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Multiscale approach to nematic liquid crystals via statistical field theory
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We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the
method of statistical field theory. This approach enables us to relate the coefficients A, B, C, L1, and L2 of the
Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of
uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged
potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de
Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case
of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order
parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher
model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the
predictions of (i) are in reasonably good agreement with known results of Monte Carlo simulation.
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I. INTRODUCTION

The modeling of liquid crystals is a rich and fascinating
subject [1–34]. The models span a hierarchy of levels of
coarse-graining approximation and attention to the details
of interactions. At the upper end of the hierarchy is the
phenomenological approach of the Landau-de Gennes type
[1,5–9], which involves the construction of a free energy
using invariant combinations of an order parameter and its
gradients, the order parameter being a coarse-grained quantity
that reflects the amount of liquid crystalline order there is at
the mesoscopic level. Such a free energy also involves several
adjustable coefficients that have to be fitted to experiment,
whose values are not known a priori. The Landau-de Gennes
free energy can be expressed as [5]

FLdG =
∫

d3r
a3

[
1

2
L1(∂aQbc)2 + 1

2
L2(∂aQab)2

+ A

2
Tr Q2 − B

3
Tr Q3 + C

4
(Tr Q2)2

]
, (1.1)

where Q is a second-rank, traceless, and symmetric tensor,
directly related to the degree of alignment of liquid crystal
nematics, and a is a microscopic length scale related to the
dimensions of the molecule.

At the other end of the hierarchy are the molecular models of
liquid crystals (LCs), such as the Onsager model [13,14] for
lyotropic LCs or the Maier-Saupe [15–17], Lebwohl-Lasher
[19–21] and Gay-Berne models [22–24] for thermotropic LCs.
These models have for their parameters certain details of the
interacting molecules, which can include the aspect ratio, the
orientations and positions of the molecules, and the form
of the interaction potential between each pair of molecules.
In choosing the interaction potential, there is consensus that
the relevant factors giving rise to nematic liquid crystalline
ordering involve suitably anisotropic generalizations of the
excluded-volume interaction and/or the van der Waals inter-
action [33,34]. On the other hand, models also differ in the
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scale of the relative importance of anisotropy they assign to
excluded-volume and van der Waals interactions. For example,
the theory of Onsager [13] assumes that nematic ordering
is driven by the anisotropy of hard rods’ excluded volumes,
whereas the model of Maier and Saupe [15–17] assumes that
the driving agent is the anisotropy in the van der Waals inter-
action. Between these two extremes, there is also the so-called
generalized van der Waals theory, which takes the anisotropies
present in both the excluded volumes of the molecules and the
van der Waals interaction into consideration [33,34].

Beyond the individual modeling of liquid crystals, one can
also study the relations between different theories of LCs,
especially theories on different levels of the coarse-graining
hierarchy [2,14,35], and our paper aims to address such a
problem. This problem appears not to have received as much
attention as the modeling of LCs. An example of such a
problem would be to establish quantitative relations between
the coefficients of the Landau-de Gennes (LdG) theory and the
parameters of a molecular model. Establishing such relations
is of relevance to the LC community, one of the motivations
being that it would make the LdG theory more predictive.
There are different ways by which such relations can be
established, the differences being primarily differences of the
molecular model and approximation scheme adopted. One
approximation scheme is to begin with a certain molecular
model of LCs and apply the mean-field approximation at the
level of the interaction Hamiltonian [2]. One then computes
the corresponding partition function and free energy, matching
the coefficients of the free energy to those of the LdG free
energy. Such an approach has been applied, for example, to
a molecular model of biaxial bricks [35]. A variant of the
mean-field approach is to express the entropy of the molecules
and their average pairwise interaction energy in terms of
the distribution function for the molecular positions and
orientations, determining this function self-consistently via
some form of closure at the mean-field level. Such an approach
has been applied, for example, to relate the Onsager theory [13]
to the LdG theory [14]. In mean-field approaches the mean-
field approximation is typically applied to the Hamiltonian,
i.e., replacing a Hamiltonian of the form q2, where q is a
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fluctuating field variable, with a Hamiltonian of the form
q f (〈q〉), where 〈q〉 is the mean field and f is some function
of the mean field, so that the ordeal of summing over q in the
partition function is much simplified as one is now dealing
with a term that is linear rather than quadratic in q. This also
implies that the corresponding LdG coefficients obtained by
the molecular calculation are given by their mean-field values
and neglect corrections from the correlations of fluctuations. In
addition to mean-field approaches, there is also the approach of
density functional theory, which views the free energy as being
recoverable if all its direct correlation functions (which are the
moments of the free energy with respect to particle density)
are known [36]. Such an approach was used to relate the elastic
constants of the Frank-Oseen theory to the single-nematogen
orientation distribution function [37–39] and has also been
used to establish formal relations between the LdG theory
of the isotropic-nematic transition and the single-nematogen
orientation distribution function [40].

In view of the limited number of methods of relating the
mesoscopic (or continuum, i.e., LdG) and the microscopic
(or molecular) levels of description in LC theory, and the
limitations of the mean-field approximation, it may be of
interest to explore a third approach, namely, that of field
theory [41–47], which leads to the inclusion of the effects of
molecular fluctuation correlations in the computed values of
the LdG coefficients. The present paper explores this approach,
applying it to a molecular lattice model of Lebwohl-Lasher
type [19]. Such an approach would also be a step towards the
realization of a program of calculation envisioned in Ref. [1],
whereby “one should start from a microscopic Hamiltonian”
and “calculate whatever thermodynamic quantity is needed
from the partition function Z,” and that it should be “possible
to construct a free energy F (〈Q〉), the minima of which
do rigorously define equilibrium states,” where F (〈Q〉) =
−kT log Z(〈Q〉), and the integrations in Z “are performed
with a constant average order parameter 〈Q〉.”

Another motivation for using the field-theoretic approach
(in particular, the Hubbard-Stratonovich transformation
[48–50], which we will describe shortly) to study the
microscopic-mesoscopic relation comes from the fact that it
appears to be better known in other domains of physics, but
seems much less studied in the domain of liquid crystals.
For example, in the theory of magnetism, field theory is
used to relate the mesoscopic coefficients of the φ4 theory
to the molecular parameters of the Ising model [44,45]. In
the theory of electrolytes, field theory is used to relate a
microscopic Coulomb model of interacting ions to Poisson-
Boltzmann (PB) theory, which is a continuum description
[51–55]. In the domain of liquid crystals, we are only aware
of a couple of works [56,57], which adopt a field-theoretic
approach. In Ref. [56] the authors apply the field-theoretic
approach to study the phase behavior of semiflexible polymer
solutions and blends, starting from a model that includes
both an anisotropic interaction that favors the alignment
of polymer segments and an isotropic interaction that can
drive the demixing of polymer and solvent. In Ref. [57] the
authors analyze the phenomenological theory for smectics in
terms of the molecular parameters of the Ronis-Rosenblatt
model [29], neglecting, however, to obtain the full coefficients
of the nematic theory. Our paper endeavors to relate the

phenomenological coefficients of the theory of thermotropic
uniaxial nematics to a Lebwohl-Lasher-type lattice model
[58], and can be regarded as being complementary to the
aforementioned work.

In what follows, we qualitatively describe the field-theoretic
method that we use, relegating the mathematical details to
subsequent sections. This method begins by specifying a
microscopic Hamiltonian that can be expressed in terms
of a quadrature of some collective field. One then per-
forms a Hubbard-Stratonovich (HS) transformation [48–50]
on the partition function, which is an exact transformation
that introduces an auxiliary field conjugate to the original
collective field, and causes the collective field to appear
in a linearly coupled form, rendering tractable the task of
ensemble averaging over the original fluctuating degrees of
freedom (which are the molecular orientation and lattice
site occupation number). We then show that performing an
ensemble average of the collective field over the original
degrees of freedom is equivalent to computing the expectation
value of the auxiliary field, which corresponds to the 〈Q〉 of
the LdG theory. The resulting free energy with the log trace
term can be systematically expanded as a power series of
Q, the coefficients of the terms being combinations of the
parameters of the microscopic model and the concentration
of nematogens. Identifying this series (which we truncate
at quartic order) with the LdG free energy then enables the
determination of the coefficients A, B, and C as well as
the elastic constants L1 and L2 in terms of the molecular
parameters. Via such a procedure, we will also discover that a
certain condition has to hold in order to ensure the positivity
of the quartic term (and hence the stability of the LdG theory),
namely, that the volume fraction of nematogens has to be
sufficiently large.

The plan of our paper is as follows. In Sec. II, we explicate
the model that we adopt, which is a modified version of the
Lebwohl-Lasher model. In Sec. III, we construct the partition
function and effect the Hubbard-Stratonovich transformation,
which enables us to transition from a picture of fluctuating
molecular orientations and lattice site occupation to a picture
of fluctuating order parameter field. In Sec. IV, we derive
the effective Hamiltonian and show that its quartic expansion
can be identified with the Landau-de Gennes free energy.
This paves the way to our results in Sec. V, where we
identify the phenomenological coefficients of the Landau-de
Gennes theory in terms of the molecular parameters of our
modified Lebwohl-Lasher model. In Sec. VI, we look at
the case of a fully occupied lattice, and obtain values for
the isotropic-nematic transition temperature and the order
parameter discontinuity that are predicted by the two following
models: (i) a continuum approximation of the nearest-neighbor
Lebwohl-Lasher model and (ii) a model of Lebwohl-Lasher
type that involves nematogenic interactions of finite range.

II. MODIFIED LEBWOHL-LASHER MODEL

We consider a lattice gas model of liquid crystal nematics,
in which the nematogens reside on a three-dimensional cubic
lattice (see Fig. 1). Each lattice cell has a volume a3, where a

is the length of each side of the cell. We assume that each
nematogen has a volume a3, so each cell can at most be
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FIG. 1. Modified Lebwohl-Lasher model: a two-dimensional
slice of the three-dimensional cubic lattice on which nematogens
(represented by orange-colored rods) reside. The j th rod has a
direction parallel to nj and a position vector rj , inhabiting a cell
that has a linear dimension a. A cell can either be occupied by
a nematogen, or unoccupied. The circle (colored blue, radius b)
indicates the effective range of the nematogen-nematogen interaction
potential v(r).

occupied by one nematogen. We denote the occupation number
of the j th cell by sj , where sj = 0,1, its position vector by rj ,
and the orientation of the nematogen in the cell is represented
by a unit vector nj . The nematogen-nematogen interaction is
described by a Lebwohl-Lasher-type model [19], which has a
Hamiltonian given in dimensionless form by

βHLL = −1

2

N∑
i,j=1

v(ri − rj )

(
(ni · nj )2 − 1

3

)
, (2.1)

where v(ri − rj ) ≡ βJij , and Jij is the interaction between
nematogens at positions ri and rj . Here the latin indices i,j =
1, . . . ,N label nematogens. Our model is thus a modification
of the original Lebwohl-Lasher (LL) model in two respects,
viz., in the allowance we make for partial occupation of the
lattice, and in that the nematogen interaction is not restricted
solely to nearest-neighbor interactions.

III. PARTITION FUNCTION

The partition function is given by

Z =
N∏

j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e

1
2

∑
i,j v(ri−rj )((ni ·nj )2− 1

3 )si sj
〉
nj

, (3.1)

where μ is the chemical potential of each nematogen. The
chemical potential can be regarded as a Lagrange multiplier
that enforces the conservation of the average number of
nematogens, so the partition function represents a trace over all
possible configurations of {sj }Nj=1 subject to the constraint that
the average number of nematogens is conserved. The symbol
〈. . .〉nj

denotes the average over all possible directions of the

unit vector nj , viz.,

〈. . .〉nj
≡ d �j

4π
δ(|nj |2 − 1), (3.2)

where d �j is an infinitesimal element of solid angle
associated with the j th nematogen. By defining a collective
field qab(r), viz.,

qab(r) ≡
N∑

j=1

(
njanjb − 1

3
δab

)
sja

3δ(r − rj ), (3.3)

where qab(r) has the meaning of the local liquid crystalline
order, we can rewrite the partition function as

Z =
N∏

j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e

1
2

∫
d3r
a3

∫
d3r′
a3 qab(r)v(r−r′)qab(r′)〉

nj
. (3.4)

We now make use of the Hubbard-Stratonovich
transformation, which is based on the matrix integral identity

exp( 1
2xiKij xj ) ∝

∫
dy exp(− 1

2yiKij yj + Kijxiyj ). (3.5)

We can therefore express the partition function as

Z =
∫

DQe
− 1

2

∫
d3r
a3

∫
d3r′
a3 Qab(r)v(r−r′)Qab(r′)

×
N∏

j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e
∫

d3r
a3

∫
d3r′
a3 qab(r)v(r−r′)Qab(r′)〉

nj
.

(3.6)

Here the integral measure
∫
DQ is a shorthand for the product∏

{r} dQ(r) ≡ limN→∞
∏N

J=1 dQ(rJ ), where for the purpose
of calculation we regard the volume as being a cubic lattice
with N cells. We rewrite the product on the right-hand side
(RHS) as

N∏
j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e
∫

d3r
a3

∫
d3r′
a3 qab(r)v(r−r′)Qab(r′)〉

nj

=
N∏

j=1

[
1 + λ

〈
e
∫

d3r
a3 v(r−rj )Qab(r)(njanjb− 1

3 δab)〉
nj

]

= e

∑
j ln

[
1+λ

〈
e

∫ d3r
a3 v(r−rj )Qab (r)(njanjb− 1

3 δab )
〉
nj

]
,

where λ ≡ eβμ is the fugacity of a nematogen. Next, for a
dense lattice we can adopt a coarse-graining approximation
in which we replace the sum over lattice cells by an integral
over the entire volume enclosed by the lattice. We then obtain

Z =
∫

DQe
− 1

2

∫
d3r
a3

∫
d3r′
a3 Qab(r)v(r−r′)Qab(r′)

× e
∫

d3r
a3 ln

[
1+λ

〈
e

∫ d3r′
a3 v(r−r′)Qab (r′ )(nanb− 1

3 δab )
〉
n

]
. (3.7)

IV. EFFECTIVE HAMILTONIAN

We can formally define an effective Hamiltonian Heff via

Z =
∫

DQe−βHeff , (4.1)
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and we shall posit that Heff is equivalent to the Landau-de
Gennes (LdG) free energy. Indeed, we will see shortly that the
auxiliary field Q has the meaning of the order parameter in the
LdG theory. Through this identification, the coefficients of the
LdG theory can be determined in terms of the parameters of the
microscopic model—an objective that we set out to achieve.
Up to some constant, we can write the effective Hamiltonian as

βHeff = 1

2

∫
d3r
a3

∫
d3r′

a3
Qαβ(r)v(r − r′)Qαβ(r′)

−
∫

d3r
a3

ln
[
1 + λ

〈
e
∫

d3r′
a3 v(r−r′)τabQab(r′)〉

n

]
, (4.2)

where τab ≡ nanb − 1
3δab. The fugacity λ is related to the

total number of nematogens, Nnem, on the lattice, which we
can see as follows. Making use of Eqs. (4.1) and (4.2) and the
thermodynamic relation

Nnem = 1

Z

∂Z

∂(βμ)
, (4.3)

which (as mentioned earlier) reflects the fact that μ is a
Lagrange multiplier that ensures that the average number of
nematogens is conserved, we have

Nnema3 =
∫

d3r

〈
λ〈e

∫
v τabQab〉n

1 + λ〈e
∫

v τabQab〉n

〉
Q

, (4.4)

where
∫

(. . .) is our shorthand for
∫

d3r/a3(. . .), and 〈. . .〉Q ≡∫
DQ(. . .)e− 1

2

∫
Qv−1Q/

∫
DQe− 1

2

∫
Qv−1Q is the Gaussian

weighted average over Q. The left-hand side (LHS) of the
above equation depends on how the system is prepared, and
once prepared, is assumed to remain constant for the entire
duration, while the temperature (and correspondingly the
expectation value of Q) can change. The fugacity λ of each ne-
matogen is also assumed to be constant. Thus, to determine λ,
let us consider the regime of high temperature, for which T →
∞ (or equivalently, v → 0). The above equation then becomes

Nnema3 → V λ

1 + λ
, (4.5)

where V is the volume of the system. Further denoting
the fraction of lattice cells occupied by nematogens by
φ ≡ Nnema3/V = Nnem/N , we find that

λ = φ

1 − φ
. (4.6)

As we shall see soon (i.e., end of this section and Appendix
B), Q has the meaning of the Landau-de Gennes order
parameter. Anticipating this result, and observing that the
LdG free energy is formulated near the isotropic-nematic
phase transition, we can thus carry out an expansion of the
effective Hamiltonian in powers of Q. We carry out this
expansion in Appendix A. To quartic order in Q, we have the
result that the effective Hamiltonian is given by

βHeff = I1 − λ

15(1 + λ)
I2 −

∫
d3r
a3

{
4κ3λ

315(1 + λ)
Tr Q3

+
[

λ

567(1 + λ)
− λ2

450(1 + λ)2

]
κ4(Tr Q2)2

}
,

(4.7)

where we have defined

I1 ≡ 1

2

∫
d3r
a3

∫
d3r′

a3
Qαβ(r)v(r − r′)Qαβ(r′) (4.8a)

I2 ≡
∫

d3r
a3

∫
d3r′

a3

∫
d3r′′

a3
v(r′−r)v(r′′−r)Qab(r′)Qab(r′′)

(4.8b)

κ ≡
∫

d3r
a3

v(r). (4.8c)

In obtaining Eq. (4.7), we have made use of the fact that
for symmetric, traceless 3 × 3 matrices, Tr Q4 = (Tr Q2)2/2
[61]. In carrying out the orientation averages, we have made
use of certain tensor results that we derived in Appendix C.

What is the meaning of Q? In Appendix B, we show that
Q has the meaning of the order parameter field in the LdG
theory. We demonstrate this by showing that the expectation
value of Q, obtained by averaging over Q with a Boltzmann
weight e−βHeff , coincides with the ensemble average of q, i.e.,

〈qab(r)〉 = 〈Qab(r)〉. (4.9)

Here the angle brackets have somewhat distinct meanings on
the left and right sides of the equation; on the left side they
denote averaging with respect to the ensemble variables sj

and nj using the partition function in Eq. (3.1), whereas on
the right the averaging is performed over Q using the partition
function in Eq. (4.1).

V. MATCHING COEFFICIENTS

The first two terms (i.e., the ones involving I1 and I2) in
Eq. (4.7) are nonlocal. To make contact with LdG theory, we
perform a gradient expansion on those terms, whereupon we
obtain (see Appendix D for details)

βHeff = κ

(
1

2
− λ κ

15(1 + λ)

)∫
d3r
a3

Tr Q2

+ η

(
λ κ

15(1 + λ)
− 1

4

) ∫
d3r
a3

∂cQab∂cQab

−
∫

d3r
a3

[
4κ3λ

315(1 + λ)
Tr Q3

+
(

λ

567(1 + λ)
− λ2

450(1 + λ)2

)
κ4(Tr Q2)2

]
.

(5.1)

The coefficient of the cubic term in the Landau expansion is
negative, which is in accord with expectations for elongated
nematogens. In the above expression, we have also defined

η δab ≡
∫

d3R
a3

RcRd v(R), (5.2)

where a Kronecker δ appears because v is isotropic. If we
assume that v has the form of Eq. (6.2) then

η = (2π )3/2βJb5/a3. (5.3)

Our expansion for Heff in Eq. (5.1) coincides with the
Landau-de Gennes free energy, FLdG, if we make the following
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identification:

A =
(

1 − 2λ κ

15(1 + λ)

)
κ kBT , (5.4a)

B = 4κ3λ kBT

105(1 + λ)
, (5.4b)

C =
(

2λ2

225(1 + λ)2
− 4λ

567(1 + λ)

)
κ4kBT , (5.4c)

L1 = 2η

(
λ κ

15(1 + λ)
− 1

4

)
kBT , (5.4d)

L2 = 0. (5.4e)

From these equations, we can make the following deductions.
We first note that A becomes negative for κ > 15(1 + λ)/2λ,
which allows us to write A = A0(T − T ∗), where A0 ≡ κkB.
Here T ∗ corresponds to the critical temperature, which has the
physical meaning of the limit of supercooling of the isotropic
state. Using the matched coefficients above, we can express
T ∗ in terms of the molecular parameters:

T ∗ = 2λκT /[15(1 + λ)]. (5.5)

Here T ∗ is actually independent of T as κ contains a factor
1/T . From Landau-de Gennes theory, we have that Tni =
T ∗ + B2/(27CA0), and the discontinuity in the nematic order
is Sc = B/3C. For the case of a fully occupied lattice (λ → ∞)
and using the matched coefficients in Eqs. (5.4), we find that

T ∗ = 2κT

15
, Tni = 74

455
κT , Sc = 5670

1079κ
. (5.6)

The coefficient L2 is zero, implying that our expansion is
equivalent to the one-constant approximation [1], which is a
consequence of adopting an isotropic form for the nematogen
interaction potential v.

We also see that besides the possibility of A becoming
negative, L1 also becomes negative for κ > 15(1 + λ)/4λ.
The sign changes of the quadratic term and quadratic gradient
are well known from field-theoretic expansions (see, e.g.,
Ref. [45]), and describe the limits at which the expansion
to quadratic order is stable against the effects of fluctuation.

In Eqs. (5.4), we observe that the parameter C, correspond-
ing to the coefficient of the quartic term, is positive for λ >

50/13 (i.e., φ > 50/63), but then changes sign and becomes
negative for 0 � λ < 50/13 (i.e., 0 � φ < 50/63). Similar to
the sign changes of the quadratic coefficients, the sign change
of the quartic coefficient is also generic to field-theoretic
expansions [45], arising simply from the competition of
the second and fourth moments of the fluctuation correlation
function of molecular orientation in the cumulant expansion
[cf. Eq. (A1)]. Such a possibility of a change in the sign of
the quartic coefficient is absent in the more conventional,
mean-field approximation applied at the Hamiltonian level.
For a given volume fraction of nematogens, the sign provides
an indication of whether the truncation of the LdG theory to
quartic order is stable against fluctuations. As we see from
Fig. 2, such a truncation is stable only if the volume fraction
of nematogens is sufficiently large.

We may also make a qualitative comparison of our
results with those found for semiflexible polymer solutions

−

−

−

FIG. 2. Behavior of the coefficient C of the Landau-de Gennes
theory as a function of φ, the fraction of lattice cells occupied by
nematogens. C is positive for φ > 50/63.

in Ref. [56], where polymer rigidity (besides the alignment
interaction strength of polymer segments) can also drive
nematic ordering. If one assumes the absence of density
fluctuations, the coefficient of the quartic-order term turns
out to be positive for any value of the volume fraction,
which is distinct from the behavior predicted by the modified
LL model, in which C can become negative. This suggests
that the combination of both polymer rigidity and alignment
interaction stabilizes the LdG theory at quartic order. The
authors also found that the coefficient L2 is nonzero, which can
be understood as a consequence of the preference of segments
to align parallel to the semiflexible backbone, whereas for
models I and II L2 vanishes, owing to the assumed isotropy of
v(r).

VI. RESULTS AND DISCUSSION

In this section, we compute the values for Tni and Sc

for two models of Lebwohl-Lasher type, using the formulas
we derived for the matched coefficients. For simplicity, we
assume that the lattice is fully occupied (i.e., λ → ∞) for
both models. The first model (model I) is a continuum version
of the original model considered by Ref. [19], in which the
sum runs over nearest neighbors. The corresponding contin-
uum representation of the nematogen interaction kernel v is
given by

v(r − r′) = γ a3βJδ(r − r′), (6.1)

where γ is the coordination number of each nematogen site.
For a cubic lattice, γ = 6. A derivation of the above kernel is
given in Appendix E. The corresponding value of κ is given
by κ = γβJ .

The second model (model II) that we consider is a modified
version of the LL model, with allowance being made for
interactions of finite (albeit short) range. In this model v(r)
has a Gaussian decaying form, i.e.,

v(r) = βJ e
− |r|2

2b2 , (6.2)

where b sets the range of the nematogen interaction. For this
potential, we have that κ = (2π )3/2βJ (b/a)3.
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For model I, the matched coefficients are given by

A = 6

(
1 − 12βJ

15

)
J, (6.3a)

B = 864β2J 3/105, (6.3b)

C = 33696β3J 4/14175, (6.3c)

L1 = L2 = 0. (6.3d)

From these values and Eq. (5.5), we find that T ∗ = 12J/15kB,
Tni ≈ 0.98J/kB, and Sc ≈ 0.85.

For model II, we consider the case where b = a. The
matched coefficients are then given by

A = (2π )3/2

(
1 − 2(2π )3/2βJ

15

)
J, (6.4a)

B = 4(2π )9/2

105
β2J 3, (6.4b)

C = 1664π6

14175
β3J 4, (6.4c)

L1 = 2(2π )3/2

(
(2π )3/2βJ

15
− 1

4

)
J a2, (6.4d)

L2 = 0. (6.4e)

From these values, we find that Tni ≈ 2.6J/kB and Sc ≈
0.85.

From the results obtained for the two models, we see that
a lower transition temperature is predicted for the case of
continuum nearest-neighbor interactions than for the case of
finite-ranged interactions. This is physically reasonable, as
an interaction of longer range implies that the nematogens
are correlated over larger distances, whose correlations would
require a correspondingly higher temperature to become
disrupted. From the results of previous Monte Carlo (MC)
simulations performed on the discrete, nearest-neighbor LL
model (see, e.g., Ref. [62]), it is known that Tni ≈ 1.11J/kB,
which is distinct from the two values predicted by models
I and II. The difference arises because the models are not
identical with the (discrete) LL model. The value of Tni

found by MC simulation falls between the values predicted
by models I and II; this is so, because the interaction range
in the discrete, nearest-neighbor LL model is larger than that
in model I (which is a local approximation) but smaller than
that in model II (in which the interaction can also be felt
by next-nearest neighbors). In spite of the distinction, model
I predicts that Tni ≈ 0.98J/kB, which is not very far from
the value found by MC simulation [62]. Interestingly, both
models I and II also predict approximately the same value
for Sc. This value (Sc ≈ 0.85) is larger than the value of 0.43
predicted by the Maier-Saupe theory and smaller than the value
of 0.89 predicted by the Onsager theory [1,2], but close to the
approximate value of 0.82 found by MC simulation [62].

In Eqs. (5.4), it may appear that the Landau-de Gennes
terms do not vanish in the formal limit that T → 0 where one
would have expected them to, originating as they do from the
entropy of nematogens [63,64]. To probe the T → 0 limit,
we would have to go back to Eq. (4.2), which contains the
exact log trace term for the entropic contribution; this term has

indeed the correct prefactor of T . The LdG free energy is an
expansion of the log trace term for temperatures near Tni (from
the high-temperature side), and correspondingly the values of
T in the matched LdG coefficients have to be approximated to
Tni . On the other hand, if we take the formal limit T → ∞ we
find that the coefficients B and C vanish, leaving us only with
terms of quadratic order, which is physically appropriate for
the isotropic phase.

The original LL model [19] is one in which the translational
degrees of freedom of the nematogens are frozen out. This is
evident in the assumed full occupation of the lattice in which
nematogens are not free to change positions. On the other
hand, by allowing for partial occupation (i.e., φ < 1) while
constraining the total number of nematogens to be constant,
the modified Lebwohl-Lasher model can in principle also
account for the translational freedoms of nematogens that were
unaccounted for in the original LL model.

VII. CONCLUSION

In this paper, we have formulated a field-theoretic approach
to determining the coefficients of the Landau-de Gennes theory
for thermotropic uniaxial nematics. As we have shown in our
paper, such an approach offers a systematic and relatively
straightforward recipe for calculating all the phenomenolog-
ical coefficients (including those of the gradient terms). We
have applied this approach to the microscopic, Lebwohl-
Lasher model, approximating the nematogen-nematogen inter-
action v(r) by potentials with two distinct forms: a continuum
version of the nearest-neighbor interaction (model I) and a
Gaussian exponential-decaying form (model II). To carry out
the sum over fluctuations, we have put the nematogens onto a
cubic lattice, with each lattice cell being able to be occupied by
at most one nematogen. Via this model we found that for the
quartic-order truncation of the LdG expansion to be stable, the
fraction of occupied lattice cells has to be greater than 50/63.

We have also derived formulas that express the coefficients
A, B, C, L1, and L2 in terms of the parameters of the modified
Lebwohl-Lasher model. By working with the two model
potentials and assuming that the lattice is fully packed, we have
obtained explicit values for the coefficients, and used them to
deduce values for the isotropic-nematic transition temperature
and the order parameter discontinuity. We found that for
model I, Tni ≈ 0.98J/kB and Sc ≈ 0.85, while for model
II, Tni ≈ 2.6J/kB and Sc ≈ 0.85. These predictions (coming
from a continuum approximation) can be compared with the
values for the nearest-neighbor Lebwohl-Lasher model found
by MC simulations, viz., Tni ≈ 1.11J/kB and Sc ≈ 0.82.

The systematic character of our field-theoretic approach
implies that it can be straightforwardly extended to other
liquid crystal systems, such as biaxial nematics, discoids,
cholesterics, and cholesteric blue phases. For biaxial nematics,
one would have to expand the log trace term in the effective
Hamiltonian to sixth order in Q [65]. This can be used to
study the possibility of fluctuation-induced biaxial nematics,
for negative values of C. Our approach can in principle also
be generalized to more complicated interaction potentials,
for example, those involving electrostatic and Kirkwood-
Shumaker interactions (for stiff rodlike peptides).
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APPENDIX A: EXPANSION OF THE LOG TRACE TERM IN THE EFFECTIVE HAMILTONIAN

In this appendix, we perform an expansion of the log trace term in Heff in powers of Q, assuming that Q is small. Using the
shorthand notation

∑
r′ vr′r ≡ ∫

d3r′v(r′ − r)/a3, we expand the logarithm to quartic order in Q:

ln
[
1 + λ

〈
e
∑

r′ vr′rτabQab(r′)〉
n

] ≈ ln
[
1 + λ + λ〈τab〉n

∑
r′

vr′rQab(r′) + λ

2
〈τabτcd〉n

∑
r′,r′′

vr′rvr′′rQab(r′)Qcd (r′′)

+ λ

6
〈τabτcdτef 〉n

∑
r1,r2,r3

vr1rvr2rvr3rQab(r1)Qcd (r2)Qef (r3)

+ λ

24
〈τabτcdτef τgh〉n

∑
r1,r2,r3,r4

vr1rvr2rvr3rvr4rQab(r1)Qcd (r2)Qef (r3)Qgh(r4)
]

≈ λ〈τabτcd〉n
2(1 + λ)

∑
r′,r′′

vr′rvr′′rQab(r′)Qcd (r′′) + λ〈τabτcdτef 〉n
6(1 + λ)

∑
r1,r2,r3

vr1rvr2rvr3rQab(r1)Qcd (r2)Qef (r3)

+
[
λ〈τabτcdτef τgh〉n

24(1 + λ)
− λ2〈τabτcd〉n〈τef τgh〉n

8(1 + λ)2

]
×

∑
r1,r2,r3,r4

vr1rvr2rvr3rvr4r Qab(r1)Qcd (r2)Qef (r3)Qgh(r4) + const. (A1)

In the above, a term linear in Q vanishes as 〈τab〉n = 0. To make further progress, we make a local approximation to the cubic
and quartic terms, which consists of expressing rα (where α = 1,2,3 in the cubic term and α = 1,2,3,4 in the quartic term) in
Eq. (A1) in terms of a center coordinate r and relative coordinates Rα , viz., rα = r + Rα , and taking rα ≈ r. Taking the local
approximation is reasonable considering that near the transition, Q would be small, and nonlocal variations of Q introduce
higher-order corrections that can be disregarded in terms of order higher than quadratic.

APPENDIX B: EQUIVALENCE OF THE EXPECTATION VALUE OF THE AUXILIARY FIELD
〈 Q〉 AND THE ENSEMBLE-AVERAGED COLLECTIVE FIELD 〈q〉

Here we show that the expectation value of Q, obtained by averaging over Q with a Boltzmann weight e−βHeff , coincides with
the ensemble average of q. To see their equivalence, let us append an external source term to Z in Eq. (3.4), viz.,

Z[h] =
N∏

j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e

1
2

∫
d3r
a3

∫
d3r′
a3 qab(r)v(r−r′)qab(r′)+∫

d3r
a3 habqab

〉
nj

(B1)

whence the ensemble average of q is given by

〈qab(r)〉 = 1

Z

∂Z

∂hab(r)

∣∣∣∣
h→0

. (B2)

To make a connection to the expectation value of Q, we perform a HS transformation on Z[h] in Eq. (B1):

Z[h] =
N∏

j=1

∑
sj =0,1

e
βμ

∑
j sj − 1

2

∫
d3r
a3

∫
d3r′
a3 hab(r)v−1(r−r′)hab(r′)〈

e
1
2

∫
d3r
a3

∫
d3r′
a3 (qab+

∫
v−1hab)v(qab+

∫
v−1hab)〉

nj

=
∫

DQe
− 1

2

∫
d3r
a3

∫
d3r′
a3 Qab(r)v(r−r′)Qab(r′)

N∏
j=1

∑
sj =0,1

eβμ
∑

j sj
〈
e
∫

d3r
a3

∫
d3r′
a3 qab(r)v(r−r′)Qab(r′)

e
∫

d3r
a3 habQab

〉
nj

. (B3)

From this equation, we obtain the relation

1

Z

∂Z

∂hab(r)

∣∣∣∣
h→0

= 〈Qab(r)〉. (B4)
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Comparing Eqs. (B2) and (B4), we have the equality

〈qab(r)〉 = 〈Qab(r)〉. (B5)

APPENDIX C: CONSTRAINED AVERAGES OVER S2

As we see from Eq. (4.2), the effective Hamiltonian contains terms of the form 〈eταβQαβ (r)〉n, where 〈. . .〉n is an average over the
unit two-sphere S2 (i.e., the set of points mapped out by all possible orientations of a unit vector, n). Close to the isotropic-nematic
transition point, we expect Q to be small, and thus an expansion in powers of Q can be performed. To match our effective
Hamiltonian to the Landau-de Gennes free energy, we have to carry out the expansion to quartic order in Q. Such terms involve
orientation averages over products of τ , and the highest order of such products in the quartic-order expansion is obviously of quartic
order. The evaluation of such orientation averages is equivalent to the evaluation of orientation averages over products of n. To
quartic order in Q, we find that the orientation averages yield isotropic tensors of order 2, 4, 6, and 8. The results are given below:

〈1〉n = 1 (C1)

〈nαnβ〉n = 1

3
δαβ (C2)

〈nαnβnγ nδ〉n = 1

15
(δαβδγ δ + δαγ δβδ + δαδδβγ ) (C3)

〈nanbncndnenf 〉n = 1

105
(δab(δcdδef + δceδdf + δcf δde) + δac(δbdδef + δbeδdf + δbf δde) + δad (δbcδef + δbeδcf + δbf δce)

+ δae(δbcδdf + δbdδcf + δbf δcd ) + δaf (δbcδde + δbdδce + δbeδcd )). (C4)

The second equation above implies that 〈ταβ〉n = 0. In the free-energy expansion, when we contract τab with tensors Qab in the
free-energy expansion, only traceless contributions will be picked up, and thus we can ignore terms involving 〈nanb〉n, and we
effectively have that

〈nanbncnd〉n → 1

15
(δacδbd + δadδbc), (C5)

〈nanbncndnenf 〉n → 1

105
(δac(δbeδdf + δbf δde) + δad (δbeδcf + δbf δce) + δae(δbcδdf + δbdδcf ) + δaf (δbcδde + δbdδce)). (C6)

Using the above results, we calculate the following quantity, which is relevant for the coefficient of the quadratic term in the
free energy expansion of Q:

〈τabτcd〉n =
〈(

nanb − 1

3
δab

)(
ncnd − 1

3
δcd

)〉
n

=
〈
nanbncnd − 1

3
δabncnd − 1

3
δcdnanb + 1

9
δabδcd

〉
n

= − 2

45
δabδcd + 1

15
(δacδbd + δadδbc), (C7)

For the cubic-order term in the free-energy expansion, we need the value of 〈τabτcdτef 〉n:

〈τabτcdτef 〉n = 1

105
(δac(δbeδdf + δbf δde) + δad (δbeδcf + δbf δce) + δae(δbcδdf + δbdδcf ) + δaf (δbcδde + δbdδce)). (C8)

The quartic term in the free-energy expansion is a connected cumulant term consisting of two contributions. The first contribution
is straightforward to calculate:

〈τabτcd〉n〈τef τgh〉n = 4

2025
δabδcdδef δgh − 2

225
(δabδcdδegδf h + δabδcdδehδfg + δacδbdδef δgh + δadδbcδef δgh)

+ 1

225
(δacδbdδegδf h + δacδbdδehδfg + δadδbcδegδf h + δadδbcδehδfg)

= 1

225
(δacδbdδegδf h + δacδbdδehδfg + δadδbcδegδf h + δadδbcδehδfg). (C9)

To obtain the second contribution, we have to consider the following rank-eight isotropic tensor:

〈nanbncndnenf ngnh〉n

= 1

945
{δab[δcd (δef δgh + δegδf h + δehδfg) + δce(δdf δgh + δdgδf h + δdhδfg) + δcf (δdeδgh + δdgδeh + δdhδeg)

+ δcg(δdeδf h + δdf δeh + δdhδef ) + δch(δdeδfg + δdf δeg + δdgδef )]

+ δac[δbd (δef δgh + δegδf h + δehδfg) + δbe(δdf δgh + δdgδf h + δdhδfg) + δbf (δdeδgh + δdgδeh + δdhδeg)
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+ δbg(δdeδf h + δdf δeh + δdhδef ) + δbh(δdeδfg + δdf δeg + δdgδef )]

+ δad [δbc(δef δgh + δegδf h + δehδfg) + δbe(δcf δgh + δcgδf h + δchδfg) + δbf (δceδgh + δcgδeh + δchδeg)

+ δbg(δceδf h + δcf δeh + δchδef ) + δbh(δceδfg + δcf δeg + δcgδef )]

+ δae[δbc(δdf δgh + δdgδf h + δdhδfg) + δbd (δcf δgh + δcgδf h + δchδfg) + δbf (δcdδgh + δcgδdh + δchδdg)

+ δbg(δcdδf h + δcf δdh + δchδdf ) + δbh(δcdδfg + δcf δdg + δcgδdf )]

+ δaf [δbc(δdeδgh + δdgδeh + δdhδeg) + δbd (δceδgh + δcgδeh + δchδeg) + δbe(δcdδgh + δcgδdh + δchδdg)

+ δbg(δcdδeh + δceδdh + δchδde) + δbh(δcdδeg + δceδdg + δcgδde)]

+ δag[δbc(δdeδf h + δdf δeh + δdhδef ) + δbd (δceδf h + δcf δeh + δchδef ) + δbe(δcdδf h + δcf δdh + δchδdf )

+ δbf (δcdδeh + δceδdh + δchδde) + δbh(δcdδef + δceδdf + δcf δde)]

+ δah[δbc(δdeδfg + δdf δeg + δdgδef ) + δbd (δceδfg + δcf δeg + δcgδef ) + δbe(δcdδfg + δcf δdg + δcgδdf )

+ δbf (δcdδeg + δceδdg + δcgδde) + δbg(δcdδef + δceδdf + δcf δde)]} (C10)

〈nanbncndnenf ngnh〉n

→ 1

945
{δac[δbd (δegδf h + δehδfg) + δbe(δdgδf h + δdhδfg) + δbf (δdgδeh + δdhδeg) + δbg(δdeδf h + δdf δeh)

+ δbh(δdeδfg + δdf δeg)] + δad [δbc(δegδf h + δehδfg) + δbe(δcgδf h + δchδfg) + δbf (δcgδeh + δchδeg)

+ δbg(δceδf h + δcf δeh) + δbh(δceδfg + δcf δeg)] + δae[δbc(δdgδf h + δdhδfg) + δbd (δcgδf h + δchδfg)

+ δbf (δcgδdh + δchδdg) + δbg(δcf δdh + δchδdf ) + δbh(δcf δdg + δcgδdf )]

+ δaf [δbc(δdgδeh + δdhδeg) + δbd (δcgδeh + δchδeg) + δbe(δcgδdh + δchδdg) + δbg(δceδdh + δchδde) + δbh(δceδdg + δcgδde)]

+ δag[δbc(δdeδf h + δdf δeh) + δbd (δceδf h + δcf δeh) + δbe(δcf δdh + δchδdf ) + δbf (δceδdh + δchδde) + δbh(δceδdf + δcf δde)]

+ δah[δbc(δdeδfg + δdf δeg) + δbd (δceδfg + δcf δeg) + δbe(δcf δdg + δcgδdf ) + δbf (δceδdg + δcgδde) + δbg(δceδdf + δcf δde)]}.
(C11)

The above leads to the following useful result:

〈τabτcdτef τgh〉n → 〈nanbncndnenf ngnh〉n, (C12)

so 〈τabτcdτef τgh〉n effectively has only one contribution, the other contributions vanishing on account of the tracelessness of the
Qab tensors that are coupled to the τab tensors.

APPENDIX D: CALCULATION OF I1 AND I2

Here we calculate the functions I1 and I2 defined in Eqs. (4.8a) and (4.8b). The calculation can be facilitated by expressing
r = c + R/2, r′ = c − R/2 for the first quadratic term and r′ = r + R1, r′′ = r + R2 for the second, and we expand to quadratic
order in the relative displacements R, R1 and R2. I1 becomes

I1 ≡ 1

2

∫
d3r
a3

∫
d3r′

a3
v(r − r′)Qab(r)Qab(r′)

= 1

2

∫
d3c
a3

∫
d3R
a3

v(R)Qab(c + 1
2 R)Qab(c + 1

2 R)

≈ 1

2

∫
d3c
a3

∫
d3R
a3

v(R)[Qab(c) + 1
2Rc∂cQab(c) + 1

8RcRd∂c∂dQab(c)][Qab(c) − 1
2Rc∂cQab(c) + 1

8ReRf ∂e∂f Qab(c)]

≈ 1

2

∫
d3c
a3

∫
d3R
a3

v(R)Qab(c)Qab(c) + 1

8

∫
d3c
a3

∫
d3R
a3

v(R)[[RcRd∂c∂dQab(c)]Qab(c) − RcRd∂cQab(c)∂dQab(c)].

On integrating the last term by parts, we obtain

I1 = 1

2

∫
d3c
a3

∫
d3R
a3

v(R)Qab(c)Qab(c) − 1

4

∫
d3c
a3

∫
d3R
a3

[RcRd v(R)]∂cQab(c)∂dQab(c) + surface term. (D1)
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For I2 we have

I2 ≡
∫

d3r
a3

∫
d3r′

a3

∫
d3r′′

a3
v(r′ − r)v(r′′ − r)Qab(r′)Qab(r′′)

=
∫

d3r
a3

∫
d3R1

a3

∫
d3R2

a3
v(R1)v(R2)Qab(r + R1)Qab(r + R2)

≈
∫

d3r
a3

∫
d3R1

a3

∫
d3R2

a3
v(R1)v(R2)[Qab(r) + R1c∂cQab(r) + 1

2R1cR1d∂c∂dQab(r)][Qab(r) + R2e∂eQab(r)

+ 1
2R2eR2f ∂e∂f Qab(r)].

We note that terms linear in R integrated over the isotropic potential v(R) vanish, which leads to

I2 ≈
(∫

d3R
a3

v(R)

)2 ∫
d3r
a3

Qab(r)Qab(r) +
∫

d3R1

a3
v(R1)

∫
d3R2

a3
R2cR2d v(R2)

∫
d3r
a3

[∂c∂dQab(r)]Qab(r)

≈
(∫

d3R
a3

v(R)

)2 ∫
d3r
a3

Qab(r)Qab(r) −
∫

d3R1

a3
v(R1)

∫
d3R2

a3
R2cR2d v(R2)

∫
d3r
a3

∂cQab(r)∂dQab(r) + surface term.

On going to the last equality, we have performed a partial integration.

APPENDIX E: CONTINUUM VERSION OF NEAREST-NEIGHBOR LL MODEL

Here we derive the continuum version of the nearest-neighbor LL model [i.e., Eq. (6.1)]. We consider a cubic lattice where the
ith nematogen (i = 1, . . . ,Nnem) occupies a site that has a position vector ri = xiex + yiey + ziez. Here ex , ey , and ez are unit
vectors directed along the three mutually orthogonal axes of the cubic lattice. Let us consider a nematogen j , and the quantity∑̂

iv(ri ,rj )Q(ri), where
∑̂

i denotes the sum over the nearest neighbors of j :∑̂
i
v(ri ,rj )Q(ri) ≡ βJ

∑
i [δxj xi

δyj yi
(δzj ,zi+a + δzj ,zi−a) + δyj yi

δzj zi
(δxj ,xi+a + δxj ,xi−a) + δzj zi

δxj xi
(δyj ,yi+a + δyj ,yi−a)]Q(ri),

(E1)

The sum on the right-hand side now runs over all values of i. In the continuum limit, the sites neighboring j collapse onto the
site j , which leads to ∑̂

i
v(ri ,rj )Q(ri) →

∫
d3r
a3

(a3βJ )γ δ(r − r′)Q(r′), (E2)

where γ = 6 is the coordination number for a cubic lattice. We can thus extract the continuum limit of v, viz.,

v(r − r′) = γβJa3δ(r − r′). (E3)

[1] P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Clarendon Press, Oxford, 1995).

[2] S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge
University Press, Cambridge, 1992).

[3] G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals,
Fundamentals (Springer-Verlag, Berlin, 1988).

[4] M. J. Stephen and J. P. Straley, Physics of liquid crystals, Rev.
Mod. Phys. 46, 617 (1974).

[5] E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Landau theory
of the nematic-isotropic phase transition, Phys. Rep. 135, 195
(1986).

[6] J. Ball and A. Majumdar, Nematic liquid crystals: from Maier-
Saupe to a continuum theory, Mol. Cryst. Liq. Cryst. 525, 1
(2010).

[7] C. Luo, A. Majumdar, and R. Erban, Multistability in planar
liquid crystal wells, Phys. Rev. E 85, 061702 (2012).

[8] S. Kralj and A. Majumdar, Order reconstruction patterns in
nematic liquid crystal wells, Proc. R. Soc. A 470, 20140276
(2014).

[9] H. Kusumaatmaja and A. Majumdar, Free energy pathways
of a multistable liquid crystal device, Soft Matter 11, 4809
(2015).

[10] D. Svenšek, G. Veble, and R. Podgornik, Confined polymer
nematics: Order and packing in a nematic drop, Phys. Rev. E
82, 011708 (2010).

[11] D. Svenšek, G. M. Grason, and R. Podgornik, Tensorial
conservation law for nematic polymers, Phys. Rev. E 88, 052603
(2013).

[12] D. S. Dean and R. Podgornik, Ordering of anisotropic polariz-
able polymer chains on the full many-body level, J. Chem. Phys.
136, 154905 (2012).

[13] L. Onsager, The effects of shape on the interaction
of colloidal particles, Ann. N.Y. Acad. Sci. 51, 627
(1949).

[14] J. Han, Y. Luo, W. Wang, P. Zhang, and Z. Zhang, From
microscopic theory to macroscopic theory: a systematic study
on modeling for liquid crystals, Arch. Rational Mech. Anal. 215,
741 (2015).

022709-10

https://doi.org/10.1103/RevModPhys.46.617
https://doi.org/10.1103/RevModPhys.46.617
https://doi.org/10.1103/RevModPhys.46.617
https://doi.org/10.1103/RevModPhys.46.617
https://doi.org/10.1016/0370-1573(86)90007-4
https://doi.org/10.1016/0370-1573(86)90007-4
https://doi.org/10.1016/0370-1573(86)90007-4
https://doi.org/10.1016/0370-1573(86)90007-4
https://doi.org/10.1080/15421401003795555
https://doi.org/10.1080/15421401003795555
https://doi.org/10.1080/15421401003795555
https://doi.org/10.1080/15421401003795555
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1098/rspa.2014.0276
https://doi.org/10.1098/rspa.2014.0276
https://doi.org/10.1098/rspa.2014.0276
https://doi.org/10.1098/rspa.2014.0276
https://doi.org/10.1039/C5SM00578G
https://doi.org/10.1039/C5SM00578G
https://doi.org/10.1039/C5SM00578G
https://doi.org/10.1039/C5SM00578G
https://doi.org/10.1103/PhysRevE.82.011708
https://doi.org/10.1103/PhysRevE.82.011708
https://doi.org/10.1103/PhysRevE.82.011708
https://doi.org/10.1103/PhysRevE.82.011708
https://doi.org/10.1103/PhysRevE.88.052603
https://doi.org/10.1103/PhysRevE.88.052603
https://doi.org/10.1103/PhysRevE.88.052603
https://doi.org/10.1103/PhysRevE.88.052603
https://doi.org/10.1063/1.3703762
https://doi.org/10.1063/1.3703762
https://doi.org/10.1063/1.3703762
https://doi.org/10.1063/1.3703762
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1007/s00205-014-0792-3
https://doi.org/10.1007/s00205-014-0792-3
https://doi.org/10.1007/s00205-014-0792-3
https://doi.org/10.1007/s00205-014-0792-3


MULTISCALE APPROACH TO NEMATIC LIQUID . . . PHYSICAL REVIEW E 96, 022709 (2017)

[15] W. Maier and A. Saupe, Eine einfache molekulare Theorie des
nematischen kristallinflüssigen Zustandes, Z. Naturforsch. 13A,
564 (1958).

[16] W. Maier and A. Saupe, Eine einfache molekular-statistische
Theorie der nematischen kristallinflüssigen Phase. Teil l, Z.
Naturforsch. 14A, 882 (1959).

[17] W. Maier and A. Saupe, Eine einfache molekular-statistische
Theorie der nematischen kristallinflüssigen Phase. Teil II, Z.
Naturforsch. 15A, 287 (1960).

[18] K. Kobayashi, Theory of translational and orientational melting
with application to liquid crystals, Mol. Cryst. Liq. Cryst. 13,
137 (1971).

[19] P. A. Lebwohl and G. Lasher, Nematic-liquid-crystal order – a
Monte Carlo calculation, Phys. Rev. A 6, 426 (1972).

[20] P. Pasini, C. Chiccoli, and C. Zannoni, in Advances in the
Computer Simulations of Liquid Crystals, edited by P. Pasini
and C. Zannoni (Kluwer, Dordrecht, 2000), pp. 99–119.

[21] P. Pasini, C. Chiccoli, and C. Zannoni, in Advances in the
Computer Simulations of Liquid Crystals, edited by P. Pasini
and C. Zannoni (Kluwer, Dordrecht, 2000), pp. 121–137.

[22] J. G. Gay and B. J. Berne, Modification of the overlap potential
to mimic a linear site-site potential, J. Chem. Phys. 74, 3316
(1981).

[23] R. Berardi, C. Fava, and C. Zannoni, A generalized Gay-Berne
intermolecular potential for biaxial particles, Chem. Phys. Lett.
236, 462 (1995).

[24] R. Berardi, C. Fava, and C. Zannoni, A Gay-Berne potential for
dissimilar biaxial particles, Chem. Phys. Lett. 297, 8 (1998).

[25] W. L. McMillan, Simple molecular model for the smectic A
phase of liquid crystals, Phys. Rev. A 4, 1238 (1971).

[26] W. L. McMillan, X-ray scattering from liquid crystals. I.
Cholesteryl nonanoate and myristate, Phys. Rev. A 6, 936
(1972).

[27] W. L. McMillan, Simple molecular theory of the smectic C
phase, Phys. Rev. A 8, 1921 (1973).

[28] K. C. Chu and W. L. McMillan, Unified Landau theory for the
nematic, smectic A, and smectic C phases of liquid crystals,
Phys. Rev. A 15, 1181 (1977).

[29] D. Ronis and C. Rosenblatt, Unified model of the smectic-A,
nematic, and isotropic phases for bulk, interfaces, and thin films:
Bulk, Phys. Rev. A 21, 1687 (1980).

[30] M. A. Cotter, Lattice models for thermotropic liquid crystals,
Mol. Cryst. Liq. Cryst. 35, 33 (1976).

[31] L. Petrone and M. A. Cotter, Lattice model for thermotropic
liquid crystals. I. Derivation of the partition function, Phys. Rev.
A 40, 6021 (1989).

[32] L. Petrone and M. A. Cotter, Lattice model for thermotropic
liquid crystals. II. Results and conclusions, Phys. Rev. A 40,
6045 (1989).

[33] W. M. Gelbart and B. A. Baron, Generalized van der Waals
theory of the isotropic-nematic phase transition, J. Chem. Phys.
66, 207 (1977).

[34] M. A. Cotter, Hard spherocylinders in an anisotropic mean field:
A simple model for a nematic liquid crystal, J. Chem Phys. 66,
1098 (1977).

[35] R. A. Sauerwein and M. J. de Oliveira, Lattice model for biaxial
and uniaxial liquid crystals, J. Chem. Phys. 144, 194904 (2016).

[36] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,
4th ed. (Academic Press, Cambridge, 2013).

[37] Y. Singh and K. Singh, Density-functional theory of curvature
elasticity in nematic liquids. I, Phys. Rev. A 33, 3481 (1986).

[38] K. Singh and Y. Singh, Density-functional theory of curvature
elasticity in nematic liquids. II, Phys. Rev. A 34, 548 (1986).

[39] K. Singh and Y. Singh, Density-functional theory of curvature
elasticity in nematic liquids. III, Phys. Rev. A 35, 3535
(1987).

[40] Y. Singh, Molecular theory of liquid crystals: Application to the
nematic phase, Phys. Rev. A 30, 583 (1984).

[41] M. Doi and S. F. Edwards, Theory of Polymer Dynamics (Oxford
University Press, New York, 1986).

[42] G. Fredrickson, The Equilibrium Theory of Inhomogeneous
Polymers (Oxford University Press, New York, 2006).

[43] S. F. Edwards and A. Lenard, Exact statistical mechanics of a
one-dimensional system with Coulomb forces. II. The method
of functional integration, J. Math. Phys. 3, 778 (1962).

[44] A. M. Polyakov, Gauge Fields and Strings (Harwood Academic
Publishers, London, 1987).

[45] A. Altland and B. Simons, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, 2010).

[46] B.-S. Lu, F. Ye, X. Xing, and P. M. Goldbart, Phenomenological
Theory of Isotropic-Genesis Nematic Elastomers, Phys. Rev.
Lett. 108, 257803 (2012).

[47] B.-S. Lu, F. Ye, X. Xing, and P. M. Goldbart, Statistical
physics of isotropic-genesis nematic elastomers: I. Structure
and correlations at high temperatures, Int. J. Mod. Phys. B 27,
1330012 (2013).

[48] R. L. Stratonovich, On a method of calculating quantum
distribution functions, Sov. Phys.–Dokl. 2, 416 (1958).

[49] J. Hubbard, Calculation of Partition Functions, Phys. Rev. Lett.
3, 77 (1959).

[50] A. J. F. Siegert, Partition functions as averages of functionals of
Gaussian random functions, Physica 26, S30 (1960).

[51] R. Podgornik and B. Žeks, Inhomogeneous Coulomb fluid: A
functional integral approach, J. Chem. Soc. Faraday Trans. II
84, 611 (1988).

[52] R. Podgornik, An analytic treatment of the first order correc-
tion to the Poisson-Boltzmann interaction free energy in the
case of counterion-only Coulomb fluid, J. Phys. A 23, 275
(1990).

[53] R. Podgornik, Electrostatic correlation forces between surfaces
with surface specific ionic interaction, J. Chem. Phys. 91, 5840
(1989).

[54] R. Netz and H. Orland, Beyond Poisson-Boltzmann: fluctuation
effects and correlation functions, Eur. Phys. J. E 1, 203 (2000).

[55] R. Netz, Electrostatics of counter-ions at and between planar
charged walls: from Poisson-Boltzmann to the strong-coupling
theory, Eur. Phys. J. E 5, 557 (2001).

[56] A. J. Liu and G. H. Fredrickson, Free energy functionals for
semiflexible polymer solutions and blends, Macromolecules 26,
2817 (1993).

[57] Y. Drossinos and D. Ronis, Molecular-field derivation of a
generalized Landau free energy for the isotropic, nematic,
smectic-A, and smectic-C phases of liquid crystals, Phys. Rev.
A 33, 589 (1986).

[58] In the theory of ionic liquids, the lattice gas model of LC
nematics would be analogous to the lattice gas model of an
ionic liquid studied in Refs. [59,60], which leads to the so-called
modified Poisson-Boltzmann theory.

022709-11

https://doi.org/10.1080/15421407108084959
https://doi.org/10.1080/15421407108084959
https://doi.org/10.1080/15421407108084959
https://doi.org/10.1080/15421407108084959
https://doi.org/10.1103/PhysRevA.6.426
https://doi.org/10.1103/PhysRevA.6.426
https://doi.org/10.1103/PhysRevA.6.426
https://doi.org/10.1103/PhysRevA.6.426
https://doi.org/10.1063/1.441483
https://doi.org/10.1063/1.441483
https://doi.org/10.1063/1.441483
https://doi.org/10.1063/1.441483
https://doi.org/10.1016/0009-2614(95)00212-M
https://doi.org/10.1016/0009-2614(95)00212-M
https://doi.org/10.1016/0009-2614(95)00212-M
https://doi.org/10.1016/0009-2614(95)00212-M
https://doi.org/10.1016/S0009-2614(98)01090-2
https://doi.org/10.1016/S0009-2614(98)01090-2
https://doi.org/10.1016/S0009-2614(98)01090-2
https://doi.org/10.1016/S0009-2614(98)01090-2
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.8.1921
https://doi.org/10.1103/PhysRevA.8.1921
https://doi.org/10.1103/PhysRevA.8.1921
https://doi.org/10.1103/PhysRevA.8.1921
https://doi.org/10.1103/PhysRevA.15.1181
https://doi.org/10.1103/PhysRevA.15.1181
https://doi.org/10.1103/PhysRevA.15.1181
https://doi.org/10.1103/PhysRevA.15.1181
https://doi.org/10.1103/PhysRevA.21.1687
https://doi.org/10.1103/PhysRevA.21.1687
https://doi.org/10.1103/PhysRevA.21.1687
https://doi.org/10.1103/PhysRevA.21.1687
https://doi.org/10.1080/15421407608084310
https://doi.org/10.1080/15421407608084310
https://doi.org/10.1080/15421407608084310
https://doi.org/10.1080/15421407608084310
https://doi.org/10.1103/PhysRevA.40.6021
https://doi.org/10.1103/PhysRevA.40.6021
https://doi.org/10.1103/PhysRevA.40.6021
https://doi.org/10.1103/PhysRevA.40.6021
https://doi.org/10.1103/PhysRevA.40.6045
https://doi.org/10.1103/PhysRevA.40.6045
https://doi.org/10.1103/PhysRevA.40.6045
https://doi.org/10.1103/PhysRevA.40.6045
https://doi.org/10.1063/1.433665
https://doi.org/10.1063/1.433665
https://doi.org/10.1063/1.433665
https://doi.org/10.1063/1.433665
https://doi.org/10.1063/1.434044
https://doi.org/10.1063/1.434044
https://doi.org/10.1063/1.434044
https://doi.org/10.1063/1.434044
https://doi.org/10.1063/1.4948627
https://doi.org/10.1063/1.4948627
https://doi.org/10.1063/1.4948627
https://doi.org/10.1063/1.4948627
https://doi.org/10.1103/PhysRevA.33.3481
https://doi.org/10.1103/PhysRevA.33.3481
https://doi.org/10.1103/PhysRevA.33.3481
https://doi.org/10.1103/PhysRevA.33.3481
https://doi.org/10.1103/PhysRevA.34.548
https://doi.org/10.1103/PhysRevA.34.548
https://doi.org/10.1103/PhysRevA.34.548
https://doi.org/10.1103/PhysRevA.34.548
https://doi.org/10.1103/PhysRevA.35.3535
https://doi.org/10.1103/PhysRevA.35.3535
https://doi.org/10.1103/PhysRevA.35.3535
https://doi.org/10.1103/PhysRevA.35.3535
https://doi.org/10.1103/PhysRevA.30.583
https://doi.org/10.1103/PhysRevA.30.583
https://doi.org/10.1103/PhysRevA.30.583
https://doi.org/10.1103/PhysRevA.30.583
https://doi.org/10.1063/1.1724281
https://doi.org/10.1063/1.1724281
https://doi.org/10.1063/1.1724281
https://doi.org/10.1063/1.1724281
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1142/S0217979213300120
https://doi.org/10.1142/S0217979213300120
https://doi.org/10.1142/S0217979213300120
https://doi.org/10.1142/S0217979213300120
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1039/F29888400611
https://doi.org/10.1039/F29888400611
https://doi.org/10.1039/F29888400611
https://doi.org/10.1039/F29888400611
https://doi.org/10.1088/0305-4470/23/3/012
https://doi.org/10.1088/0305-4470/23/3/012
https://doi.org/10.1088/0305-4470/23/3/012
https://doi.org/10.1088/0305-4470/23/3/012
https://doi.org/10.1063/1.457535
https://doi.org/10.1063/1.457535
https://doi.org/10.1063/1.457535
https://doi.org/10.1063/1.457535
https://doi.org/10.1007/s101890050023
https://doi.org/10.1007/s101890050023
https://doi.org/10.1007/s101890050023
https://doi.org/10.1007/s101890050023
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1021/ma00063a028
https://doi.org/10.1021/ma00063a028
https://doi.org/10.1021/ma00063a028
https://doi.org/10.1021/ma00063a028
https://doi.org/10.1103/PhysRevA.33.589
https://doi.org/10.1103/PhysRevA.33.589
https://doi.org/10.1103/PhysRevA.33.589
https://doi.org/10.1103/PhysRevA.33.589


BING-SUI LU PHYSICAL REVIEW E 96, 022709 (2017)

[59] I. Borukhov, D. Andelman, and H. Orland, Steric Effects in
Electrolytes: A Modified Poisson-Boltzmann Equation, Phys.
Rev. Lett. 79, 435 (1997).

[60] I. Borukhov, D. Andelman, and H. Orland, Adsorption of large
ions from an electrolyte solution: a modified Poisson-Boltzmann
equation, Electrochim. Acta 46, 221 (2000).

[61] We can see this by using the representation Qab =(
0 Q1 Q2

Q1 0 Q3
Q2 Q3 0

)
, from which we obtain Tr Q4 = 2(Q2

1 + Q2
2 +

Q2
3)2 and (Tr Q2)2 = 4(Q2

1 + Q2
2 + Q2

3)2.
[62] R. Shekhar, J. K. Whitmer, R. Malshe, J. A. Moreno-Razo, T. F.

Roberts, and J. J. de Pablo, Isotropic-nematic phase transition in

the Lebwohl-Lasher model from density of states simulations,
J. Chem. Phys. 136, 234503 (2012).

[63] J. Katriel, G. F. Kventsel, G. R. Luckhurst, and T. J. Sluckin,
Free energies in the Landau and molecular field approaches, Liq.
Cryst. 1, 337 (1986).

[64] G. R. Luckhurst, S. Naemura, T. J. Sluckin, K. S. Thomas, and
S. S. Turzi, Molecular-field-theory approach to the Landau
theory of liquid crystals: Uniaxial and biaxial nematics, Phys.
Rev. E 85, 031705 (2012).

[65] D. Allender and L. Longa, Landau-de Gennes theory of
biaxial nematics reexamined, Phys. Rev. E 78, 011704
(2008).

022709-12

https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1016/S0013-4686(00)00576-4
https://doi.org/10.1016/S0013-4686(00)00576-4
https://doi.org/10.1016/S0013-4686(00)00576-4
https://doi.org/10.1016/S0013-4686(00)00576-4
https://doi.org/10.1063/1.4722209
https://doi.org/10.1063/1.4722209
https://doi.org/10.1063/1.4722209
https://doi.org/10.1063/1.4722209
https://doi.org/10.1080/02678298608086667
https://doi.org/10.1080/02678298608086667
https://doi.org/10.1080/02678298608086667
https://doi.org/10.1080/02678298608086667
https://doi.org/10.1103/PhysRevE.85.031705
https://doi.org/10.1103/PhysRevE.85.031705
https://doi.org/10.1103/PhysRevE.85.031705
https://doi.org/10.1103/PhysRevE.85.031705
https://doi.org/10.1103/PhysRevE.78.011704
https://doi.org/10.1103/PhysRevE.78.011704
https://doi.org/10.1103/PhysRevE.78.011704
https://doi.org/10.1103/PhysRevE.78.011704



