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Dramatic slowing of compositional relaxations in the approach to the glass transition
for a bimodal colloidal suspension
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Molecular dynamics simulation was used to study a model colloidal suspension with two species of slightly
different sized colloidal particles in an explicit solvent. In this work we calculated the four interdiffusion
coefficients for the ternary system, which were then used to calculate the decay coefficients D± of the two
independent diffusive modes. We found that the slower D− decay mode, which is associated with the system’s
ability to undergo compositional changes, was responsible for the long-time decay in the intermediate scattering
function. We also found that a decrease in D− to negligible values at a packing fraction of �g = 0.592 resulted
in an extreme slow-down in the long-time decay of the intermediate scattering function often associated with the
glass transition. Above �g , the system formed a long-lived metastable state that did not relax to its equilibrium
crystal state within the simulation time window. We concluded that the inhibition of crystallization was caused
by the inability of the quenched fluid to undergo the compositional changes needed for the formation of the
equilibrium crystal.
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I. INTRODUCTION

The nature of the glass transition remains a matter of
enduring interest [1]. Glasses share similarities with crystalline
solids, since they are both mechanically rigid, but also with
liquids because they both have similar disordered structures at
the molecular level [2]. A glass can be obtained by cooling a
liquid to below its glass transition temperature or for a colloidal
suspension by condensing it to a packing fraction above the
glass transition. For the system to form a glass, the quench
must be fast enough that the first-order phase transition toward
a crystalline structure is avoided. Because the glass transition
depends on the quench rate, it differs from thermodynamic
phase transitions such as the solid-liquid transition.

Colloidal systems are ideal for studying vitrification (glass
formation) as their size and diffusive dynamics ensure that
their relaxation times are experimentally accessible. They
are also one of the simplest experimental systems known to
have a glass transition [3]. In many cases, colloidal particles
can be considered to be simple hard spheres. This was first
experimentally demonstrated in the mid-1980s by Pusey and
van Megen, who essentially replicated the theoretical hard-
sphere phase diagram using colloidal samples [3]. A single
component hard-sphere (HS) system (where all spheres are the
same size) exists as a liquid up to a packing fraction of � �
0.494 and coexists as liquid and solid between 0.494 < � �
0.545, above which it is a solid [4,5]. Interestingly, a small
amount of polydispersity (particles with slightly different
sizes) efficiently inhibits crystallization [6–10]. This is the
case for experimental suspensions, which can be compressed
above the freezing transition without crystal growth. At a
packing fraction �g ≈ 0.57–0.59 the relaxation times become
sufficiently large compared to experimental time scales that
the system does not relax, and it forms a glass [3,11].
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In previous work, we studied a unimodal model colloidal
suspension with an explicit solvent [12,13]. In this system
the colloidal particles were modeled using a Weeks-Chandler-
Anderson (WCA) potential that was modified to include a hard
core, while the solvent was modeled using a simple WCA
potential. The explicit solvent was included in the model in an
attempt to match the dynamics of a real colloidal suspension
by having the larger particles diffuse through a solvent having
viscosity and inertia rather than moving ballistically through
a vacuum. However, our attempt to include hydrodynamic
interactions was only partially successful as the trend in the
self-diffusion coefficients with packing fraction is qualitatively
similar to that observed in Brownian dynamics simulations
[13]. We calculated the intermediate scattering function
(which is a key quantity measured in dynamic light-scattering
experiments [7,8,11,14–16]) over a large range of packing
fractions and wave vectors in order to systematically study the
change in dynamics on the approach to the freezing point.

We found that at finite wave vectors the intermediate
scattering function could be modelled as a double exponential
decay with effective short- and long-time diffusion coefficients
[13]. This is in line with experimental analysis [17], though our
definition of the short-time diffusion coefficient differs from
the usual convention. Usually it is defined as the zero time
limit of the time-dependent diffusion coefficient; however,
this can be ambiguous and difficult to determine, so instead
we isolated the two exponential decay modes to determine
their individual amplitudes and decay coefficients and related
the short-time diffusion coefficient to the decay rate of the
faster decaying mode. The conclusions drawn in Ref. [13] are
unchanged if the zero time limit definition is used. However,
the model studied did not include polydispersity, which is
key to inhibiting crystallization and allowing a glass transition
to occur. Therefore, one of the aims of this work is to add
polydispersity into the existing model and study the change
in dynamics leading up to the glass transition rather than the
freezing point.
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The simplest way to include polydispersity is by intro-
ducing a second colloidal species with a slightly different
size. Binary HS systems show extremely rich phase behavior
which depends on the size ratio α and composition of
the two species [18]. Kranendonk and Frenkel [19] studied
the freezing and melting points of binary HS systems in the
range 0.85 � α � 1.00. They found that for an equimolar
composition the freezing and melting points were slightly
shifted from the single component HS system. Binary HS
mixtures have also been found to form a glass [20–23], which
makes them an ideal system to study vitrification through
calculation of the intermediate scattering function.

The expected form for the intermediate scattering function
in the macroscopic diffusive limit (infinite wavelength) for a
ternary colloidal suspension has been derived by Pusey et al.
[24]. They predicted the existence of two diffusive modes with
decay rates related to the four bulk interdiffusion coefficients.
These two modes have been observed in colloidal suspensions
with polydispersity [25,26] and in ternary polymer solutions
[27], but their link to the glass transition has never previously
been explored.

It is possible that the slower D− mode, which is associated
with the system’s ability to make compositional changes [24],
may be connected to the inhibition of crystallization at large
packing fractions. This follows from the observation made in
both simulations [22,28] and experiments [7–9,16,29,30] that
compositional fluctuations control crystallization in polydis-
perse HS systems. It is this possibility that will be explored
in this work through quantitative calculations of the D±
coefficients of the two independent modes.

The outline of this paper is as follows: First, we give a
summary of the computational model used and describe how
we calculated the interdiffusion coefficients in equilibrium
molecular dynamics (MD) using time correlation functions.
Then we discuss results for the four bulk interdiffusion
coefficients, as well as the decay rates of the two independent
modes, over a range of packing fractions from a moderate
packing fraction up to a supercompressed metastable state.
We then use a multiexponential analysis of the colloidal
particle intermediate scattering function over the same range of
packing fractions to show that the slow diffusive mode governs
its long-time decay.

Last, we show results for the intermediate scattering
function of a system above the glass transition packing
fraction. We demonstrate that the extremely long relaxation
time of the fluid, which manifests as an extremely slow decay
and ultimate arrest of the intermediate scattering function, is
linked to the reduction in the decay coefficient D− of the slow
mode to a negligible value. Once this link is made, it allows us
to show that the growth in relaxation time observed at the glass
transition is just a continuation of the trend established at lower
packing fractions. It also allows a physical interpretation of the
cause of the glass transition and goes some way to explaining
why polydispersity is essential to the formation of a glass in
multicomponent HS systems.

II. THEORY

A. Intermediate scattering function

The intermediate scattering function Fαβ(k,τ ) is defined
as the normalized autocorrelation function of a Fourier

component of the number density:

Fαβ(k,τ ) = 1

N

〈nα(k,τ )n∗
β(k,0)〉

Sαβ(k)
, (1)

where nα(k,t) is given as

nα(k,t) =
Nα∑
j=1

exp(−ik · rj (t)) (2)

and N is the total number of particles, Nα is the number of
particles of species α, and rj (t) denotes the position of particle
j at time t . The static structure factor Sαβ(k) is defined as

Sαβ(k) = 1

N
〈nα(k,0)n∗

β(k,0)〉, (3)

where * signifies the complex conjugate. In MD simulation,
the wave vector k being studied must be consistent with the
periodic boundary conditions of the simulation box:

k = 2π

L
(a1,a2,a3), (4)

where ai is an integer and L is the length of the simulation box
(in this work the box is cubic so Lx = Ly = Lz).

From Eq. (4) we see that the lowest nonzero k value
that can be studied in an MD simulation has a magnitude
of |kmin| = 2π/L. As the fluid is isotropic the correlation
functions Fαβ(k,τ ) and Sαβ(k) only depend on the magnitude
k = |k|, so an average is done over all k of equal magnitude.

In this work we have two species of colloidal particles
with a size (diameter) ratio of 0.925. This is done in order to
introduce a 3.9% polydispersity into our model. In order to
make comparisons with experimental work, the intermediate
scattering functions that were calculated included all colloidal
particles. Therefore we calculated the property:

Fc(k,τ ) = 1

N

〈nc(k,τ )n∗
c (k,0)〉

Sc(k)
, (5)

where the subscript c indicates that both colloidal species
are included in the calculation. But, in order to simplify the
notation, the subscript c will be dropped, and we will simply
denote F (k,τ ) = Fc(k,τ ).

B. Macroscopic diffusive limit

In the macroscopic diffusive limit (k → 0), the decay rate of
the colloidal particle intermediate scattering function F (k,τ )
can be related to the diffusion coefficients of the fluid. This is
because small fluctuations about equilibrium in the colloidal
particle number densities δn1 and δn2 of long wavelength can
be described by the coupled linear diffusion equations [24]:

∂

∂t
δn1(r,t) = D11∇2δn1(r,t) + D12∇2δn2(r,t),

(6)
∂

∂t
δn2(r,t) = D21∇2δn1(r,t) + D22∇2δn2(r,t),

where the Dij are the four interdiffusion coefficients of the
ternary system and convective terms have been neglected.
The matrix of diffusion coefficients can be diagonalized to
provide two independent diffusional modes which are linear
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combinations of δn1 and δn2 if we define:

δn+ = α+δn1 + δn2,
(7)

δn− = α−δn1 + δn2,

which relax according to

∂

∂t
δn+(r,t) = D+∇2δn+(r,t),

∂

∂t
δn−(r,t) = D−∇2δn+(r,t). (8)

Here

α± = (D11 − D22) ± [(D11 − D22)2 + 4D12D21]1/2

2D12
(9)

and

D± = 1
2 (D11 + D22) ± 1

2 [(D11 − D22)2 + 4D12D21]1/2,

(10)

where D± are the effective diffusion coefficients of the two
independent diffusive modes. The fluctuations in the total
number density of colloidal particles δnc can therefore be
written as

δnc(r,t) = δn1(r,t) + δn2(r,t)

= 1 − α−
α+ − α−

δn+(r,t) + 1 − α+
α+ − α−

δn−(r,t). (11)

Thus the space-time correlation function is

〈δnc(0,0)δnc(r,t)〉 =
[

1 − α−
α+ − α−

]2

〈δn+(0,0)δn+(r,t)〉

+
[

1 − α+
α+ − α−

]2

〈δn−(0,0)δn−(r,t)〉.

(12)

The colloidal particle intermediate scattering function is
simply the Fourier transform of this correlation function [24]:

lim
k→0

F (k,t) =
[

1 − α−
α+ − α−

]2

〈|δn+(k,0)|2〉 exp(−k2D+t)

+
[

1 − α+
α+ − α−

]2

〈|δn−(k,0)|2〉 exp(−k2D−t).

(13)

Therefore, Eq. (13) predicts that in the k → 0 limit the decay
of the colloidal particle intermediate scattering function will
be the sum of two exponentials with decay rates proportional
to diffusion coefficients D± that are calculated from a
combination of the four bulk interdiffusion coefficients using
Eq. (10).

A physical interpretation of the two independent diffusive
modes was given by Pusey [24]. The + mode describes a
collective compression-dilation motion of the particle mix-
ture in which the relative compositions remain unchanged
(i.e., δn1/n1 = δn2/n2). The − mode describes composition-
fluctuation dynamics in which species 1 and 2 are exchanged
under the preservation of a constant total number density (i.e.,
δn1 + δn2 = 0).

The + mode (compression-dilation) is expected to relax
on a much quicker time scale than the − mode (compositional
fluctuations). This is because relaxations in the composition of
the fluid occur on a much longer time scale than relaxations in
the total density. Compositional relaxations are also expected
to slow drastically as the packing fraction of the colloidal
particles increases. Therefore, we expect a divergence of the
two time scales on the approach to the glass transition.

In this work we focus on studying the decay of F (k,τ )
in the k → 0 limit (or as close to it as is computationally
feasible). In this hydrodynamic limit, other theories such
as mode coupling theory (MCT) [31] and multicomponent
self-consistent generalized Langevin equation theory [32]
should agree with hydrodynamic theory and will therefore be
consistent with our analysis in terms of D+ and D−. Outside
the hydrodynamic limit, the additional predictions [such as the
nonexponential stretching in F (k,τ )] should appear.

C. Calculation of interdiffusion coefficients

The four interdiffusion coefficients given in Eq. (6) can
be calculated from equilibrium MD simulations using a
combination of the Green-Kubo [33,34] and Kirkwood-Buff
theories [35]. The calculation of the diffusion coefficients
follows the same method used in our previous work for a
binary system [13], though here we generalize the method
for a ternary system. The diffusion coefficients for a three-
component isothermal fluid appearing in Eq. (6) are defined
by the linear flux-force relations [36]:

J0
1 = −D11∇n1 − D12∇n2,

(14)
J0

2 = −D21∇n1 − D22∇n2,

where J0
α is the diffusive molecular flux defined as

J0
α = nα(vα − v0). (15)

Here vα is the velocity of species α and v0 is the volume
average streaming velocity given by

v0 =
3∑

α=1

nαναvα, (16)

where να is the partial molecular volume of species α.
The diffusion coefficients appearing in Eq. (6) are defined

in terms of the flux measured relative to the volume average
streaming velocity, but it is more convenient for computation
to calculate the phenomenological coefficients defined by flux
laws expressed in terms of the barycentric (mass average)
streaming velocity. The relationship between the phenomeno-
logical coefficients with respect to one reference velocity and
the diffusion coefficients measured relative to another can be
written as [36]

D = T −1B · L · A · �, (17)

where T is the temperature. � is the two-dimensional matrix
with elements


ik =
(

∂μi

∂nk

)
p,T ,nj �=k

, (18)

where μi is the chemical potential of species i and p is the
pressure. The L matrix is also two-dimensional and contains
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the phenomenological coefficients defined in the relationship

Ji =
2∑

k=1

LikXk, (19)

where Xk are the thermodynamic forces [36]. The A matrix
comes about when eliminating a flux using the Gibbs-Duhem
equation. It relates the independent forces to gradients in the
chemical potential

Xi = −
2∑

k=1

Aik

(∇μk)p,T

T
(20)

and for fluxes measured relative to the barycentric reference
velocity takes the form of

Aik = δik + ci

c3

xk

xi

, (21)

where xi is the number fraction of species i and ci is its mass
fraction. Matrix B is required to convert between the diffusive
flux relative to the barycentric velocity, and the flux relative
to the volume averaged reference velocity. The elements of
matrix B are given by [36]

Bik = δik +
(

n3ν3
ck

c3
− nkνk

)
ci

ck

. (22)

Therefore, to determine the diffusion coefficients, we need to
determine all thermodynamic factors for �, the partial volumes
νi , and phenomenological coefficients for L.

The phenomenological coefficients are calculated from
Green-Kubo theory [33,34], which states that

Lαβ = V

3kB

∫ ∞

0
〈Jα(τ ) · Jβ(0)〉dτ, (23)

where due to time-reversal symmetry, Lαβ = Lβα . The ther-
modynamic factors and partial volumes can be calculated from
Kirkwood-Buff theory [35]. The well-known expression found
by Kirkwood and Buff states that for a fluid with m species
the thermodynamic factors are calculated from

1

kBT

αβ = Cαβ

∑m
i,j=1 ninjC

ij − ∑m
i,j=1 ninjC

iαCjβ

|C| ∑m
ij=1 ninjCij

(24)

and the partial volumes from

να =
∑m

j=1 njC
αj∑m

i,j=1 ninjCij
. (25)

The matrix C is constructed from the elements

Cαβ = nαnβGαβ + nαδαβ (26)

and the quantity Cαβ denotes the cofactor of the element Cαβ

in the determinant |C|. The volume integrals of the radial
distribution functions Gαβ are calculated from

Gαβ =
∫

(gαβ(r) − 1) dr = 4π

∫
r2(gαβ(r) − 1)dr, (27)

where gαβ(r) is the radial distribution function of species α

and β. These integrals can be difficult to calculate as statistical
error in gαβ(r) at large r is magnified by the factor of r2, so
the numerical integrals may not converge. As was shown in
the previous work [13], a much simpler way to calculate this
quantity is through the partial structure factors:

Gαβ = 1

xαxβn
[lim
k→0

Sαβ(k) − xαδαβ], (28)

where n is the total number density of all species. By
calculating the low-k values of the partial structure factors
Sαβ(k), and extrapolating k → 0, the values of Gαβ can be
calculated in a much simpler way.

III. SIMULATION METHODS

The pair potential and parameters for our model are similar
to those described in our previous work [13], but here we
expand the model to include a second colloidal species. We
modeled the colloidal particles and solvent using a WCA
potential (a shifted and truncated Lennard-Jones potential)
which is modified to include a hard core. The potential takes
the following form:

φ(rij ) =

⎧⎪⎪⎨
⎪⎪⎩

∞ if rij � cαβ

4ε

[(
σ

rij − cαβ

)12

−
(

σ

rij − cαβ

)6]
+ ε if cαβ < rij < cαβ + 21/6

0 otherwise

, (29)

where rij is the center-to-center distance between the particles
i and j , ε is the depth of the potential well, and σ is the
nominal length scale of the potential (in this work all quantities
are expressed in reduced units where ε = σ = 1). The cαβ

parameter introduces a hard core to the potential where α and
β are the two interacting species. This creates an excluded
region that increases the size of the colloidal particles relative
to the solvent and also gives different sizes to the colloid
species. A diagram of the potential is shown in Fig. 1. The

hard-core parameters we used in this work are given in
Table I.

In this model, the hard-core parameters cαβ in all colloid-
solvent interactions are set to zero in order to remove the
large excluded volume around the colloidal particles that led
to strong depletion effects [12,13]. This means that the hydro-
dynamic interactions are still present, and momentum transfer
can occur through the solvent, but these interactions may be
weak compared to those found in experimental systems.
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FIG. 1. Diagram of the pair potential between colloidal particles
with ε = σ = 1.00 and cαβ = 3.034.

The colloid packing fraction � was calculated from

� = π

6V

(
N1d

3
1 + N2d

3
2

)
, (30)

where di is the diameter of the colloidal particles. In the
usual hard-sphere simulations the diameter of the particle is
clear, but in this work we are using a hard core plus a WCA
repulsive potential. The WCA repulsive potential adds an extra
contribution to the diameter so that the effective hard sphere
diameter is not uniquely defined.

Hess et al. [37] have determined expressions for the
effective hard-sphere diameter of WCA particles as a function
of temperature. These authors defined the effective diameter d

to be the interparticle separation where the interaction potential
is equal to Boltzmann’s constant times the temperature φ(d) =
kBT . At the reduced temperature of 1.0 used in this work,
this gives an extra diameter of 1.0 to the particles due to the
WCA repulsion. This gives the colloidal species an effective
diameter of 4.03 and 3.73 times the diameter of the solvent
particles. Using the size ratio of the two colloidal species as
γ = 3.73/4.03 = 0.925 the polydispersity s is given by [22]:

s =
(

1 − 2γ

1 + γ

)
100%, (31)

which for the present system gives s = 3.9%.
All simulations were done with a total of 108 000 particles.

The calculated packing fraction �, number of particles and the
volumes for the systems studied are shown in Table II.

The masses of the colloidal particles were set with the
goal of making them approximately neutrally buoyant in
the solvent. The mass needed to do this was calculated in the
same way as done by McPhie [38], which for a size ratio d1/d2

of 4.03 and 3.73 gave a mass ratio m1/m2 of 50 and 39.62,
respectively. Therefore, we used a mass of 1.0 for the solvent

TABLE I. Hard-core parameter cαβ for each species interaction
type.

Pair type cαβ

C1-C1 3.034
C1-C2 2.882
C2-C2 2.733
C1-S 0.000
C2-S 0.000
S-S 0.000

TABLE II. Number of solvent particles Ns , colloidal particles Nc,
average volume 〈V 〉, and packing fraction � for the systems studied.

System no. Ns Nc 〈V 〉 �

1 106 910 690 128 670 0.261
2 106 510 1090 128 778 0.356
3 106 116 1490 129 131 0.449
4 105 928 1884 129 404 0.493
5 105 728 2072 129 905 0.539
6 105 628 2372 129 812 0.563
7 105 528 2472 130 764 0.582
8 105 480 2520 131 162 0.592
9 105 428 2572 131 791 0.601
10 105 328 2672 133 434 0.617
11 105 728 2976 141 788 0.635

particles and a mass of 50.0 and 39.62 for the two colloidal
species. This size and mass ratio is significantly smaller than in
an experimental colloidal suspension, but it has been shown to
be large enough for the larger particles to behave as Brownian
particles in a solvent [39].

All simulations were run using the MD package LAMMPS
[40] and results were post-processed using in-house code.
Simulations at each packing fraction were done under NPT
conditions at a reduced temperature of 1.00 and reduced
pressure of 7.85. The time integration scheme used follows the
time-reversible measure-preserving Verlet integrator derived
by Tuckerman et al. [41] with a time step of 0.005. The
temperature is held fixed using a Nosé-Hoover thermostat
while the pressure is held fixed using a Nosé-Hoover type
barostat, both with a damping parameter of 10. The simulations
were done at constant temperature and pressure in order to
better replicate the experimental conditions of a real colloidal
suspension.

IV. RESULTS

A. Interdiffusion coefficients

In order to calculate accurate values for the interdiffusion
coefficients, accurate values of the phenomenological coeffi-
cients Lαβ and thermodynamics factors 
αβ are needed. The
phenomenological coefficients Lαβ were calculated from the
integral of the colloidal particle mass-flux correlation functions
defined in Eq. (23). The mass-flux correlation functions were
calculated out to a maximum delay time of 25 000 time steps.
Numerical integration with the trapezoid rule was performed
on the correlation functions and the integrals were found
to converge. The resulting values of the phenomenological
coefficients are shown in Fig. 2.

For � < 0.36, all three coefficients are observed to change
very little with �. But as the freezing point �f is approached,
L11 (circles) and L22 (diamonds) were both found to decrease
while L12 (squares) increased. This trend continues into the
metastable region �f < � < �m with no obvious change in
behavior as the freezing point is crossed. This is quite
different behavior to that observed in previous work for the
unimodal system [13]. For the unimodal system, the single
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FIG. 2. Plot of the phenomenological coefficients L11 (circles),
L22 (diamonds), and L12 (squares) calculated from Eq. (23).
Error bars have not been shown as they are smaller than the
symbols.

phenomenological coefficient L11 was found to increase, and
then plateau, at the freezing point.

To determine the thermodynamic factors 
αβ , values for
Gαβ are needed. The integrals of the radial distribution
functions Gαβ were calculated from the zero-k values of
the partial static structure factors Sαβ using Eq. (28). As an
example of how the Sαβ(k → 0) were calculated, we have
shown data for all Sαβ(k) at � = 0.36 in Fig. 3. These are
plotted against k2, as Sαβ(k) is even in k. Although it is possible
that S(k) could be a nonanalytic function of k, and could
therefore also depend on odd or fractional powers of |k|, we
saw no evidence of this in our data. Therefore to determine
Sαβ(k → 0), a fifth-order polynomial in k2 was fitted to the
data and extrapolated back to k = 0. This was done for all
packing fractions studied.

All values calculated for Sαβ (k → 0) were used in Eq. (28)
to calculate Gαβ . The values for Gαβ were used in Eq. (24)
to calculate the thermodynamic factors 
αβ . Using the values
of the thermodynamic factors 
αβ , along with the values of
the phenomenological coefficients Lαβ shown in Fig. 2, the
four interdiffusion coefficients were calculated using Eq. (17).
These are shown in Fig. 4.

The main-term diffusion coefficients D11 and D22 relate
the flux of each component to its own concentration gradient,
while D12 and D21 are the cross-term diffusion coefficients
relating the flux of each component to the concentration
gradient of the other. At each given packing fraction the four
interdiffusion coefficients are of the same order of magnitude,
because of the comparable size of the two colloidal species.
All four coefficients increase as � increases, similar to the
behavior of the single interdiffusion coefficient of the unimodal
colloidal suspension in our previous work [13], which showed
an almost exponential increase on the approach to the freezing
point.

Although there are four interdiffusion coefficients in a
ternary system, there are only two independent diffusion
modes. The effective diffusion coefficients of these modes are
designated by D± and were calculated using Eq. (10). These
are shown in Fig. 5.
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FIG. 3. Plot of the low-k values of the static structure factors of
a system at a packing fraction of 0.36. A fifth-order polynomial line
of best fit was used to obtain the Sαβ (k → 0) values.

As discussed earlier, the + mode corresponds to
compression-dilation at fixed composition, while the − mode
corresponds to compositional changes at fixed total concen-
tration. As expected, D+ is found to have a much larger
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FIG. 4. Plot of the four interdiffusion coefficients D11 (circles),
D12 (squares), D21 (diamonds), and D22 (triangles) against packing
fraction �.
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FIG. 5. Plot of the two independent diffusion coefficients D± for
the (a) + mode and (b) − mode. Circles show the values calculated
from Eq. (10) and crosses show the values calculated from fit to
intermediate scattering function (ISF).

magnitude than D− (roughly 100× larger), indicating that
the total colloidal particle concentration relaxes on a much
quicker time scale than the time scale on which compositional
changes occur. D+ also increases as � increases, showing that
compression fluctuations relax faster with increased �. This is
also seen in the single interdiffusion coefficient in the unimodal
system [13] as that mode also corresponds to relaxations in the
total density of the colloidal particles.

However, D− is observed to decrease as � increases,
indicating that the composition is relaxing at a slower rate.
This is consistent with the observations of Williams and
coauthors [22,28] who observed that compositional relax-
ation slowed down dramatically with increased �, which in
turn inhibited crystallization. In this work we relate the
relaxation directly to D−, and so are able to calculate the
relaxation rate quantitatively. To determine the complete
behavior of this coefficient at larger �, the values for D−
were determined independently from fits to F (k,τ ). These are
also shown in Fig. 5 (crosses) for the stable and metastable
fluids, as well as for a glassy state. Independent values for D+
could not be calculated from the fits to F (k,τ ) due to strong
wave-vector dependence at low k.

The last intermediate scattering function data point in Fig. 5
corresponds to a packing fraction well above the melting point
�m, where the equilibrium state of the system is a crystal [42].
But, on the total simulation time scale, it was not observed
to relax to its equilibrium crystal state. At this value of �,
we estimate the magnitude of D− to be <10−9, indicating
that compositional changes can occur but will do so on an
extremely long time scale. This appears to be obstructing the
formation and growth of the colloidal crystal.

How D− is determined from F (k,τ ) will be shown in the
next section. We will also show that the − mode corresponds
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FIG. 6. Plot of F (k,τ ) data (symbols) for the packing fractions
at (a) � = 0.356, (b) � = 0.449, and (c) � = 0.493 together with
the multiexponential fit described in the text (red solid line through
the data points). Data shows the low wave-vector (kd = 0.55) decay.
The various components of the fitting function given in Eq. (32) are
also displayed separately according to the legend. The damped cosine
mode has also not been shown as its contribution is negligible on this
scale. For graphical clarity, not all available data points have been
displayed.

to the long-time decay of F (k,τ ) and therefore the decrease of
D− to an insignificant value at � = 0.592 corresponds to an
extremely slow decay in F (k,τ ) that is often associated with
structural arrest.

B. Intermediate scattering function

In this section, calculations of the colloidal particle in-
termediate scattering function F (k,τ ) will be shown for the
high-density stable fluid phase. The wave vectors studied were
those consistent with the periodic boundaries of the simulation
box [given in Eq. (4) up to n1 = n2 = n3 = 15]. We will
report wave vectors in the dimensionless form kd where d

is the average diameter of the colloidal particles (d = 3.73).
This allows direct comparison with corresponding kd values
measured in light-scattering experiments.

F (k,τ ) calculated for this system is shown in Fig. 6 for three
high-density fluid states at packing fractions � approaching
the freezing point. A multiexponential analysis was applied to
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the F (k,τ ) data in order to isolate the individual contributions.
We expect there to be at least two decay modes that correspond
to the ± modes predicted from Eq. (13), but additional modes
appear away from the k → 0 limit. These additional kinetic
modes were observed in the unimodal system [13] and can
also be attributed to memory effects. This multiexponential
analysis technique is similar to our previous work for the
unimodal system [13] and is ultimately based on the arguments
of Barocchi and coauthors [43–45]. The fitting function takes
the form:

F (k,t) ≈ A+ exp(−k2D+t) + A− exp(−k2D−t)

+AK exp(−k2DKt)

+Ad exp(−αt) cos(−βt + φ), (32)

where all coefficients are allowed to be wave-vector dependent.
The first two terms in Eq. (32) are the two thermodynamic
modes predicted from macroscopic nonequilibrium thermo-
dynamics. The third term is a kinetic mode, which only
appears outside the macroscopic diffusive limit (k > 0). The
last term is a damped cosine which takes into account the very
short-time nondiffusive decay of F (k,t). This term is present
in our system as the dynamics of the colloidal particles are not
truly Brownian at short times, but its contribution is almost
negligible. The total fit functions from Eq. (32), along with the
individual contributions, are also shown in Fig. 6.

The F (k,τ ) data shown in Fig. 6 is at kd = 0.55. This
is one of the lowest wave vectors that we could study that
was still consistent with the periodic boundary conditions of
the simulation box. In this low wave-vector limit, F (k,τ )
is expected to approach a double exponential decay as the
wavelengths being probed approach the macroscopic diffusive
limit (infinite wavelength). This behavior is observed for the
packing fraction of � = 0.356 [Fig. 6(a)] where the dominant
contributions come from the + and − modes, and the other
modes have negligible amplitudes.

For the higher packing fractions in the low-k region
[Figs. 6(b) and 6(c)], the + and − modes still dominate, but the
kinetic mode is nonzero and has a greater contribution at short
delay times. The kinetic mode makes a larger contribution
because, at these packing fractions, the wave vector being
studied is not low enough to be in the macroscopic diffusive
limit. As � increases, the maximum wave vector where
macroscopic diffusive behavior is seen decreases, just as was
observed in the unimodal system [13]. But we will show later
that Ak → 0 in the k → 0 limit for all �, as expected.

We have identified two of the modes in Fig. 6 as the + (blue
dashed line) and − (purple dashed-dotted line) thermodynamic
decay modes, which can be justified in the following way; First,
these two modes have nonzero amplitudes in the k → 0 limit
identifying them as thermodynamic decay modes. Second, as
we will show, their diffusion coefficients extrapolate in the
k → 0 limit to the D± coefficients calculated independently
from Green-Kubo and Kirkwood-Buff theory.

As seen in Fig. 6, the short-time decay is governed by
the + and kinetic modes, while at long times the decay is
dominated by the − mode. Therefore, this long-time decay is
due to extremely slow long-range compositional relaxations
of the colloidal particles. As � increases, the amplitude of the
− mode increases, while the diffusion coefficient decreases.
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FIG. 7. Plot of the amplitudes of the (a) +, (b) kinetic, and (c)
− exponential decay modes for packing fractions of 0.356 (circles),
0.449 (squares), and 0.493 (diamonds).

This indicates that compositional relaxations are becoming
more prominent, while at the same time relaxing more slowly.
But at these packing fractions, the magnitude of D−(k) is still
nonzero, so F (k,τ ) is still able to decay to zero within an
accessible time scale. As was shown in Fig. 5, the decrease
in D− to negligible values at larger � results in a metastable
fluid that cannot relax on any accessible time scale.

To display in more detail the complete behavior of the mode
amplitudes and their dependence on packing fraction and wave
vector, Fig. 7 shows the amplitudes of the three diffusive decay
modes at three packing fractions. As previously observed for
the unimodal system [13], at low wave vectors the amplitude of
the kinetic mode Ak approaches zero. This indicates that the
decay of F (k,τ ) is approaching a double exponential decay
(as expected in the macroscopic diffusive limit). We should
also note that in the limit in which the asymmetry of the
two colloidal species vanishes, A− would also vanish [24].
Therefore, the extremely slow decay in F (k,τ ) is not observed,
and we also do not observe a glass transition [13].

The relationship between A+ and Ak is similar to that seen
between corresponding modes AL and As in the unimodal
system [13], but the amplitude of the new A− mode shows
interesting wave-vector dependence. It has a maximum in the
k → 0 limit and then decreases towards zero at some finite
wave vector. The gradual decrease in the contribution from
this mode at larger wave vectors can be explained by the fact
that, in the stable liquid phase, large wave-vector (or short
wavelength) density fluctuations do not require compositional
rearrangements in order to decay. But, as we will discuss in
the next section, this is not true for systems above the glass
transition packing fraction.
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FIG. 8. Plot of low-k values of the effective diffusion coefficients
for the (a) D+ and (b) D− modes. Arrows on y axis indicate the value
of the diffusion coefficients calculated for the corresponding packing
fractions. Data for D+ has been shifted up by multiples of 0.5 for
clarity.

Since the k → 0 behavior of F (k,τ ) should be given by
the solution to the hydrodynamic description of Eq. (13),
the decay should be the superposition of two exponentials
with diffusion coefficients equal to the two independent
macroscopic diffusion coefficients defined in Eq. (10). To
check this, in Fig. 8 we have plotted the low-k values of
D−(k) and D+(k) calculated from the fits (symbols) along
with D− and D+ calculated from equilibrium MD using the
Green-Kubo and Kirkwood-Buff theory (arrows).

The wave-vector dependence of D+(k) is similar to that ob-
served for the long-time diffusion coefficient in the unimodal
system [13]. In that work, we found that the wave-vector
dependence could be fitted well with a Lorentzian type
function of the form:

D+(k) = D+
1 + α|k|β , (33)

where the coefficients α and β are free fitting parameters
that are not wave-vector dependent. Figure 8 shows that this
functional form also fits the data for D+ quite well over the
range of wave vectors investigated at each packing fraction.
Though we have not shown the values here, the α parameter
was found to increase exponentially with packing fraction,
while β remained relatively constant with an approximate
value of 2. This is identical to the observed behavior of the
corresponding mode in the unimodal system [13].

Interestingly, over the range of wave vectors studied, D−(k)
does not have any observable wave-vector dependence. The
values calculated from the fit to F (k,τ ) are also in good
agreement with the bulk diffusion coefficient D− (as shown in
Fig. 5). Because D−(k) does not show any clear wave-vector
dependence, the values used in Fig. 5 are the average of D−(k)

over the range shown in Fig. 8. We can also conclude from
the independence of D−(k) on wave vector that the time scale
on which compositional fluctuations decay scales as k2 for a
given �.

In the stable liquid phase, the compositional fluctuations
decay at a much slower rate than the total density fluctuations
(D+ 
 D−). But at these packing fractions the fluid is still
able to relax to equilibrium within a reasonable experimental
time scale after a quench. As we will see in the next section,
D− decreases to negligible values in densely packed fluids
(� > 0.58). This means that the compositional changes, which
are necessary for the formation of the equilibrium crystal
[22,28], cannot occur within a reasonable experimental time
scale, resulting in an extremely long-lived metastable state.

C. Glass transition

Above the melting packing fraction of the solid, the
thermodynamic force driving the fluid towards crystallization
increases to the point where crystallization can occur within
an experimental time frame. However, the development of an
equilibrium crystal structure is hindered by the rate at which
compositional changes can occur in regions of the fluid [7,8].
To study the effects of these two counteracting influences,
extremely low density homogeneous fluids were quickly
compressed using the barostat to a range of packing fractions
above the melting point. The systems were then allowed to
equilibrate to determine at which � crystallization would
occur. To determine whether crystallization has occurred, the
radial distribution function g(r) was calculated over intervals
of 500 000 time steps until no noticeable changes in the
structure of the system could be observed. The final g(r)
calculated are shown in Fig. 9.

The systems in the range of packing fractions 0.563 � � �
0.582 were all found to have completely crystallized. The g(r)
in these systems show a crystalline structure with the lattice
planes clearly seen as sharp peaks. These peaks extend out
to interparticle separations well beyond the first major peak,
showing long-range order characteristic of a crystal. This phase
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Φ = 0.592
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FIG. 9. Plot of the radial distribution function g(r) for packing
fractions above the melting point. Data for each � have been shifted
up by multiples of 2 for clarity.
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FIG. 10. Plot of the MSD for the larger species of colloidal
particles at the packing fractions indicated in the legend. For clarity,
not all data points have been shown.

behavior is consistent with the results from previous binary HS
systems [19].

For all � � 0.592 the thermodynamic driving force towards
a crystalline state has increased, but there is no clear onset of
crystallization. In these systems, g(r) does not show clear
lattice planes but instead has a structure that resembles a dense
liquid. These systems have been allowed to equilibrate well
beyond the time it took for the lower � systems to completely
crystallize, indicating that for all packing fractions greater than
�g = 0.587 ± 0.005 there is a mechanism inhibiting crystal-
lization and causing a long-lived metastable state to form. This
value of �g is close to the glass transition packing fraction
observed in experimental systems with similar polydispersity
[46] as well as binary HS simulations [22], but it remains to
be seen whether the state points shown in Fig. 9 have actually
formed a glass or just a long-lived metastable liquid.

To determine whether glassy behavior is observed for
� > �g , the mean-squared displacement (MSD) was calcu-
lated for the larger species of colloidal particles at packing
fractions ranging from a moderately dense stable liquid at
� = 0.261 to � = 0.635 and is presented in the form of a
double-logarithmic plot in Fig. 10. Diffusive motion can be
identified by those regions where the data follow a straight
line, which can be observed to occur at short times for all �.
This short-time behavior corresponds to motion of the tagged
colloidal particle through the solvent inside its local cage.

Linear behavior is also observed at long times for the
systems with � < �g , with the intermediate region showing
the transition from short-range diffusion through the solvent
to long-range diffusion through the solution. The intermediate
region is caused by the interaction of the tagged colloidal par-
ticle with its neighboring colloidal particles. This intermediate
time grows as � increases until the particles become trapped
by their nearest neighbors, leading to the extreme slow-down
and approach to a plateau of the MSD seen at at � � �g . This
slow-down has been observed in many experimental works
on colloidal suspensions [46,47] and indicates that although
small-scale movement of the tagged particle inside its local
cage is possible, large-scale diffusion is extremely unlikely
within the experimental time window studied.
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FIG. 11. Plot of F (k,τ ) against τ for (a) at low wave vector
(kd = 1.62) and (b) at the structure factor peak, for the packing
fractions shown in the legend. Data for each � has been shifted
along the horizontal axis and for clarity not all data points have been
shown.

The MSD reflects the single-particle dynamics, and so
highlights the confinement of the tagged particle by its
surrounding particles. It is also interesting to look at the
behavior of the collective dynamics as seen through F (k,τ ).
The dramatic decrease in the D− coefficient seen in Fig. 5
manifests in F (k,τ ) as an extremely slow decay at long times.
In the stable fluid (� � 0.493) this is only observed at small
k, as seen in Fig. 7. This was also true for the metastable fluid
below the melting point (� = 0.539) but it may not be true for
metastable systems when � > �g .

To determine whether this is the case, F (k,τ ) was calculated
for systems with � > �g and is shown in Fig. 11 on a
logarithmic scale for decays at a low wave vector [Fig. 11(a)]
and at the structure factor peak [Fig. 11(b)]. Also shown
is the F (k,τ ) for the stable liquid (� = 0.449 and 0.493)
and metastable liquid (� = 0.539) below the melting point.
Simulations were prepared by first compressing the systems
to the given packing fraction. After compression, multiple
consecutive simulations were run, with each lasting 106 time
steps (5000 reduced time units). F (k,τ ) was calculated for each
run and comparisons were made to determine when the system
had reached a steady state where changes in the decay curve
between runs could not be readily observed. After this point,
F (k,τ ) was accumulated and averaged over approximately
50 (or more) individual simulation runs each lasting 106 time
steps. However, we do note that since the systems with packing
fractions above the glass transition are in a nonequilibrium
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long-lived metastable state, slow ageing of these systems may
still occur [48].

The low-k data in Fig. 11(a) for the � dependence of
F (k,τ ) shows a definite trend. The slow long-time mode that
we associate with compositional relaxations is observed as
a secondary step in the decay. It is present at all � and is
seen to decay slower as � increases, corresponding to the
decrease in D− observed in Fig. 5. At � > 0.592, F (k,τ )
is still decaying at long times, but its decay rate is almost
negligible. We estimate that at � > 0.592 the value of D− has
decreased to <10−9, and at this rate of decay the time scale
on which compositional relaxations would completely decay
is well beyond the accessible simulation time.

Light-scattering experiments are limited in the lowest wave
vector that can be achieved (for an exception, see Martinez
et al. [14]). Usually, the main interest is at the wave vector
which corresponds to the structure factor peak. Therefore, we
have displayed the decay at these wave vectors in Fig. 11(b). At
these larger wave vectors (or, conversely, small wavelengths),
the large-scale compositional relaxation mode is not observed
at low �. We can explain this by noting that at small length
scales, density fluctuations do not require large-scale motion
of the colloidal particles in order to relax.

At � > 0.592 the decay of F (k,τ ) undergoes a dramatic
change in behavior at large wave vectors. We see a slower
decay mode emerge, shown by the secondary step in the decay.
This two-step relaxation is found in experimental systems [15]
and is predicted by MCT with the faster β decay usually
associated with relaxation of particles inside their local cage
and the slower α decay associated with breaking of particles
from their local cage [31].

Our analysis shows that we can interpret the secondary
relaxation as the emergence of the compositional relaxation
mode at this wave vector. It shows that in order for the
smaller wavelength density fluctuations to decay at these
packing fractions, large-scale compositional rearrangements
are needed. This is completely consistent with the idea of
strongly caged colloidal particles where small-scale motion
within a cage may be easy, but large-scale excursions require
the cooperative motion of a larger number of particles [15].
However, there is a subtle but important difference in our
interpretation. In our previous work using this model without
polydispersity, we did not observe any glassy behavior, so there
must be a fundamental difference between the monodisperse
and polydisperse cases to explain this behavior. Some authors
studying deeply quenched monodisperse HS systems have
been able to observe glassy behavior at short times [49], but
these systems were able to readily crystallize via short-range
“shuffling” which allows amorphous regions to gradually
transform into crystallites [50]. These authors note that
additional fractionation must occur if polydisperse systems
are to crystallize. Thus for the polydisperse case shown here,
the key to the long-lived glass is that caging prevents the
composition from relaxing and never allows the system to
reach its equilibrium state.

The two different wave vectors displayed in Fig. 11 give
very different pictures of the nature of the − mode. At low k,
the − mode is always present while progressively its amplitude
increases and decay coefficient decreases. At the larger k the −
mode appears to emerge as the glass transition is approached.

This apparent emergence may simply be the result of an effect
that is usually only observed at large length scales being driven
to smaller length scales as particles become more caged. In
order for a colloidal particle to break out of its neighboring
cage, it requires cooperative motion of a larger number of other
colloidal particles.

We note that since D− is small but nonzero, we do not
observe complete structural arrest often considered as the
signature of a glassy state. However, the persistent downturn
of F (k,τ ) does not forbid us from identifying �g ≈ 0.592 as
the glass transition packing fraction as this downturn is also
observed in some experimental [15,46,51,52] and simulation
[53,54] results above the glass transition. We have identified
this as �g because, above this packing fraction, the relaxation
time of the system has grown to the point where the time it
would take the system to relax to its equilibrium crystal is well
beyond the accessible simulation time.

It may be possible to see further arrest by increasing
the polydispersity to levels seen in experimental colloidal
suspensions (�5%) or by using a continuous distribution of
particle sizes rather than two discrete sizes. A later study
on the dependence of D− on the total polydispersity and
distribution shape may be of interest in order to find conditions
that maximise the glass forming ability of the system.

V. CONCLUSION

Molecular dynamics simulations were conducted on a
model colloidal suspension with explicit solvent. In this study,
we extended previous work by including polydispersity into
the model by adding a second smaller species of colloidal
particles. The introduction of polydispersity had the effect of
inhibiting crystallization at large packing fractions, resulting
in glassy behavior. By calculating the intermediate scattering
function and relating its decay to multicomponent interdiffu-
sion coefficients, we attempted to establish the cause of this
crystallization inhibition.

We found that the inhibition of crystallization was caused by
the inability of the quenched fluid to undergo compositional
changes needed for the formation of crystals. This link was
determined by studying the − diffusive mode predicted for the
ternary system from nonequilibrium thermodynamic theory.
The effective diffusion coefficient D− of this mode was
calculated independently from the Green-Kubo and Kirkwood-
Buff theories. It was found to decrease as the packing fraction
increased, showing that compositional relaxations become
increasingly slow at large colloidal particle densities.

The long-time decay of the colloidal particle intermediate
scattering function at low wave vector was dominated by
the − decay mode. In the stable liquid phase, D−(k) was
found to be wave-vector independent, while the amplitudes
had a maximum in the k → 0 limit and then decreased to
zero at a finite wave vector. This showed that in this phase,
compositional relaxations only contribute to small wave vector
(large wavelength) density relaxations.

A decrease of D− to negligible values at � ≈ 0.592 resulted
in an extreme slow-down in the long-time decay of the
intermediate scattering function. This was identified as the
glass transition packing fraction because above this density,
the system did not relax to its equilibrium crystal state within
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the simulation time window. Unlike in the stable fluid phase,
the amplitude of the − mode was observed to be nonzero for
large wave vectors above the glass transition packing fraction.
We interpret this emergence of the compositional relaxation
mode by stating that in order for the smaller wavelength density
fluctuations to decay at these packing fractions, large-scale
compositional rearrangements are now needed. However, the
compositional relaxation time has grown to the point where
the time it would take the system to relax to its equilibrium

crystal is well beyond the accessible simulation time, thus
crystallization is inhibited.
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