillary wave Hamiltonian exactly in the
limit of small curvature [Eq. (29)] [18,27].

We have further extended the theory of normal translations
to the case of adsorbed liquid films [Eq. (34)]. For systems of
short-range forces only, this recovers the Fisher-Jin theory of
short-range wetting [Eq. (40), Eq. (43)] [40,57] and introduces
a film height dependence of the surface tension which has
been identified recently in computer simulation experiments
[42,43]. In the presence of long-range forces, the external
field couples to the film gradient fluctuations, and results in
an explicit dependence of the surface tension on the field
that is consistent with expectations from the nonlocal theory
of interfaces [Eq. (49)] [47]. The signature of this coupling
appears explicitly in the spectrum of surface fluctuations,
Eq. (69). Comparison with results for an exactly solvable
model of the Landau-Ginzburg-Wilson Hamiltonian in an
external field indicate that Eq. (69), together with either
Eq. (43) or Eq. (49), reproduces exactly to linear order in
field strength the translational mode of the density correlation
function (cf. Sec. VI). Including long-range dispersive forces,
the theory yields the well known logarithmic singularity of
the wave vector dependent surface tension [Eq. (62), Eq. (67)]
[28,30,32].

We have studied a simple model of adsorbed films which
assumes that the liquid-vapor density profile is independent of
the proximity to the substrate and takes the form of an error
function. Under this simplifying assumption, our approach
allows us to write the film height dependent surface tension

explicitly in terms of the disjoining pressure [Eq. (73)]. For
wetting films, this results in a strong enhancement of the
surface tension that has been verified in computer simulation
experiments [44,46]. Our qualitative calculations indicate that
the range where the film height dependent surface tension
may be measured lies in the subnanometer range (Table I).
For such thin films, the corrections to classical theory become
significant and could be measured in principle by means of
x-ray scattering experiments [Eq. (90)], where the specular
reflectivity allows one to measure the interface width �cw

while the diffuse scattering probes the exponent η ∝ kBT /γ

[34,82]. Experimental observation of a larger �cw and a
smaller η than expected from the classical theory would
provide strong indications in support of our conclusions.
Unfortunately, this task requires one to disentangle the purely
translational mode of surface fluctuations from additional
surface and bulk correlations, which seems difficult at present
without a very accurate model for the full inhomogeneous
pair correlation function [62]. Alternatively, these corrections
could become important when attempting to extend the
capillarity approximation to adsorbed films at the nanoscale,
as revealed by recent computer simulations and atomic force
microscopy experiments which indicate the need to account
for an enhanced surface tension [83,84].
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APPENDIX A: DERIVATION OF EQS. (16) AND (17)

In order to obtain Eqs. (16) and (17), we notice that all odd
terms in L(x) vanish after thermal averaging of the density
correlation function, Eq. (14). This means that 〈δs〉 only retains
the term in (∇δL)2. For this reason, we can write

∫
dx1dx2〈δs(x)〉eiQx·(x1−x2) = 1

2

∫
dx d�x 〈(z − �)

∑
q

qL(q)eiq·x ·
∑

q′
q′L(q′)eiq′ ·x〉 eiQx·�x = 1

2
(z − �)

∑
q

q2〈L2(q)〉δ(Qx),

(A1)

where we have expressed ∇L(x) as an expansion in Fourier modes, and performed the change of variables �x = x1 − x2. For
the average 〈δs2〉, we proceed likewise and write∫

dx1dx2〈δs2(x)〉eiQx·(x1−x2) = 1

2

∫
dx d�x 〈(z − �)

∑
q

L(q)eiq·x ∑
q′

L(q′)eiq′ ·x〉eiQx·�x =
∑

q

〈L2(q)〉δ(Qx), (A2)

where all terms beyond quadratic order in the Fourier amplitudes L(q) have been ignored. Finally, for the crossed correlations
we write ∫

dx1dx2〈δs(x1)δs(x2)〉eiQx·(x1−x2) =
∫

dx1 dx2 〈L(x1)L(x2)〉eiQx·(x1−x2) = 〈L2(Qx)〉. (A3)

Using these transforms in Eq. (13), we obtain Eq. (16) and Eq. (17).
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APPENDIX B: DERIVATION OF EQ. (39)

In order to arrive at Eq. (39), we need to consider
the derivatives of ρπ (z; �) for an adsorbed film, which for
symmetry reasons depends explicitly on two variables, the
distance from the wall, z, and the film height, �. This differs
from the case of a free interface, where ρπ is a function of the
single variable, z − �. Also it is required to take into account
that, by virtue of Eq. (34), ρπ (z; �) is evaluated for a film height
� = L + δs which depends explicitly on x and z. Hence,

∇ρπ (z; � = L + δs) =
(

∂ρπ

∂z
+ ∂ρπ

∂�

d�

dz

)
k + ∂ρπ

∂�
∇x�,

(B1)

where k is a unit vector in the z direction. To quadratic order
in L, the squared gradient is then given as

[∇ρπ (z; � = L + δs)]2 =
(

∂ρπ

∂z

)2

+ ∂ρπ

∂z

∂ρπ

∂�
(∇xL)2

+
(

∂ρπ

∂�

)2

(∇xL)2, (B2)

where we have employed d�/dz = 1
2 (∇xL)2. Notice that all

terms on the right-hand side of Eq. (B2) are evaluated at
� = L + δs. In order to arrive at Eq. (39), which has the
density profiles evaluated at the film height � = L, we expand
in powers of δs. Since we are only interested in contributions
of order (∇xL)2, at most, it suffices to expand only the first
term to linear order in δs, and retain the second and third terms
to obtain Eq. (39).

APPENDIX C: STATIONARITY AT THE BOUNDARY
AND ALTERNATIVE DERIVATION OF EQ. (43)

In the minimization of Eq. (31), the density at the wall is
not prescribed a priori, but must rather be given as a solution
of the variational problem. For this reason, Eq. (32) is a
necessary but not sufficient condition. To see this, we follow
Ref. [41], and use ∇ρπ · ∇δρ = ∇ · (∇ρπδρ) − ∇2ρπδρ in
Eq. (33), together with the divergence theorem. The stationary
condition then becomes∫

dr δρ

{
∂f

∂ρ
− C∇2ρπ + V0

}
+

∫
dS δρ C∇ρπ · n = 0,

(C1)

where n is a unit vector perpendicular to the wall, and dS

denotes integration over the surface of the wall. In variational
problems where ρπ at the surface is prescribed the surface
term vanishes and Eq. (32) is sufficient to solve the variational
problem. Here, we can neither assume a priori δρ = 0 nor
∇ρπ = 0 at the wall, and the surface term must be retained.

In order to obtain Eq. (43), we eliminate the integral over
the first square brackets of Eq. (42) using Eq. (C1) with the
choice δρ = (z − L) δρπ

δ�
. Performing an integration by parts

two of the three terms in the resulting integral mutually cancel
each other, and we are left with Eq. (43).

APPENDIX D: SURFACE PROPERTIES
OF A SUBSTRATE-FLUID PAIR INTERACTING

VIA THE SUTHERLAND POTENTIAL

The Sutherland potential is

u =
{∞, r < σ,

−C/r6, r > σ.
(D1)

In what follows, we write the constant C as C = σ 6ε.
Using the results from Ref. [76] and the integrals for

−C/r6 from Ref. [77], we obtain, after very tedious but
straightforward manipulations,

γlv = 1

4
πεσ 4(ρl − ρv)2, (D2)

γwβ = 1

4
πεwσ 4

w(ρw − ρβ)2 + 5π

12
εwσ 4

wρwρβ, (D3)

for β = l,v, and

Aw = π2(ρv − ρl)
(
εwσ 6

wρw − εσ 6ρl

)
. (D4)

Defining the spreading coefficient as S = (γwv − γwl)/γlv , we
obtain

S =
7
6εwσ 4

wρw − εσ 4(ρl + ρv)

εσ 4(ρl − ρv)
. (D5)

For ρl  ρv and σw ≈ σ , we find that the spreading coefficient
becomes

S ≈ −Aw

Al

, (D6)

where

Al = π2εσ 4ρ2
l . (D7)

The results of this appendix improve our previous estimates
of the surface properties of the Sutherland model [77]. The
key point is the precise evaluation of the dispersion integrals
within perpendicular distances |z| < σ . For γlv , for example,
our results may now be cast in terms of Al as γlv = Al/4πσ 2,
which is very nearly equal to the empirical result γlv = 25

24
Al

4πσ 2

advocated by Israelachvili [74].

APPENDIX E: DERIVATION OF EQ. (87)

Here we solve the indefinite integral that is required to
obtain �2

cw in Eq. (87):

I =
∫

q + ξ 2
e q3

g′′ + γ q2 + κq4
dq. (E1)

In principle this integral may be obtained readily in terms
of arctan functions, but this expression involves complex
numbers and does not allow for an obvious comparison with
the results of classical capillary wave theory (ξe = 0, κ = 0),
which is given in terms of the logarithmic function. In order
to reveal the similarities between both results, we factor the
denominator as

g′′ + γ q2 + κq4 = (a + γ q2)

(
r + κ

γ
q2

)
(E2)

under the requirement that it become equal to the first factor
on the right-hand side in the limit κ → 0. Solving for a and r ,
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we find

a = g′′

r
,

r = 1

2
(1 +

√
1 − 4g′′κ/γ 2). (E3)

Having factored the denominator, the integral may be solved by the technique of partial fractions [85], yielding

I = 1

2

rγ − ξ 2
e g′′

r2γ 2 − g′′κ
ln(g′′ + γ rq2) + 1

2

γ r

κ

ξ 2
e γ r − κ

r2γ 2 − g′′κ
ln(γ r + κq2). (E4)

Equation (87) is recovered from this result in the limit of 4g′′κ/γ 2 � 1. In practice, we checked that Eq. (87) provides a very
robust approximation to the exact result in physically relevant situations considered previously [44].
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