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Nanoscale interfacial defect shedding in a growing nematic droplet
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Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven
isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring
switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo
interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as + 1

2 point defects.
By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time
scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions
that results in a controllable regular distributions of point defects in planar geometry, and complex structures of
disclination lines in three dimensions.
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I. INTRODUCTION

Soft matter with orientational ordering is notorious for
producing topological defects, which mediate the orientation
field and self-assembly of embedded particles. It is responsive
to a variety of excitations, making it suitable for a large range of
applications. Defect formation is a well-established paradigm
for the study of self-organization in material, biological,
and astrophysical systems. While the classification and static
properties of topological defects have been thoroughly studied
[1,2], the exact mechanisms behind their formation and dy-
namics are relatively unexplored. This is especially remarkable
since controlling the orientation field of liquid crystals is the
basis of many commercial applications. Polymer-dispersed
liquid crystals, which can modulate their opacity in response to
an electromagnetic field, are the foundation of current display
technologies [3–6]. Liquid-crystal-based sensors exploit the
distortions produced in the orientation field in response to
interfacial events [7–9]. Orientational ordering is abundant in
biological systems. The protein solution that spiders expel to
produce silk presents an orientational ordering that is critical
to its strength [10]. Structural colors in beetles and flower
petals originate in periodic surface nanowrinklings caused by
subsurface orientational ordering [11]. Defect formation in
liquid crystals plays an important role in testing cosmological
models [12–18]. Early universe models postulate a transition
from a symmetric phase to a lower-temperature phase where
the symmetry is broken. Topological defects formed during the
transition act as seeds with extra attractive gravitational force,
leading to cosmic structures. In the early universe model of
Kibble [19], topological defects such as cosmic strings form at
the junctions of uncorrelated growing domains as they merge.
The Kibble mechanism was since found to be widespread in
both classical and quantum phase transitions.

A liquid crystal undergoing a temperature-driven isotropic-
to-nematic phase transition nucleates nematic regions with
a length scale in the order of 10 nm [20,21]. The deeper
the quench and smaller the seed, the weaker is the an-
choring strength at the interface. Small seeds with weak
anchoring favor spherically shaped interfaces (circular in
two dimensions) since anchoring, the anisotropic contribution
to interfacial tension, is negligible [22]. They also favor a
uniform orientation field since bulk elasticity dominates over

anchoring. Such a seed, in isolation, soon outgrows these
nucleation conditions in which anchoring is negligible and
grows into an ellipsoid with alternating biaxial and uniaxial
interfacial regions corresponding to planar and homeotropic
anchoring, respectively. If the growing seed remains isolated,
eventually defect structures nucleate on the interface during
homeotropic-to-planar or planar-to-homeotropic anchoring
transitions. These defect nucleations subsequently shed into
the bulk where a well-defined texture stabilizes. The process
of interfacial defect nucleation during an anchoring switch
and subsequent shedding was introduced by Wincure et al. and
termed interfacial defect shedding [23–25]. The corresponding
numerical simulations in planar geometry established that
interfacial defect shedding in a growing nematic droplet leads
to the formation of two or four + 1

2 point defects for shallow
or deep quenches, respectively.

For deep quenches, thereafter continues a coexistence of
homeotropic and planar anchoring regions at the growing
interface, insinuating possible subsequent defect formation
events not included in the original Wincure study. We thus
extend the numerical study of interfacial defect shedding [23]
in a growing nematic droplet to larger length and time scales in
planar geometry, and to three-dimensional geometry. We find
that within a range of quenches further growth is characterized
by an oscillatory growth mode involving shape and anchoring
transitions during which defects nucleate at the interface and
shed into the bulk. The resulting nematic texture contains
a controllable regular distribution of point defects in planar
geometry, and complex structures of disclination lines in three
dimensions.

II. MODEL AND METHODS

The local orientational ordering can be characterized by the
state of the Q tensor, a symmetric and traceless tensor order
parameter that spans an orientation field across the system [1]:

Q = μnnn + μmmm + μl ll, (1)

where the orientation is defined with respect to the orthogonal
director triad (n,m,l). The isotropic phase corresponds to
Q = 0, i.e., three zero eigenvalues μn = μm = μl = 0. The
nematic uniaxial state corresponds to two equal eigenvalues
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and a larger third, whereas a defect is associated with two
equal eigenvalues and a smaller third. The nematic biaxial state
corresponds to three distinct eigenvalues [26]. The uniaxial and
biaxial scalar order parameters S and P quantify the molecular
alignment with respect to the main orientation n, which is that
of the eigenvector associated to the larger eigenvalue [1]:

S = nn:Q = μn, (2)

P = (mm − ll):Q = μm − μl. (3)

The uniaxial order parameter S ∈ [−0.5,1] characterizes the
distribution along the main orientation n. Positive values
describe prolate distributions, negative values correspond to
oblate distributions typical of defects, and S = 0 represents
isotropic liquid. Prolate and oblate distributions are visualized
as prolate and oblate ellipsoids constructed from the tensor
Q + I/3, with I/3 defining a sphere representing isotropic
liquid crystal. The biaxial order parameter P ∈ [−1.5,1.5]
characterizes the distribution on the plane normal to the main
orientation n. A null value indicates that the projection of the
distribution on the plane normal to the main orientation is
isotropic, while nonzero values indicate otherwise. In terms of
visualization through the Q + I/3 tensor, a null value indicates
the cross section of the ellipsoid is circular, whereas nonzero
values indicate it is elliptic with the sign distinguishing the
major and minor axis.

On the basis of the classic Landau-de Gennes continuum
theory for nematic liquid crystals [1] the total free-energy
density f of the nematic-isotropic system can be expressed in
terms of the tensor order parameter Q and its gradients:

f = fh + fg (4)

fh(Q) = a(T )

2
Q:Q − b

3
Q:(Q·Q) + c

4
(Q:Q)2 (5)

fg(∇Q) = L1

2
∇Q

...∇Qt + L2

2
(∇·Q)·(∇·Q)

+ L3

2
Q:[∇Q:(∇Q)t ], (6)

where a(T ) = a0(T − T ∗), T is the temperature field, and
T ∗ is the clearing point temperature below which the isotropic
state is unstable. The material parameters consist of the Landau
coefficients a,b,c and the Landau elastic constants L1,L2,L3.
The Landau coefficients define the isotropic-nematic transition
and the Landau elastic constants couple splay, twist, and bend
elastic distortions. The depth of the quench �T = T ∗ − T

controls the isotropic to nematic phase transformation and
is only present in the homogeneous energy fh. The ho-
mogeneous energy is invariant under spatial rotations and
thus, although sensitive to the magnitude of the orientation
field, it is independent of its direction. This rotational in-
variance can be expressed explicitly in terms of the rotation
invariant trace operator, or the uniaxial and biaxial order
parameters, by noting that Q : Q = tr(Q2) = 2

9 (3S2 + P 2)
and Q : (Q · Q) = tr(Q3) = 2

9S(S2 − P 2). The orientational
elastic energy fg , however, depends on both the magnitude
and the direction of the orientation field.

The Q tensor follows the relaxational dissipative dynamics
of model A in the Hohenberg and Halperin classification [27]:

β
∂Q
∂t

= −
(

∂f

∂Q
+ ∇· ∂fg

∂∇Q

)[s]

, (7)

where β is a transport coefficient and the superscript [s]
denotes symmetric and traceless. Operations on a symmetric
traceless tensor do not necessarily produce a symmetric
traceless result, hence symmetry and tracelessness are imposed
explicitly by replacing each element mij of the right side
tensorial expression with m

[s]
ij = (mij + mji)/2 − δij tr(M)/3.

Equation (7) is solved using a finite differences C++
code with OpenMP parallelization developed for both planar
and three-dimensional geometry. While the later refers to
the dimensionality of the computational domain, in both
cases the orientation field is three dimensional. Space is
discretized on a simple-square or simple-cubic lattice with
mesh size of 1 nm and far-field boundary conditions. In order
to minimize the anisotropy created by the grid, a maximally
isotropic discretization of gradient operators involving first-
and second-neighbor grid points is used. Integration in time
uses an explicit Euler scheme. For postprocessing and image
generation several PYTHON algorithms were developed. The
initial conditions consist of a single spherical (circular on
a plane) isolated nematic seed of 2 nm radius with uniform
orientation in the x-axis direction, immersed in isotropic liquid
of the same material. The system is under a constant and
uniform temperature field, i.e., a quench.

The material parameter values correspond to 4′-pentyl-4-
cyanobiphenyl, a rodlike thermotropic liquid crystal known
as 5CB. Unless otherwise stated, they are given by [24]:
a0 = 0.14 MJ/m3K, T ∗ = 95.2◦ K, b = 1.8 MJ/m3, c =
3.6 MJ/m3, L1 = 3.0 pJ/m, L2 = 3.1 pJ/m, L3 = 1.5 pJ/m,
and β = 0.055 Js/m3.

III. RESULTS AND DISCUSSION

A nematic seed in isotropic liquid crystal, when under
a quench, expands to reduce the overall energy of the
system. To do so, it reduces the homogeneous energy at the
expense of increasing, at a lower rate, the orientational elastic
energy. The orientation field in the growing nematic region
hedges the increasing elastic energy by minimizing deviations
from the local average orientation in the bulk and from a
preferred alignment at the nematic-isotropic interface. The
interface alignment is known as anchoring. When L2 > 0
it is preferentially homeotropic, normal to the interface,
and when L2 < 0 it is preferentially planar, tangential to
the interface [28]. When the contribution of anchoring to
interfacial tension is not significant enough, homeotropic
and planar anchoring can coexist along different parts of
the interface. Transitions between homeotropic and planar
anchoring are well described by a double-well anchoring
potential. Planar anchoring implies biaxiality at the interface
since crossing different phases breaks any nontrivial rotational
symmetry on the plane normal to the anchoring orientation.
Minimizing deviations from the local average orientation in
the nematic bulk is not always compatible with the preferred
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alignment at the interface, leading to the emergence of complex
textures and the formation of defects.

A. Planar geometry

The early stages of growth under a quench of an initially
circular nematic spherulite with uniform orientation were
studied in detail by Wincure et al. [23–25]. At the onset of
growth the spherulite adopts an elliptic shape whose major
axis lies along the direction of the initially uniform nematic
orientation. This elliptic shape mirrors the Wulff construction
or polar plot of the interfacial tension [24], indicating that
the anchoring anisotropic contribution to interfacial tension
becomes significant once the interface length grows above
a threshold. Concurrently, the initially uniform orientation
field gives way to a texture dominated by four well-defined
interfacial regions centered at the vertices of the ellipse. Two
of these are biaxial and correspond to planar anchoring while
the other two are uniaxial and correspond to homeotropic
anchoring. The latter conserve the nematic orientation of
the initial seed. Distinct local curvatures develop in these
biaxial and uniaxial regions with a sharp double curvature
in between. Subsequently, + 1

2 defects nucleate at the four
interfacial uniaxial-biaxial boundaries for deep quenches, or
at the two biaxial vertices for weak quenches. These become
point defects as they shed from the interface and migrate into
the bulk, forming a well-defined texture of net topological
charge +2 or +1, respectively. The radius of the enclosing
circle R, which coincides with the major radius of the ellipse,
grows thereafter linearly with time as the interface shape grows
more circular, indicating the dominance of a bulk process
driven growth indifferent to the (anisotropic) orientation field.
This is the texturing process presented by Wincure et al.
[23–25], displayed in Fig. 1.

Even as the interface shape grows closer to a circle,
for deeper quenches (�T � 2 K) we observe the continuing
presence of alternating homeotropic and planar anchoring
regions at the interface, as can be seen in Fig. 1(b). This
coexistence hints at the possibility of subsequent defect
formation events. Indeed, by following further the grow of the
nematic spherulite we find that within a range of quench depths

FIG. 1. Early evolution for shallow (a) and deep (b) quenches.
Interfacial regions with planar anchoring and defects in the bulk,
both highly biaxial, are highlighted. Not to scale.

early evolution gives way to an oscillatory mode consisting
of a series of growth periods mediated by periodic shape
and anchoring transitions entailing nucleation of defects. The
resulting texture features a regular distribution of point defects
along the main axes of growth, i.e., the major and minor axes
of the ellipse shaped interface.

During growth periods the major and minor radii of the
ellipse shaped interface grow linearly with time. However, the
corresponding ratio does not reduce to a constant since both
follow a nonhomogeneous linear relation with time. This is
because a shape transition precedes each growth period. Thus,
during growth periods the elliptic-shaped interface does not
scale up as the droplet grows and the ratio of the main radii only
tends towards the ratio of their corresponding speeds. The ratio
of these speeds is close to unity, making the interface shape
evolve towards a circle. The interface shape is thus increasingly
altered and the biaxial and uniaxial interfacial regions, which
present distinct local curvatures and a sharp double curvature
in between, expand. An ensuing localized buildup of interfacial
tension eventually triggers a shape transition that removes
excess energy into the bulk by means of defect shedding. The
latter is characterized by anchoring transitions and four defect
nucleations on the vertices of the ellipse, which shed into the
bulk as + 1

2 point defects. The interface adopts a new elliptic
shape with the major axis and minor axis switched, and a new
growth period ensues. Defect production can thus be viewed
as an energy barrier separating local minima of the interfacial
energy, a global description of defect production following
anchoring transitions that are well described by a double-well
anchoring potential. For even deeper quenches, four additional
+ 1

2 defects form periodically along the main diagonals of the
ellipse. However, the shape transitions are not significantly
altered by the corresponding local curvature transformations
and the associated local anchoring switch.

The evolution of the total homogeneous energy
Fh = ∫

fhd
2x and the total elastic energy Fg = ∫

fgd
2x, for

a quench of �T = 10 K is shown in Fig. 2. In the inset, a
magnified view of the evolution of Fg shows the rise in elastic
energy as the spherulite grows. The transfer of energy from
the interface to the bulk during shape transitions is negligible

FIG. 2. Total homogeneous and elastic energies, Fh = ∫
fhd

2x

and Fg = ∫
fgd

2x, for a quench of �T = 10 K. The inset shows a
magnified view of Fg .
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FIG. 3. Orientation field and defects distribution. Interfacial
regions with planar anchoring and defects, both highly biaxial, are
highlighted. For visualization, and given its fourfold symmetry, about
a quarter of the droplet is shown. The shaded region is where S > 0,
marking the extent of the nematic droplet.

FIG. 4. Evolution of the main radii ratio for different quenches.
Guidelines are included.

in the scale of the main plot. However, its effect on the rate
of increase of the total elastic energy creates the oscillations
visible in the inset plot.

For weak quenches (�T � 2 K) only the original Wincure
texturing process develops after which the whole nematic-
isotropic interface is uniaxial, as shown in Fig. 1(a). The
absence of biaxial regions along the interface implies no
further defect formation events are expected. For intermediate
quenches (2 K � �T � 10 K) the resulting texture features
uniformly distributed pairs of defects along the main axes, and
for deeper quenches additional pairs of defects form along the
main diagonals, as shown in Fig. 3.

The evolution of the interface shape can be characterized
by tracing the ratio of the main radii. Typical examples for
different quench depths are shown in Fig. 4, where the x
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axis coincides with the uniform orientation field in the initial
nematic seed. Results for early times naturally present a larger
spread as both numerator and denominator are small. We in-
clude guidelines whose functional form derives from assuming
that during growth periods the radii grow linearly with time.
These guidelines are formally defined as rx

ry
= vx t+rx0

vy t+ry0
where

vx and vy are the local velocity of the vertices while rx0 and
ry0 are the respective radii intercepts. Given the ambiguity
in this expression, as only three of the four parameters are
independent, we normalize it by dividing both numerator and
denominator by vy . We also include the mirror image of the
guidelines with respect to rx

ry
= 1 to emphasize the symmetry.

Note that since every linear growth regime follows a shape
transition, we cannot assume the radii intercepts are equal
to the radius of the initial droplet rν0 �= rν(t = 0),ν = x,y.
A stricter analysis would require fitting each growth period
separately, with each linear fitting having its own intercepts.
However, our approach is qualitative. Since shape transitions
are short lived, we find it is illuminating to fit the whole
time range. This approach highlights that even though shape
transitions switch the major and minor axis, they do not alter
the overall evolution of the major to minor radius ratio.

The long-term limit of the radii ratio is the ratio of
their speeds vx

vy
. We find it is close to unity, which is

consistent with growth being dominated by (minimization of)
the homogeneous energy as it is independent of the direction
of the nematic orientation field. The ratio of the speeds shows
only a small increase with the quench depth �T , of the order
of the thousandths. An increase is consistent with growth
being driven by (minimization of) the homogeneous energy,
but its small magnitude is somewhat surprising. It is possible
that in determining the interface speed the term carrying the
temperature dependence is the least dominant in Eq. (5).
Contrastingly, the ratio rx0

ry0
decreases with the quench depth

�T as the influence of the orientation field on shape selection
during the onset of growth, and during shape transitions,
decreases. During growth periods the speed of each main radii
remains constant, and during shape transitions they switch. The
interface shape oscillates between two increasingly circular
ellipses rather than approach continuously a circular shape.
We estimate that if the spherulite were to keep growing
indefinitely even intermediate quenches may eventually lead
to the formation of pairs of defects along the main diagonals.
Ultimately, defects might even form along other diagonals
as the interface keeps expanding. The damping of the shape
oscillations, i.e., the interface becoming increasingly circular,
may call into question the long-term continuity of defect
production in the growing nematic spherulite. However, the
continued coexistence of biaxial and uniaxial regions at
the interface, the presence of distinct local curvatures, the
localized nature of defect formation and the fact that the ratio
of the main radii speeds, although close to unity, is not precisely
one suggests that the spherulite never reaches a perfectly
circular shape and defect production can possibly continue
indefinitely, likely complemented by defect production along
diagonals to the main axes.

Defects nucleate periodically along the main axes during
shape transitions. As a defect sheds into the bulk its position is
adjusted by the relaxation of the orientational elastic energy.

)
(

FIG. 5. Normalized defect distances along the main axes
Ld = Ld

240nm
, ld = ld

111nm
, and normalized periodicity of shape tran-

sitions τ = 1.2τ

μs
, as functions of quench depth �T . In the inset, Ld

and ld dependence with L2 for �T = 10 K.

Consequently, the resulting distribution of defects along the
main axes does not fully correlate with the interface shape
evolution history. This distribution consists of uniformly
spaced pairs of defects, with the distance between neighboring
defects alternating between Ld and ld < Ld . Both distances
decrease with the depth of the quench and can be scaled to a
single curve as shown in Fig. 5. The normalized periodicity
of shape transitions τ = 1.2τ

μs
consistently does not scale with

the distances between defects. The scaling of Ld and ld can
be formalized as Ld

ld
= εd	d (�T ), where 	d (�T ) carries the

dependence with the depth of the quench and εd depends on
the material parameters. For a given set of material parame-
ters, the depth of the quench controls the location of defect
formation but not the further adjustment due to the relaxation
of the orientational elastic energy during defect shedding. It
is tempting to assume that εd depends solely on the Landau
elastic constants L1,L2,L3 of Eq. (6) and that 	d (�T ) solely
depends on the Landau coefficients a0�T,b,c defining the
isotropic-nematic transition in Eq. (5). However, while εd does
seem to depend solely on the Landau elastic constants, these
also affect the frequency and location of defect formation,
indicating that 	d (�T ) depends on all the material parameters.
The dependence of Ld and ld with the Landau elastic constant
L2 for a quench of �T = 10◦ K is shown in the inset of Fig. 5.
Both Ld and ld , as their difference, increase with L2. Increasing
L2 rises the orientational elasticity strength, surface tension,
and the time period between shape transitions, leading to larger
Ld and ld . Increasing the orientational elasticity strength also
intensifies the energy cost of deviations from the local average
orientation in the nematic bulk, affecting the defect positional
adjustment during defect shedding as it follows the develop-
ment of the orientation field in the growing nematic bulk. Given
that the curves of Ld and ld in Fig. 5 scale, it is possible to spec-
ulate that the dependence on the Landau coefficients follows
an inverse power law and the dependence on the Landau elastic
constants follows a power law. The dimensions of the Landau
coefficients J/m3 and the Landau elastic constants J/m further
suggest that they may be coupled through a characteristic
length squared, or the product of two characteristic lengths.
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FIG. 6. Homogeneous (fh) and elastic (fg) energies in planar
geometry.

It is noteworthy that the formation of defects along the
diagonals for larger quenches has no bearings on the dynamics
and dependences of defect formation along the main axes,
consistently with defect formation being a local process.

The nematic bulk is characterized by domains with distinct
texture separated by high elastic-energy boundary walls that
are precursors to defect formation, and thus contain the defects.
Boundary walls are biaxial (|P | > 0), although not as intensely
as defects and interfacial regions with planar anchoring.
Figure 6 displays the homogeneous and elastic energies for
a spherulite growing under a �T = 10 K quench. Along
the nematic-isotropic interface the biaxial regions present
higher elastic energy than the uniaxial regions, in accordance
with anchoring being preferentially normal to the interface
(homeotropic). Interestingly, the local maximum of the ho-
mogeneous energy in the uniaxial interfacial regions spreads
to fill the local concavities. The density of boundary walls,
their curvature and their length correlates to the distribution
and amount of defects. The innermost boundary walls pass
through the first defects formed during the initial texturing
process described by Wincure et al. The relative position of
these Wincure defects can be estimated by minimizing the
total energy (bulk elasticity, surface tension, and boundary
walls) with respect to the curvature or aperture angle, as was
done in Ref. [29]. Estimating the positions of the defects
along the main axes can in principle be accomplished in the
same manner, but involves more complex geometries. For our
purposes it is enough to note that increasing the elastic energy
amplifies the defects positional adjustment during shedding,
magnifying the difference between ld and Ld , while the
position at which defects form can be controlled by the depth of
the quench as noted above, or by manipulating the anchoring
strength. Magnifying the anchoring strength increments the
time period between shape transitions and therefor increases
both Ld and ld . It would thus be straightforward to tune the
positions of the defects by modifying the depth of the quench,
anchoring or the orientational elasticity strength. A systematic

study of the effects of these modifications may even allow us
to extract phenomenologically functional dependencies for the
defect positions.

B. Three-dimensional geometry

Free boundary problems present an enormous reduction
in computational efficiency when increasing dimensionality
since processing and memory requirements normally scale
with domain size. Many numerical and computational ap-
proaches have been devised to mitigate this efficiency loss.
Among the most common are lowering the effective dimen-
sionality through restricting to specific symmetries, employing
passive or active adaptive meshes with increased resolution
around phase boundaries and parallelization through multipro-
cessing, multithreading, and graphic processing units. While
forcing a symmetry can only uncover solutions compatible
with that symmetry, adaptive-mesh techniques become su-
perfluous when bulks and phase boundaries require compa-
rable mesh resolutions. Our three-dimensional simulations
are performed on a uniform mesh, employ multithreading
parallelization and use the same initial, run-time and far-field
boundary conditions as those in planar geometry.

The initial conditions correspond to a spherical nematic
seed immersed in isotropic liquid crystal of the same material.
The uniform orientation field within the seed, along the x axis,
breaks the otherwise highly spherical symmetry of the system.
Along the spherical surface of the initial nematic seed the
orientation field varies continuously between perpendicular
and tangential. As the seed starts expanding the anchoring
elastic energy will drive the orientation field at the interface
to perpendicular (preferentially) or tangential, while bulk
elasticity will resist local orientation distortions. The growth
of the nematic phase is dominated by the minimization of
the homogeneous energy. Interface morphology and texturing
within the droplet are governed by the competition between
bulk and interface orientational elasticity. The dynamics
mirrors that in planar geometry but the resulting texture is
topologically more complex. In three dimensions disclination
lines can be energetically favorable over point defects and
are able to stabilize through geometric or intrinsic constraints
[30–32]. The closed nematic-isotropic interface screens exter-
nal effects and allows only closed defect loops or disclinations
that close to the interface. The lack of obstructions leads to
highly symmetric structures. These conditions favor the for-
mation of knotted defect structures, especially since knotting
is topologically stabilizing.

At the onset of growth, as the anisotropic contribution of
anchoring to the total interfacial tension becomes significant,
the initially spherical seed grows into an ellipsoid whose major
axis lies along the direction of the initially uniform orientation
field, i.e., the x axis. Concurrently the orientation field
becomes axisymmetric with respect to the x axis, presenting
a longitudinal cross section that closely resembles the texture
of the equivalent stage of growth in planar geometry shown
in Fig. 1(b). On the ellipsoid-shaped nematic-isotropic inter-
face, the orientation field distinguishes three distinct simply
connected surfaces. A biaxial barrel-shaped surface revolving
around the x axis with corresponding planar anchoring, and
two uniaxial curved surfaces at opposing poles on the x axis
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FIG. 7. Highly biaxial regions (|P | > 1.2), distinguishing inter-
face from bulk.

with corresponding homeotropic anchoring. The latter largely
preserve the texture of the initial seed. Distinct local curvatures
develop in the biaxial and uniaxial interfacial regions with a
double curvature in between. As the seed grows further the
double-curvature region may destabilize and form disclination
lines that shed into the bulk. Like in planar geometry, within
a range of quench depths early evolution is followed by an
oscillatory growth mode with a series of periodic shape and
anchoring transitions entailing nucleation of defect structures.
The interface shape alternates between increasingly spherical
prolate and oblate ellipsoids and each defect nucleation on
the two main axes perpendicular to the x axis stabilize into a
twisted-double-torus disclination line knot as it sheds into the
bulk. Each twisted-double-torus disclination line knot cannot
collapse into a point defect, nor dissipate. As growth proceeds,
the twisted-double-torus disclination line knots organize in a
regular distribution along the axes where they are formed. The
lack of charge conservation is consistent with an orientation
far field that is not uniform nor constant.

Size limitations on the computational domain prevent
us from confirming the pairs distribution we observe in
planar geometry. The similarities in evolution and texture
allow assessing that the ensembles of twisted-double-torus
disclination line knots will organize similarly to the equivalent
ensemble of point defects in planar geometry. It is yet to be
determined, however, if each disclination line knot will assume
the role taken in planar geometry by a single defect point, or
by a pair of point defects. We expect the distances between the
twisted-double-torus disclination line knots to differ from the
distances between point defects (ld ), or pairs of point defects
(Ld ), in the equivalent stage of growth in planar geometry.
Especially given that, when compared to planar geometry, the
high elastic energy domain walls in the nematic bulk have an
extra dimension to fold in. We do expect the same tendencies
when varying the material and control parameters. As in planar
geometry, increasing the elastic energy amplifies the defects

FIG. 8. Orientation field and distribution of defects in three-
dimensional geometry, projected on different planes. Interfacial
regions with planar anchoring and defects, both highly biaxial, are
highlighted. For visualization, and given its fourfold symmetry, about
a quarter of the projection is shown. The shaded region is where
S > 0, marking the extent of the nematic droplet. The projections on
the xy and xz planes are identical.

positional adjustment during shedding while the periodicity of
the shape transitions follows the depth of the quench and the
anchoring strength. The twisted-double-torus disclination line
knots can be seen in the example presented in Fig. 7.

The projections of the orientation field on the main planes
are reminiscent of the orientation field in planar geometry at
the same stage of growth, as can be seen in Fig. 8. Figure 9
displays the homogeneous (fh) and elastic (fg) energies for
the same instance shown in Figs. 7 and 8. These highlight
that the nematic bulk is characterized by nematic volumes
with distinct texture whose boundaries are high elastic-energy
two-dimensional walls. The boundary walls are precursors to
defect formation, and thus contain the defects. Their density
and morphology correlates with the amount and morphology

022707-7



GUREVICH, PROVATAS, AND REY PHYSICAL REVIEW E 96, 022707 (2017)

FIG. 9. Homogeneous (fh) and elastic (fg) energies in three-
dimensional geometry, projected on the xy plane (top) and the
yz plane (bottom). The projections on the xy and xz planes are
identical.

of the defects structures. Disclinations align with their planes
perpendicular to the orientation field to minimize elastic
distortions. The innermost boundary walls pass through the
defect structure formed during the initial texturing process. In
planar geometry deep quenches produce four point defects at
the center of the droplet. In three-dimensional geometry they
produce at the core of the droplet an entangled disclination
loop that may be of complex geometry, and can comprise
disclinations of lower and higher strengths that locally obey
the Kirchhoff topological conservation law at the junctions
[33,34]. This defect structure at the core is either freestanding
or, for deeper quenches, connects to the nematic-isotropic
interface along the main diagonals of the ellipsoid shaped
droplet. The limiting quench depth is similar to that at which
in planar geometry additional pairs of defects form along the
diagonals (�T ∼ 12 K), hinting at a connection.

Knotted disclination lines in liquid crystals are attracting
much attention as means to study knotted configurations,
driven by the development of innovative experimental tech-
niques to form and manipulate knotted defect structures
[35–40]. Knots of disclination lines in liquid crystals have
been observed only in chiral, symmetry-breaking systems.
Their formation in nematic liquid crystal droplets, under highly
symmetric confinement, may seem surprising since it is not the
media but the initial state of the orientation field that provides
a privileged direction that breaks the spherical symmetry. The
long-term stability of these knotted defect structures is as im-
portant when considering whether experimental observations
are possible. In particular, disclination line knots are yet to
be observed experimentally even in chiral nematic droplets.
A more detailed analysis of the entangled defect loop at the
core of the droplet as part of the emerging research on knotted
fields is a subject for future research.

IV. CONCLUSIONS

Extending the study of interfacial defect shedding in a
growing nematic droplet reveals that this setting can produce a
controllable regular distributions of point defects in planar
geometry and complex structures of disclination lines in
three dimensions. Moreover, it reveals that interfacial defect
shedding is not only intimately associated with local interfacial
shape changes, but also with global interfacial variations.

Experimental observation of interfacial defect shedding in
a growing nematic droplet is an ongoing challenge given the
short time and small length scales involved. Numerical predic-
tions not only expand our knowledge and inspire experimental
methods, they play an important role in interpreting nanoscale
experimental results. The optical methods commonly used
to observe liquid crystal droplets have a resolution that is
limited to the micrometer scale [21,41,42]. Other techniques
such as deuterium magnetic resonance (2H-NMR) can be used
successfully in smaller length scales [41,43,44]. However, the
experimental 2H-NMR spectrum needs to be compared to a
simulated spectral pattern of the predicted texture in order to in-
terpret the results [41]. Other visualization techniques capable
of capturing the Kibble mechanism at small length scales may
be worth exploring in pursuit of observing interfacial defect
shedding, even if not in the context of an isolated growing
nematic droplet in the absence of external fields. Bose-Einstein
condensation in trapped cold gases [45,46], vortices in mul-
tiferroic hexagonal manganites heated above the ferroelectric
transition temperature [47], ion Coulomb crystals [48], and
two-dimensional ensembles of colloidal particles [49] have
all proven suitable for observing experimentally the Kibble
mechanism. Further opportunities may reside in manipulating
boundary conditions [50] and externally controlled fields [51].
State-of-the-art high-speed optical imaging such as ultrafast
optical shutters in combination with femtosecond laser pulses
may eventually be able to capture interfacial defect shedding
in a growing isolated nematic droplet. However, this would
require careful consideration of the morphological responses
following the pulse irradiation.

Certain experimental validation can be found, nevertheless.
Observations of nematic 5CB in cylindrical cavities surface
treated with lecithin, which favors homeotropic anchoring
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and weakens the anchoring strength, show that the resulting
equilibrium nematic texture is very similar to the texture
predicted immediately before interfacial defect shedding
[41]. Oscillatory modes between defect configurations have
been recently reported in active nematic vesicles [52] and
active nematic shells [53]. Even though the geometry and
driving mechanisms are different, they demonstrate oscillatory
responses of a nematic liquid crystal under topological
constraints. The potential of the (orientational) elastic energy
to generate oscillatory dynamics is often obscured by the ho-
mogeneous energy dominating the isotropic-to-nematic phase
transformation. It is thus not trivial to discover conditions for
which an oscillatory response arises.

Interfacial defect shedding can coexist with the Kibble
mechanism, which was first proposed in the context of
cosmology as responsible for the creation of domain
structures during the early universe expansion, modeled as a
temperature-induced phase transition. Combining both defect
forming mechanisms, or exploring interfacial defect shedding
alone, as an alternative mechanism for symmetry breaking

in early universe models may be of particular interest in
cosmology. For favoring the formation of knotted defect
structures in three dimensions, interfacial defect shedding in
a growing nematic droplet can also play an important role
in the emerging research on knotted fields, where entangled
defect line knots in liquid crystals are becoming a paradigm
for studying knotted configurations.

Our results highlight how the nonequilibrium dynamics of
active matter can be exploited to produce defect configurations
in a controlled manner. Expanding our knowledge of the
physics of liquid crystals has much potential in developing
functional materials for multiple applications as well as
in building theoretical models for material, biological, and
astrophysical systems.
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