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Crossover from equilibration to aging: Nonequilibrium theory versus simulations
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Understanding glasses and the glass transition requires comprehending the nature of the crossover from the
ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to
the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol
of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features
of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium
self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the
abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming
liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due
to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite
waiting-time window, the simulations confirm the general trends predicted by the theory.
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I. INTRODUCTION

The amorphous solidification of glass- and gel-forming
liquids is a ubiquitous nonequilibrium process of enormous
relevance in physics, chemistry, biology, and materials sci-
ence and engineering [1]. In contrast with equilibrium crys-
talline solids, whose properties have no history dependence,
nonequilibrium amorphous solids may exhibit aging and
their properties actually depend on their preparation protocol
[2]. Although a long and rich theoretical discussion on this
subject has already lasted several decades, building a general
and fundamental framework that simultaneously predicts
the main universal signatures of these phenomena, as well
as their specific features reflecting the particular molecular
interactions and the concrete fabrication protocol involved,
remains “one of the most relevant challenges of condensed
matter” [3].

Within the last two decades great advances have been made
in the field of spin glasses, where a mean-field theory has
been developed [4] to describe nonequilibrium states. The
models involved, however, cannot describe the evolution of
the spatial structure of real [2] or simulated [5–7] structural
glass formers. On the other hand, mode coupling theory (MCT)
predicts [8,9] many of the experimentally observed features of
the initial slowdown of real and simulated supercooled liquids.
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As an equilibrium theory, however, it is unable to describe
nonequilibrium phenomena such as aging and predicts a
divergence of the α-relaxation time τα at a critical temperature
Tc, which is never observed in practice [2,10,11].

In recent years, however, a general unifying theory has
been developed, which might well provide the long-awaited
fundamental framework referred to above. This is the nonequi-
librium self-consistent generalized Langevin equation (NE-
SCGLE) theory [12]. This theory was built upon a nonstation-
ary extension [12] of Onsager’s general and fundamental laws
of linear irreversible thermodynamics and the corresponding
stochastic theory of thermal fluctuations [13–16], adequately
extended [17,18] to allow for the description of memory
effects and spatial nonlocality. From this general and abstract
formalism, and after a number of theoretical arguments and
approximations, the concrete but generic NE-SCGLE theory of
irreversible processes in liquids was derived. As summarized
below, this theory simultaneously predicts relevant universal
signatures of the glass and the gel transitions, as well as specific
features reflecting the particular molecular interactions of the
systems considered.

For example, for simple liquids with purely repulsive
interparticle interactions, the NE-SCGLE theory leads to a
simple and intuitive description of the nonstationary and
nonequilibrium process of formation of (high-temperature,
high-density) hard sphere (HS)–like glasses [19]. For model
liquids with repulsive plus attractive interactions, the NE-
SCGLE theory predicts a still richer and more complex
scenario, which also includes the formation of spongelike gels
and porous glasses by arrested spinodal decomposition [20]
at low densities and temperatures. The NE-SCGLE theory
has recently been extended to multicomponent systems [21]
and to systems of nonspherical particles [22,23], thus opening
the route to the description of more subtle and complex
nonequilibrium amorphous states of matter.
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Although these predicted scenarios are qualitatively con-
sistent with experimental observations, a more critical and
quantitative evaluation is required before this theory can gain
acceptance as a reliable microscopic nonequilibrium statistical
thermodynamic theory. Thus, the main purpose of the present
work is to carry out the first such systematic comparison, using
as a reference the results of the molecular dynamics (MD)
simulations in Ref. [7], which describe the equilibration and
aging of a polydisperse HS liquid. As shown below, within
the time window of the simulations, a remarkable quantitative
agreement is observed between the predicted scenario and the
simulation results.

This paper is structured as follows: The theoretical argu-
ments and approximations in which the NE-SCGLE theory
of irreversible processes is based are briefly summarized
in Sec. II. For simplicity, this summary focuses on the
original version of the NE-SCGLE theory, which describes the
structure and dynamics of monocomponent Brownian liquids.
However, in order to model the polydispersity as well as
the passage from short-time ballistic to long-time diffusive
dynamics involved in the MD simulations, we resort to the
molecular version of the recently developed multicomponent
NE-SCGLE theory [21]. To facilitate the reading of this paper,
however, the discussion of these general theoretical (but rather
technical) aspects is collected in Appendixes A–D. Thus,
Sec. III reports the main results of this work, which compares
the predicted scenario with the simulation results for the
crossover from equilibration to aging of a dense polydisperse
HS liquid. Finally, the main conclusions and a discussion of
possible directions for further work are reported in Sec. IV.

II. FUNDAMENTAL BASIS OF THE NE-SCGLE THEORY

As mentioned in Sec. I, the nonequilibrium self-consistent
generalized Langevin equation theory was derived as a generic
application of the nonequilibrium extension [12] of Onsager’s
theory of time-dependent thermal fluctuations. Here we briefly
review the main features of this abstract and general formalism
and the manner in which it becomes, in a particular application,
a generic theory of the nonequilibrium evolution of the
structure and dynamics of simple liquids.

A. From a general and abstract formalism
to a concrete but generic theory

For Onsager’s theory we mean the general and fundamental
laws of linear irreversible thermodynamics and the corre-
sponding stochastic theory of thermal fluctuations, as stated
by Onsager [13,14] and by Onsager and Machlup [15,16],
respectively, and as extended in Refs. [17,18] to allow for
the description of memory effects and spatial nonlocality. The
fundamental assumption of the nonequilibrium extension of
Onsager’s theory is that an arbitrary nonequilibrium slow
relaxation process may be described as a globally nonsta-
tionary, but locally stationary, stochastic process [19]. From
this assumption, the general time-evolution equation for the
nonstationary mean value ai(tw) and covariance σij (tw) ≡
δai(tw)δaj (tw) of the fluctuations δai(tw) = ai(tw) − ai(tw) of
the M macroscopic state variables [a1(tw),a2(tw), . . . ,aM (tw)]
are derived.

To apply this canonical formalism one has to define
which physical properties are represented by the abstract
state variables ai(tw). For example, if we have in mind a
monocomponent liquid formed by N particles in a volume
V , we may identify ai(tw) with the instantaneous number
Ni(tw) of particles in the volume �V = V/M of the ith cell
of an (imaginary) partitioning of the volume V into M cells
or, better, with the ratio ni(tw) ≡ Ni(tw)/�V , which in the
limit �V/V → 0 becomes the local particle concentration
profile n(r,tw). As explained in detail in Ref. [12], this leads to
concrete but generic (i.e., applicable to any monocomponent
liquid) time-evolution equations for the mean value n(r,tw)
and for the covariance σ (r,r′; tw) ≡ δn(r,tw)δn(r′,tw) of the
fluctuation δn(r,tw) = n(r,tw) − n(r,tw). The first of these
equations reads

∂n(r,tw)

∂tw
= D0∇ · b(r,tw)n(r,tw)∇βμ[r; n(tw)], (1)

whereas the second is written in terms of the Fourier transform
σ (k; r,tw) of the globally nonuniform but locally homogeneous
covariance σ (r,r + x; tw):

∂σ (k; r,tw)

∂tw
= −2k2D0n(r,tw)b(r,tw)E(k; n(r,tw))σ (k; r,tw)

+ 2k2D0n(r,tw) b(r,tw). (2)

In these equations D0 is the particles’ short-time self-diffusion
coefficient [24], b(r,tw) is their local reduced mobility, and
μ[r; n(tw)] is their chemical potential. E(k; n(r,tw)) is the
Fourier transform of E[r,r + x; n] ≡ [δβμ[r; n]/δn(r + x)].

Equations (1) and (2) above correspond to Eqs. (4.1) and
(4.3) in Ref. [12], which discusses other more specific theories
and limits that turn out to be contained as particular cases
of these equations. For example, let us imagine that we
manipulate the system to an arbitrary (generally nonequi-
librium) initial state with mean concentration profile n0(r)
and covariance σ 0(k; r), then letting the system equilibrate for
tw > 0 in the presence of an external field ψ(r) and in contact
with a temperature bath of temperature T . The solution of
Eqs. (1) and (2) then describes how the system relaxes to its
final equilibrium state, whose mean profile and covariance
are neq(r) and σ eq(k; r). Describing this response at the level
of the mean local concentration profile n(r,tw) is precisely
the aim of dynamic density functional theory [25–27], whose
central equation is recovered from Eq. (1) in the limit in which
we neglect the friction effects embodied in b(r,tw) by setting
b(r,tw) = 1 (see Eq. (15) in Ref. [25]).

The description of the nonequilibrium state of the system in
terms of the random variable n(r,tw) is not complete, however,
without the simultaneous description of the relaxation of
the covariance σ (k; r,tw) in Eq. (2). In fact, under some
circumstances, the main signature of the nonequilibrium
evolution of a system may be embodied not in the temporal
evolution of the mean value n(r; tw) but in the evolution of
the covariance σ (k; r,tw) (which is essentially a nonuniform
and nonequilibrium version of the static structure factor). This
may be the case, for example, when a homogeneous system
in the absence of external fields remains approximately ho-
mogeneous, n(r; tw) ≈ n ≡ N/V , after a sudden temperature
change. Under these conditions, the nonequilibrium process

022608-2



CROSSOVER FROM EQUILIBRATION TO AGING: . . . PHYSICAL REVIEW E 96, 022608 (2017)

is described only by the solution of Eq. (2). Let us point out
that in the limit b(tw) → 1 and within the small-wave-vector
approximation, E(k; n) ≈ E0 + E2k

2, Eq. (2) becomes the
basic kinetic equation describing the early stage of spinodal
decomposition (see, for example, Eq. (3.4) in Ref. [28]).

Equations (1) and (2) above are coupled through the
local mobility function b(r,tw), essentially a nonstationary
and state-dependent Onsager’s kinetic coefficient. In addition,
these two equations are also coupled, through b(r,tw), with
the two-point (van Hove) correlation function C(r,τ ; x; tw) ≡
δn(x,tw)δn(x + r,tw + τ ). According to Ref. [12], the memory
function of C(r,τ ; x; tw) can, in its turn, be written approxi-
mately in terms of n(r; tw) and σ (k; r,tw), thus introducing
strong nonlinear effects. Thus, even before solving Eqs. (1)
and (2), they reveal a number of relevant features of general
and/or universal character.

The most illuminating of them is that, besides
the equilibrium stationary solutions neq(r) and σ eq(k; r),
defined by the equilibrium conditions ∇βμ[r; neq] = 0 and
E(k; n(r,tw))σ (k; r,tw) = 1, Eqs. (1) and (2) also predict the
existence of another set of stationary solutions that satisfy the
dynamic arrest condition, limtw→∞ b(r,tw) = 0. This far-less-
studied second set of solutions, however, describes important
nonequilibrium stationary states of matter, corresponding to
common and ubiquitous nonequilibrium amorphous solids,
such as glasses and gels.

B. Spatial uniformity, a simplifying approximation

To best appreciate the essential physics of this fundamental
and universal prediction of Eqs. (1) and (2), we provide
explicit examples. To do this without a high mathematical cost,
however, let us write n(r,tw) as n(r,tw) = n(tw) + �n(r,tw),
and in a first stage let us neglect the spatial heterogeneities
represented by the deviations �n(r,tw). As a result, rather than
solving the time-evolution equation for n(r; tw), we have that
n(tw) now becomes a control parameter, so that we only have to
solve the time-evolution equation for the covariance σ (k,r; tw).
We may consider, for example, the specific case in which
the system is constrained to remain isochoric and spatially
homogeneous [n(r; tw) ≈ n ≡ N/V ] after an instantaneous
temperature quench at time tw = 0, from an arbitrary initial
temperature to a lower final temperature T . For this process,
the time-evolution equation for the Fourier transform σ (k; tw)
of the covariance σ (r,r′; tw) = σ (| r − r′ |; tw) can be written,
for tw > 0 and in terms of the nonstationary static structure
factor S(k; tw) ≡ σ (k; tw)/n, as

∂S(k; tw)

∂tw
= −2k2D0b(tw)nEf (k)[S(k; tw) − 1/nEf (k)],

(3)

in which Ef (k) = E(k; n,Tf ) is the Fourier transform of the
functional derivative E[| r − r′ |; n,T ] ≡ [δβμ[r; n]/δn(r′)]
of the chemical potential μ, evaluated at n(r) = n and T = Tf .

It is important to mention that the solution of this equation
yields, in principle, S(k; tw) as output, for a given b(tw)
provided as input. This calls for an independent relationship
between these two unknowns, which may have the format of
an equation (or system of equations) that accepts S(k; tw) as
input and yields b(tw) as output. This is precisely the role of the

following set of equations. The first of them is an expression
for the time-evolving mobility b(tw),

b(tw) = [1 +
∫ ∞

0
dτ�ζ ∗(τ ; tw)]−1, (4)

in terms of the tw-evolving, τ -dependent friction coefficient
�ζ ∗(τ ; tw), which can be approximated by [12]

�ζ ∗(τ ; tw) = D0

24π3n

∫
dk k2

[
S(k; tw) − 1

S(k; tw)

]2

× F (k,τ ; tw)FS(k,τ ; tw). (5)

In this equation τ is the correlation time and tw is the
waiting (or evolution) time. F (k,τ ; tw) and FS(k,τ ; tw) are, re-
spectively, the collective and self nonequilibrium intermediate
scattering functions, whose respective memory functions are
approximated to yield the following approximate expressions
for the Laplace transforms F̂ (k,z; tw) and F̂S(k,z; tw):

F̂ (k,z; tw) = S(k; tw)

z + k2D0S−1(k;tw)
1+λ(k;tw) �ζ̂ ∗(z;tw)

(6)

and

F̂S(k,z; tw) = 1

z + k2D0

1+λ(k;tw) �ζ̂ ∗(z;tw)

. (7)

In these equations λ(k) is a phenomenological “interpolating
function” [12], given by

λ(k; tw) = 1/[1 + (k/kc(tw))2], (8)

with kc(tw) being an empirically chosen cutoff wave vector.
Equations (5)–(8) are the nonequilibrium extension of

the corresponding equations of the equilibrium SCGLE the-
ory, which is recovered in the long-tw stationary limit in
which S(k; tw → ∞) → S(eq)(k) ≡ 1/nEf (k). The derivation
of these equations in Ref. [12] also extends to nonequi-
librium conditions the same approximations and assump-
tions employed in the original derivation of the equilibrium
SCGLE theory [29]. This extension is quite natural within the
framework of the nonequilibrium generalization of Onsager’s
theory but not in the context of the Mori-Zwanzig formalism
[30], which is deeply rooted in the equilibrium condition.

Coupling Eqs. (3) and (4) with Eqs. (5)–(8) results in
an NE-SCGLE closed system of equations that must be
solved self-consistently. Thus, the simultaneous solution of
Eqs. (3)–(8) above constitutes the NE-SCGLE description
of the spontaneous evolution of the structure and dynamics
of an instantaneously and homogeneously quenched mono-
component liquid. The only element that we still have to
determine is the empirically chosen cutoff wave vector kc(tw).
For simplicity, we define this parameter in reference to the
position of the main peak of S(k; tw), in the identical manner
in which the cutoff wave vector k

eq
c of the equilibrium SCGLE

theory is defined with reference to the position of the main peak
of S(eq)(k). In this manner, the NE-SCGLE theory becomes a
self-consistent theory with no adjustable parameters.
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C. General physical insights revealed
by the NE-SCGLE equations

Being a particular case of Eq. (3), the most relevant
and general physical insight provided by Eq. (3) is the
NE-SCGLE prediction of the existence of two fundamen-
tally different kinds of stationary solutions, implying the
existence of two fundamentally different kinds of states of
matter. The first corresponds to ordinary thermodynamic
equilibrium states, in which stationarity is attained because
the factor [S(k; tw) − 1/nEf (k)] on the right-hand side of
Eq. (3) vanishes, i.e., because S(k; tw) is able to reach its
thermodynamic equilibrium value S(eq)(k; n,Tf ) = 1/nEf (k),
while the mobility b(tw) attains a finite positive long-time
limit bf .

Under these conditions, one can estimate the equilibration
time t

eq
w (n,Tf ) of a quench to a final temperature Tf at a fixed

density n (or fixed volume fraction φ) as the waiting time
such that the difference between S(kmax; tw) and its asymptotic
equilibrium value S(eq)(kmax; n,Tf ) is sufficiently small, say
[S(kmax; tw) − Sf (kmax)] ≈ e−5. Thus, according to the solu-
tion of Eq. (3), the condition defining t

eq
w (φ) is [S(kmax; teq

w ) −
Sf (kmax)] = exp[−2k2D0u(teq

w )/Sf (kmax)] ≈ exp[−5], where
u(tw) ≡ ∫ tw

0 b(t ′w)dt ′w. Since for long waiting times u(tw) ∝
bf tw, later in this paper we estimate t

eq
w (φ) as

teq
w (n,Tf ) ≈ 5S(eq)(kmax; n,Tf )/2k2

maxD
0bf , (9)

where D0bf = D
(eq)
L (n,Tf ) is the equilibrium long-time self-

diffusion coefficient at the final state point (n,Tf ). This
equilibration time is predicted to increase when bf decreases
and to diverge as 1/bf when the state point (n,Tf ) approaches
the ergodic-nonergodic transition line. This means that already
in the ergodic neighborhood of this boundary one should
experience enormous difficulties in equilibrating the system
within practical experimental times.

The second class of stationary solutions of Eq. (3) emerges
from the possibility that the long-time asymptotic limit of the
kinetic factor b(tw) vanishes, so that dS(k; tw)/dtw vanishes at
long times without requiring the fulfillment of the equilibrium
condition [S(k; tw) − 1/nEf (k)] = 0. Under these conditions
S(k; tw) will now approach a distinct nonequilibrium stationary
limit, denoted by Sa(k), which is definitely different from the
expected equilibrium value Sf (k) = S(eq)(k; n,Tf ). Further-
more, the difference [S(k; tw) − Sa(k)] is predicted to decay to
0 in an extremely slow fashion, namely, as t−0.833

w [19]. This
second class of stationary solutions represents dynamically
arrested states of matter (glasses, gels, etc.). The properties of
these stationary but intrinsically nonequilibrium states, such as
Sa(k), are predicted to be strongly dependent on the preparation
protocol (in our example, on Ti and Tf ). Furthermore, due to
the extremely slow approach to its asymptotic limit, no matter
how long we wait, any finite-time measurement will only
record the nonstationary, tw-dependent value of the measured
properties [S(k; tw), F (k,τ ; tw), FS(k,τ ; tw), etc.].

Although the NE-SCGLE system of equations (5)–(8) is
highly nonlinear, changing the variable from tw to u(tw) ≡∫ tw

0 b(t ′w)dt ′w rewrites Eq. (3) as a linear relaxation equation

for S∗(k; u),

∂

∂u
[S∗(k; u) − Sf (k)] = −α(k)[S∗(k; u) − Sf (k)], (10)

with α(k) ≡ 2k2D0/Sf (k). The solution of Eq. (3) can thus be
written as S(k; t) = S∗(k; u(t)), with

S∗(k; u) = Sf (k) + [Si(k) − Sf (k)]e−α(k)u. (11)

It also predicts [19] that the nonlinearity is actually
encapsulated in the time dependence of the “internal” (or
“material”) time u(tw), in full consistency with the phe-
nomenological model of aging of Tool and Narayanaswamy
[31,32], commonly used to model aging and to fit a large
number of experimental data [33–35]. We thus conclude that
the NE-SCGLE theory captures this intriguing and relevant
universality and casts it in a more fundamental and precise
first-principles physical context.

III. CROSSOVER FROM ERGODIC EQUILIBRATION
TO NONEQUILIBRIUM AGING OF A POLYDISPERSE

HARD-SPHERE LIQUID

In this section we discuss the quantitative test of a third
general insight of the NE-SCGLE theory. This refers to
the nature of the high-density hard-sphere glass transition.
According to the scenario predicted by the NE-SCGLE
theory, the discontinuous and singular transition predicted by
equilibrium theories (such as MCT or the equilibrium SCGLE
theory) for the hard-sphere liquid is intrinsically correct but
essentially unobservable in practice. This is due to the fact
that such theories predict the divergence of the equilibrium
α-relaxation time τ

(eq)
α (φ) at the critical volume fraction φa

(and that it remains infinite for φ � φa). Of course, if τ
(eq)
α (φ)

becomes infinite, it is reasonable to conjecture that also the
equilibration time t (eq)(φ) (i.e., the time it takes the system
to equilibrate after preparation) must also be infinite. If this
conjecture is correct, then the predicted diverging equilibrium
scenario will not be amenable to experimental tests, due to the
unavoidable constraint of any real experiment or measurement
to be limited to finite time windows.

Let us mention that the previous scenario, in which the
control parameter is the volume fraction φ, is also expected to
hold almost without change when we consider a sequence
of quenches from a common initial temperature T0 to a
final temperature T along the same isochore. In this case,
the control parameter is the temperature T , with its inverse
1/T playing the role of the volume fraction φ in the present
discussion. This φ ↔ 1/T correspondence has been predicted
by the equilibrium SCGLE theory (see Ref. [36]) and by
the present nonequilibrium extension (separate paper). It is
a fact, however, that in any real experiment (or simulation)
one indeed determines the “real” experimental value τα(φ; tw)
[or τα(1/T ; tw)] of the α-relaxation time. In general, however,
this measured value τα(tw) will depend on the waiting time tw
after preparation, thus being a nonequilibrium property that
cannot be predicted by an equilibrium theory. The power of
the NE-SCGLE theory is precisely that it provides a detailed
prediction of the nonequilibrium evolution of the system
at any finite evolution time tw, thus shifting the attention
from unobservable infinite-time equilibrium singularities to
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the finite-tw nonequilibrium properties actually measured in
practice, such as τα(tw)

These are precisely the predictions that we mean to test
quantitatively with the following comparisons. In the particular
simulations un Ref. [7], a hard-sphere liquid was driven
to a nonequilibrium state by means of an effective sudden
compression protocol to a final density n corresponding to the
desired volume fraction φ = πnσ 3/6. This protocol is used to
generate an ensemble of configurations representative of such
nonequilibrium state, characterized by a well-defined initial
static structure factor S0(k; φ). These representative configu-
rations are then taken as the initial condition of an ensemble of
standard MD simulation runs describing the nonequilibrium
structural relaxation leading to the equilibration (or aging)
of the system. This nonequilibrium transient is the subject
of study of these simulations (in contrast with ordinary
equilibrium simulations, in which this stage is discarded).

The theoretical modeling of the same transient is provided
by the simultaneous solution of Eqs. (3)–(8) above, after
complementing Eq. (3) with the initial condition S(k; t =
0) = S0(k; φ) and after determining the thermodynamic func-
tion Ef (k) = E(k; n,Tf ) evaluated at the final state point
of the quench. In the present case this corresponds to
setting nEf (k) = nEHS(k; φ) = 1/S

(eq)
HS (k; φ), for which we

use Percus-Yevick’s approximation [37] with its Verlet-Weis
correction [38]. For the initial nonequilibrium structure factor
S0(k; φ) we could use directly the result of the simulated
nonequilibrium preparation protocol described in the previous
paragraph.

Alternatively, we could theoretically model this nonequilib-
rium structure factor by the equilibrium structure factor of the
hard-sphere liquid, S

(eq)
HS (k; φi), at an “initial” volume fraction

φi , chosen such that the structural and/or dynamical properties
of this equilibrium HS liquid are similar to those of the
nonequilibrium state generated by the actual nonequilibrium
preparation protocol. In fact, due to the dynamical equivalence
between soft- and hard-sphere liquids, we could model S0(k; φ)
by the equilibrium static structure factor S(eq)(k; ni,Ti) of
any soft-sphere liquid included in the hard-sphere dynamic
universality class [36,39], provided that the density ni and
temperature Ti are chosen such that the structural and/or
dynamical properties match those of the previously defined
hard-sphere liquid, S(eq)(k; ni,Ti) ≈ S

(eq)
HS (k; φi).

In practice, however, the scenario predicted by the solution
of Eqs. (3)–(8) is virtually independent of the specific
manner of modeling the initial nonequilibrium structure factor
S0(k; φ). Thus, in the results that follow, we approximated
S0(k; φ) by the equilibrium static structure factor S(eq)(k; φi,Ti)
of a polydisperse fluid of soft spheres of diameter σ whose
interactions are modeled by the Weeks-Chandler-Andersen
pair potential. In this way, the process starts with the system
initially in a fluidlike state at temperature Ti = 0.06[ε/kB ] and
the same volume fraction φ of the simulated HS liquid, and at
tw = 0, the temperature is instantaneously lowered to a final
value Tf = 0 at which the expected equilibrium state is that of
a polydisperse HS liquid at volume fraction φ.

Figure 1 illustrates the simplest and most straightforward
comparison between the NE-SCGLE theoretical predictions
and the simulation results for nonequilibrium isochoric

FIG. 1. Nonequilibrium evolution of the structure and dynamics
of a hard-sphere liquid in the process of its isochoric equilibration
at fixed volume fraction φ = 0.58 according to the (MD) nonequi-
librium simulations (symbols) and to the NE-SCGLE theory (solid
lines). (a) Snapshots of S(k,tw) as a function of k, with a zoom at the
main peak in the inset, for the indicated sequence of waiting times.
(b) Corresponding snapshots (from left to right) of FS(k,τ ; φ,tw) plot-
ted as a function of the correlation time τ at fixed kσ = 7.1. Inset: The
α-relaxation time τα(tw,φ), scaled as τ ∗

α (tw,φ) ≡ k2D0τα(kσ ; tw,φ),
as a function of the evolution time tw , for this equilibration process.
The dark circle is the equilibration point (t eq

w ,τ ∗ eq
α ).

evolution at a fixed φ = 0.58 of the HS liquid, in terms
of S(k; tw) and of the nonequilibrium self intermediate
scattering function FS(k,τ ; tw) (≡ 〈exp[ik · �R(tw)]〉, with
�R(tw) = R(tw + τ ) − R(tw) being the displacement of a
tagged particle). This comparison involves a sequence of
snapshots of S(k; tw) as a function of k [Fig. 1(a)] and of
FS(k = 7.1σ−1,τ ; tw) as a function of the correlation time τ

[Fig. 1(b)], corresponding to the sequence of waiting times
tw = 100, 101, 102, 103, 104, and 105 (in molecular time
units, [σ

√
M/kBT ]).

These results illustrate that simulations and theory agree in
that no dramatic changes are observed in the evolution of the
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structure, except for the modest increase in the main peak of
S(k; tw), zoomed in on the inset in Fig. 1(a). In contrast, the
dynamics does exhibit a remarkable slowing-down, occurring
within an “equilibration” time t

eq
w (φ). The kinetics of this

equilibration process is best summarized by the tw dependence
of the nonequilibrium α-relaxation time τα(tw,φ), defined
here by the condition FS(k = 7.1σ−1,τα; tw,φ) = 1/e and
illustrated in the inset in Fig. 1(b) for the equilibration process
of the HS liquid at φ = 0.58.

At this point let us recall that, in order to prevent
crystallization, the MD simulations in the figures actually
correspond to an 8.66% (size) polydisperse HS liquid. To take
this fact into account properly, the solid lines in Fig. 1 actually
correspond to the solution of the NE-SCGLE equations for
a polydisperse HS liquid, modeled as an equimolar binary
mixture with a size ratio yielding a polydispersity of 8.66%.
Similarly, to properly compare the NE-SCGLE theoretical
predictions (originally derived for Brownian, rather than
molecular, liquids) with the present MD simulation data, we
applied the long-time dynamic equivalence between Brownian
and molecular systems proposed in Ref. [40], to adapt the
NE-SCGLE theory to liquids with underlying molecular
microscopic dynamics. This allows us to compare on an
equal footing the theoretically predicted results with the
simulated dynamics of the atomic liquid. These methodolog-
ical aspects of our theoretical calculations are explained in
Appendixes A–C.

By extending the calculations and comparisons in Fig. 1(b)
to a sequence of other volume fractions in the metastable
region of the HS liquid, a more panoramic view emerges of
the consistency of the scenarios revealed by theory versus
by simulations. The results are presented in Fig. 2, which
illustrates the extent of the consistency between the main
qualitative features of the predicted and those of the simulated

FIG. 2. Nonequilibrium molecular dynamics simulations (sym-
bols) and NE-SCGLE theoretical results (solid lines, equilibration;
dot-dashed lines, aging processes) for the α-relaxation time τ ∗

α (tw,φ),
plotted as a function of the evolution time tw for a sequence of
fixed volume fractions. Asterisks represent the equilibration points
[(t eq

w (φ),τ ∗ eq
α (φ)] and the dashed line passing through them is the

power-law fit τ ∗ eq
α (φ) = 2.8 × [t eq

w (φ)]0.96.

scenario. For example, in both we see that when the fixed vol-
ume fraction is smaller than 0.582, the system will equilibrate
within a φ-dependent equilibration time t

eq
w (φ) determined by

Eq. (9). This equilibration time strongly increases with φ, in
a very similar manner as the equilibrium value τ

eq
α (φ) of the

α-relaxation time. In fact, as can be gathered from the asterisks
in the figure, our theory predicts that t

eq
w (φ) ∝ [τ eq

α (φ)]η, with
η ≈ 1 (rather than η ≈ 1.43, as determined in the simulations
[7,41]).

For φ � 0.582, the NE-SCGLE theory agrees with its
equilibrium version (and with mode coupling theory) in the
prediction that τ

eq
α (φ), and hence also t

eq
w (φ), is infinite.

This prediction cannot be refuted or demonstrated, since in
practice one can only measure finite τ ∗

α (tw,φ) at finite waiting
times, within finite correlation time windows. Such finite
measurements, however, constitute a stringent and valuable
test of the NE-SCGLE theory, which always predicts a finite
value for τ ∗

α (tw,φ) at any finite tw. The result of this test
is illustrated in Fig. 2, with the four irreversible processes
occurring at fixed volume fractions in the nonergodic regime
φ � 0.582 (represented by filled symbols).

For these processes we observe an excellent quantitative
agreement with the simulation data for tw � 103 but notice-
able deviations at longer tw. The origin of these deviations
might lie in the intrinsic inaccuracies of the approximations
involved in the NE-SCGLE theory and/or in the difficulties to
simulate the relaxation of a genuine nonergodic system. For
example, for simplicity, our theory approximates the mean
local density n(r; tw) by its bulk value n, thus neglecting
structural and dynamical heterogeneities. From the simulation
side, the nonequilibrium ensemble employed (see details in
Appendix D) involved at least 40 realizations and 1024
particles. Although this is perfectly adequate for a conventional
equilibration process, it is perhaps insufficient at long waiting

FIG. 3. Same as Fig. 2, but here τ ∗
α (tw,φ) is plotted as a function of

φ for fixed times tw = 100, 101, 102, 103, 104, and 105 (from bottom
to top; the dashed line corresponds to tw = ∞). In this case, the
dark asterisks indicate the (theoretical) tw-dependent volume fraction
φc.o.(tw), which describes the crossover from fully equilibrated
to insufficiently equilibrated conditions. Inset: Comparison of the
predicted (asterisks) and simulated (circles) results for φc.o.(tw).
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times in the true nonergodic regime, as φ increases far above
φc ≈ 0.582.

Although these limitations of the theory and of the simula-
tions must be the subject of more detailed and systematic study,
the comparison in Fig. 2 is highly instructive and revealing,
since it provides a kinetic conceptual framework in which
to discuss the nature of the processes of equilibration and
aging. To illustrate this, let us now plot the α-relaxation time
τ ∗
α (tw,φ) as a function of φ for a sequence of fixed waiting

times. Figure 3 illustrates that theory and simulations coincide
in that the plot of τ ∗

α (tw,φ) as a function of φ for a given fixed
waiting time tw exhibits two regimes. The first corresponds to
samples that have fully equilibrated within this waiting time
[φ � φc.o.(tw)], and the second corresponds to samples for
which equilibration is not yet complete [φ � φc.o.(tw)]. The
rather loose boundary between these two regimes defines a
crossover volume fraction denoted φc.o.(tw), illustrated by the
asterisks in Fig. 3, which increases with t but seems to saturate
to the value φc ≡ φc.o.(tw → ∞) ≈ 0.582 determined by the
equilibrium SCGLE theory, as indicated in the inset.

IV. CONCLUSIONS

In summary, from the theoretical and simulated nonequi-
librium results compared in Figs. 1(b) and 3 we can infer
some important conclusions but also identify several equally
relevant issues left open for further discussion. For example,
the comparison in Fig. 1(b) confirms that, at least within the
window of waiting times considered, the NE-SCGLE theory
captures the correct kinetics of the simulated dynamic arrest
transition. This applies particularly to the characteristic feature
of the aging of glassy materials observed in the nonequilibrium
simulations, namely, the progressive development with the
waiting time tw, of the two-step decay of FS(k,τ ; tw) with the
correlation time τ . Second, the kinetic perspective provided by
the nonequilibrium simulations and by the NE-SCGLE theory
defines a useful additional conceptual tool to describe some
aspects of the glass transition in model HS liquids. For ex-
ample, the “equilibrated-to-nonequilibrated” crossover in the
tw dependence of τ ∗

α (tw,φ) in Fig. 3 could also be interpreted
as a “fragile-to-strong” dynamic crossover that changes with
the age of the system [42]. This opens the question of the
relevance of this NE-SCGLE scenario in the understanding of
this actual experimental fragile-to-strong dynamic crossover
phenomena observed in many molecular glass-formers [42].
This discussion is facilitated by the NE-SCGLE theory,
adapted here to polydisperse or multicomponent atomic liquids
but still requiring extension to thermal protocols involving
finite cooling rates.

For the time being, however, the qualitative and quantitative
agreement in the comparison in Fig. 2 illustrates the overall
consistency between the general scenario observed in the
simulations and that predicted by the NE-SCGLE theory.
This quantitative test, together with the qualitative consistency
with experimental observations of the recently predicted NE-
SCGLE scenario of dynamically arrested spinodal decompo-
sition, provides encouraging evidence of the pertinence and
accuracy of this theoretical approach for the description of
nonequilibrium dynamic arrest phenomena.
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APPENDIX A: MULTICOMPONENT EXTENSION
OF THE NE-SCGLE THEORY (REVIEW OF REF. [21])

The extension of the NE-SCGLE theory to a multicom-
ponent liquid was developed in Ref. [21]. The structural and
dynamical properties of a multicomponent liquid are written
in terms of the partial static structure factors Sαβ(k; tw) and
partial (collective and self) intermediate scattering functions,
Fαβ(k,τ ; tw) and FS

αβ(k,τ ; tw), of the binary mixture. The
determination of these partial properties involves the solution
of the multicomponent version [21] of Eqs. (3)–(8) above.

For an s-component mixture, these equations are

∂S(k; tw)

∂tw
= −k2D0 · b(tw) · [

√
n · E(k; n,Tf ) · √

n]

·S(k; tw) − S(k; tw) · [
√

n · E(k; n,Tf ) · √
n]

·b(tw) · D0k2 + 2k2D0 · b(tw), (A1)

with
√

n being a s × s diagonal matrix whose αth
diagonal element is

√
nα and in which the element

Eαβ(k; n,Tf ) of the matrix E(k; n,Tf ) is the Fourier
transform of the functional derivative Eαβ[r − r′; n,T ] ≡
[δβμα[r; n,T ]/δnβ (r′)] = δ(r − r′)/nα(r) − c

(2)
αβ [r,r′; n,T ]

evaluated at the (fixed) composition n = (n1, . . . ,ns) and final
temperature Tf of the quenched system, with c

(2)
αβ [r,r′; n,T ]

being the direct correlation function. The nonzero elements of
the s × s diagonal matrices D0 and b(tw) are, respectively, the
short-time self-diffusion coefficients D0

α and time-dependent
mobility functions bα(tw) of species α. The latter is written as

bα[τ ; tw] =
[

1 +
∫ ∞

0
dτ�ζ ∗

α [τ ; tw]

]−1

, (A2)

with �ζ ∗
α [τ ; tw] approximated by

�ζ ∗
α (τ ; tw) = D0

α

3(2π )3

∫
dk k2[FS(τ )]αα

× [h · √
n · S−1 · F (τ ) · S−1 · √

n · h]αα.

(A3)

In this equation the matrix h is given by h = √
n

−1 · (S −
I ) · √

n
−1

and we have systematically omitted the arguments
k and tw of the s × s matrices h(k; tw), S(k; tw), F (k,τ ; tw),
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and FS(k,τ ; tw). Finally, the time-evolution equations for
F (k,τ ; tw) and FS(k,τ ; tw) in Laplace space read

F̂ (k,z; tw) = {zI + k2D0 · [zI + λ(k; tw) · �ζ̂ ∗(z; tw)]−1

·S−1(k; tw)}−1 · S(k; tw) (A4)

and

ˆFS(k,z; tw)

= {zI + k2D0 · [zI + λ(k; tw) · �ζ̂ ∗(z; tw)]−1}−1, (A5)

where F̂ (k,z; tw) and F̂ S(k,z; tw) are the Laplace transforms of
the collective and self partial intermediate scattering functions
Fαβ(k,τ ; tw) and FS

αβ(k,τ ; tw), and λ(k; tw) is a diagonal matrix
whose nonzero elements λαα(k; tw) are given by

λαα(k; tw) = 1/
[
1 + (

k/kc
α(tw)

)2]
. (A6)

Equations (A1)–(A6) constitute the essence of the nonequi-
librium self-consistent generalized Langevin equation theory
describing the irreversible isochoric relaxation of a suddenly
quenched liquid mixture with underlying Brownian or diffu-
sive short-time microscopic dynamics.

APPENDIX B: MOLECULAR ADAPTATION
(FOLLOWING REF. [40])

The theoretical predictions presented and discussed in the
present paper involve one additional correction, namely, the
introduction of a simple interpolating device to incorporate
the correct short-time ballistic limit of the dynamics of atomic
liquids in the NE-SCGLE dynamic properties [illustrated in
Fig. 1(b)]. This correction does not affect the essential features
of the predicted long-time dynamics associated with the glass
transition. However, it is needed to compare the theory,
developed for Brownian liquids with underlying short-time
diffusive microscopic dynamics, with the results of molecular
dynamics simulations, whose short-time dynamics is ballistic.
This issue is thus not inherent to the nonequilibrium nature
of the NE-SCGLE theory, and in fact, it has recently been
discussed in more detail in Ref. [40] in the context of the
equilibrium SCGLE theory. In the present work we assume that
exactly the same arguments and approximations apply when
adapting the NE-SCGLE theory of multicomponent Brownian
liquids, summarized in the previous section [Eqs. (A1)–(A6)],
to the description of the dynamics of multicomponent atomic
liquids.

In essence, following Ref. [40], we use the fact that
the NE-SCGLE equations [Eqs. (A1)–(A6)] also describe
the nonequilibrium dynamics of the atomic mixture in the
long-time diffusive regime and that a simple manner of
interpolating between the correct short-time ballistic and
the correct long-time difusive behavior is provided by the
interpolating expressions in Eqs. (4.4)–(4.6) in Ref. [40].
In the present nonequilibrium context, the first of these
equations is an integro-differential equation for the mean

square displacement W (molec)
α (τ ; tw),

Mα

ζ 0
α

dW (molec)
α (τ ; tw)

dτ
+ W (molec)

α (τ ; tw)

= D0
ατ −

∫ τ

0
�ζ ∗

α (τ − τ ′; tw)W (molec)
α (τ ′; tw)dτ ′, (B1)

where Mα is the mass and ζ 0
α = kBT /D0

α , with D0
α being the

short-time self-diffusion coefficient of the αth atomic species
and T being the final temperature of the quench.

The solution of this equation for W (molec)
α (τ ; tw) satisfies the

correct short-time ballistic limit. Introduced in the format of a
Gaussian approximation, it guarantees the correct short-time
ballistic limit of the collective and self intermediate scattering
functions. To use this fact we follow Eqs. (4.5) and (4.6) of
Ref. [40], which in our non-equilibrium context are written
as the following approximate interpolating expressions for the
s × s matrices F (molec)(k,τ ; tw) and F

(molec)
S (k,τ ; tw):

F (molec)(k,τ ; tw)

= F (k,τ ; tw) − {S(k,tw) · exp[−k2W (molec)(τ ; tw)

·S−1(k,tw)] − F (k,τ ; tw)} · exp[−Zτ ] (B2)

and

F
(molec)
S (k,τ ; tw) =FS(k,τ ; tw) + {exp[−k2W (molec)(τ ; tw)]

− FS(k,τ ; tw)} · exp[−Zτ ]. (B3)

In these (s × s) matrix equations, the diagonal matrices
W (molec)(τ ; tw) and Z have diagonal elements W (molec)

α (τ ; tw)
and Zα ≡ (ζ 0

α /Mα), respectively.
The resulting molecular version of the multicomponent

NE-SCGLE theory is thus contained in Eqs. (A1)–(A6) plus
Eqs. (B1)–(B3). The solution of these equations provides a
first-principles description of the main dynamic properties of
a simple molecular liquid mixture. In a specific application,
we start by solving Eqs. (A1)–(A6) to determine �ζ ∗(τ ; tw),
F (k,τ ; tw), and FS(k,τ ; tw). These functions describe the
short-τ diffusive dynamics of Brownian, not molecular liquids.
To incorporate the correct short-time ballistic limit, we employ
these functions as input of Eqs. (B1)–(B3), thus evaluating
F (molec)(k,τ ; tw), F

(molec)
S (k,τ ; tw), and W (molec)

α (τ ; tw). These
functions describe the predicted NE-SCGLE dynamics of our
atomic or molecular mixture. There, however, we have omitted
the superscript (molec), only employed here for clarity of the
present summary.

APPENDIX C: MODELING POLYDISPERSITY:
THE ATOMIC HARD-SPHERE LIQUID

In order to actually practice the protocol outlined in the
last paragraph to solve the NE-SCGLE Eqs. (A1)–(B3), there
are still a few elements that await a more accurate definition.
We refer to the short-time self-diffusion coefficients D0

α , to
the cutoff wave vectors kc

α(tw) entering in the interpolating
functions in Eq. (A6), and to the matrix E(k; n,Tf ). These
elements, however, are system dependent and, hence, must
be determined in the context of the concrete model system
studied. Thus, let us now address this issue in the context
of the monocomponent (but polydisperse) hard-sphere (HS)
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liquid discussed in the paper. This system is modeled in
the simulations as a monocomponent but polydisperse HS
liquid with HS diameters subjected to a continuous uniform
distribution yielding a polydispersity of 8.66 %.

In the theoretical modeling we approximate this uniform
distribution by a binodal distribution yielding the same
polydispersity, i.e., as an equimolar binary HS mixture
with diameters σ1 = (1 − ε) and σ2 = (1 + ε), with ε =
0.0866. Hence, the structural and dynamic properties of the
resulting bidisperse liquid, S(k; tw) = ∑2

α,β=1
√

xαxβSαβ

(k; tw), F (k,τ ; tw) = ∑2
α,β=1

√
xαxβFαβ(k,τ ; tw), and FS(k,τ ;

tw) = ∑2
α=1 xαF S

α (k,τ ; tw), are written in terms of the
partial static structure factors Sαβ(k; tw) and partial (collective
and self) intermediate scattering functions, Fαβ(k,τ ; tw) and
FS

αβ(k,τ ; tw), of the binary mixture.
The determination of D0

α , kc
α(tw), and E(k; n,Tf ) must

be made at the level of the equilibrium version of the
theory. For this we mean the long-tw asymptotic limit of
Eqs. (A1)–(B3), in which the matrix S(k; tw) has reached
the equilibrium stationary solution of Eq. (A1), namely,
S(k; tw → ∞) ≡ Seq(k; n,Tf ) = [

√
n · E(k; n,Tf ) · √

n]−1. In
this limit, Eqs. (A3)–(B3) become a closed system of equations
for the equilibrium dynamic properties F eq(k,τ ), F eq

S (k,τ ), and
W

eq
α (τ ), given Seq(k; n,T ) as input. This equilibrium theory

was developed in Ref. [40] and applied there to the prediction
of the equilibrium properties of the same polydisperse hard-
sphere liquid discussed in this work. For this, the assumption
was made that

D0
1 ≈ D0

2 ≈ D0 ≡ 3

8

(
kBT

πM

)1/2 1

nσ̄ 2
, (C1)

and the equilibrium partial static structure factors S
eq
αβ(k) were

provided by their Percus-Yevick-Verlet-Weis approximation
[37,38], adapted to multicomponent fluids in Ref. [43]. Then
the cutoff wave vectors kc

α were written as kc
α = 1.119kmax

α ,
with kmax

α being the position of the main peak of S
eq
αα(k).

Going back to the full nonequilibrium theory employed
in this work, in the NE-SCGLE Eqs. (A1)–(B3), we adopt
the same equilibrium definition of D0

α in Eq. (C1), whereas
the matrix E(k; n,Tf ) needed as input in these equations
is determined by the equilibrium condition E(k; n,Tf ) =
[
√

n · Seq(k; n,Tf ) · √
n]−1, with Seq(k; n,Tf ) also approxi-

mated by its multicomponent Percus-Yevick-Verlet-Weis ap-
proximation [37,38,43]. As for the cutoff wave vector kc(tw),
we also adopt the equilibrium prescription, so that kc(tw) =
1.119 × kmax

α (tw), with kmax(tw) being the the position of the
main peak of S(k,tw).

APPENDIX D: NONEQUILIBRIUM MOLECULAR
DYNAMICS SIMULATIONS

In this work we performed nonequilibrium molecular dy-
namics (NE-MD) simulations to describe the nonequilibrium
structural and dynamical evolution of a polydisperse hard-
sphere system in the metastable regime close to the glass
transition. Our NE-MD simulation data are produced using
event-driven simulations and following the same methodology

FIG. 4. Nonequilibrium evolution of the dimensionless α-
relaxation time, displayed as τ ∗

α (k = 7.1; tw), corresponding to the
equilibration processes at fixed volume fractions: (a) φ = 0.55; (b)
φ = 0.575.

explained in Ref. [7]. We have used polydisperse samples
whose diameters are evenly distributed between σ (1 − w/2)
and σ (1 + w/2), with σ being the mean diameter. In this
study, as in the previous work, we have considered the case
w = 0.3, corresponding to a polydispersity sσ = w/

√
12 =

0.0866. The initial configurations are prepared by placing N

soft spheres at completely random positions in a cubic cell
of volume V , interacting through a short-ranged repulsive
soft (but increasingly harder) interaction and in the presence
of strong dissipation, and all the particles are assumed to
have the same mass M . These nonthermalized hard-sphere
configurations are then given random velocities taken from
a Maxwell-Boltzmann distribution, with kBT set as the
energy unit, and are used as the starting configurations
for the event-driven simulations. All results are shown in
reduced units, i.e., length in units of σ and time in units of
σ
√

M/kBT .
With the purpose of completing our study about the

equilibration and aging of a polydisperse HS liquid, which
is described in Ref. [7], we investigate the finite-size effect on
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the nonequilibrium structural and dynamical evolution of the
polydisperse system. We have run simulations over systems
of N = 1024, 2048, 4096, and 8192 spheres, and with the
intention of generating a reasonable number of simulation
runs, we have run at least 40 independent realizations for an
array of volume fractions between 0.55 and 0.58.

Our main conclusions are as follows: First, the results
obtained do not show a significant dependence on the particle
number, at least not in the whole metastable regime, and are
independent of the number of realizations. Second, the results
are consistent with those reported in Ref. [7]. This is further
illustrated in Fig. 4, in which we plot the α-relaxation time
τ ∗
α (tw,φ), defined by the condition Fs(k,τα; tw) = e−1, as a

function of the evolution time tw for two distinct, representative
volume fractions of the metastable regime, φ = 0.55 and
0.575. As can be noted in the figure, in the case of φ = 0.55,

the data almost overlap each other for the waiting times
considered. In the case of φ = 0.575, a slight difference can
be observed for times longer than tw = 103.

Due to the enormous amount of time required to run the
simulation for volume fractions φ > 0.58, we decided not to
include the preliminary results here but suggest that the loss
of ergodicity becomes a truly fundamental challenge, since
the size of the representative nonequilibrium ensemble needed
to get stable statistics in the simulations seems to increase
without bound as one gets deeper into the glassy regime. This
is indeed work in progress, but we believe that the discussion
in the paper does demonstrate an immediate contribution of
the nonequilibrium SCGLE theory, namely, the conceptual
enrichment of the discussion of the glass transition problem
via the introduction of the waiting-time dimension tw in the
description of glassy behavior.
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