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Brownian self-driven particles on the surface of a sphere
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We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere.
The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular
(azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular
mean-square displacement are offered. Finally, the particles’ steady marginal angular probability density functions

are also elucidated.
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I. INTRODUCTION

Motion of particles on curved surfaces at microscopic level
is a very common situation in nature. Some relevant examples
are the motion of proteins on the surface of eukaryotic cells
[1], the reaction of T cells from the immunological system to
antigens located on artificial curved surfaces [2], or self-driven
microtubule bundles moving on the surface of droplets [3]. At
these scales, Brownian motion may play an important role
on the dynamics of such a small systems. In this sense, there
have been several works modeling the motion of micrometric
particles on simple curved surfaces like the sphere. For
example, Brillinger studied the diffusion of particles with
constant drift able to move on the surface of a sphere [4].
Krishna et al. [5] analytically found the solid angle distribution
enclosed by Brownian particles displacing on a sphere. Batada
et al. [1] found an analytical expression for the rate at which
proteins on a cell surface membrane (modeled as a sphere)
meet. Using matched asymptotic expansions Coombs et al.
[2] found analytical expressions for the rate at which particles
on a sphere are captured by localized traps. New algorithms to
generate Brownian motion on a sphere have been also reported
[6,7]. Additionally, a theoretical propagator for diffusion on a
sphere equivalent to the Gaussian propagator of diffusion on
flat surfaces was proposed by Ghosh et al. [8].

Note that most of the previous works have treated passive
(non-self-propelled) particles. Recently, the inclusion of an
internal energy to Brownian particles that allow them to
self-propel, has shown to be a broader model to study many
out of equilibrium natural and artificial scenarios, such as
the organization of motile cells or the motion of natural
(swimming microorganisms) and synthetic (microrobots) mi-
croparticles [9-12]. Related works dealing with self-propelled
particles moving on curved surfaces are Sanchez et al. [3].
They studied self-driven microtubule bundles on the surface
of a droplet and observed the emergence of a streaming
flow. GroBmann et al. [13] assumed that the director vector
(swimming direction vector) of active Brownian particles
(ABPs) does not necessarily move on a sphere, thus they
study the case of a director vector moving for example on an
ellipsoid. They find that if the director vector of ABPs moves
on a hypersphere their diffusion will be isotropic, whereas
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their diffusion becomes anisotropic if the director moves on a
deformed hypersphere. More recently, Sknepnek and Henkes
[3] studied collective behavior of active particles constrained
to move on a sphere. They found that curvature induces, among
other patterns, polar vortex and circulating bands states similar
to what experimentalists found [14]. In addition, Janssen ef al.
[15] studied the motion of self-propelled particles (spheres
and rods) on a sphere, and for various particles’ densities. They
confirmed that topological constrains give rise to novel patterns
that cannot be seen on flat surfaces. A theoretical study on the
dynamics of active particles performing rotational Brownian
motion on curved surfaces has also been recently presented by
Fily et al. [16].

Motivated by the previous works, in this paper we ex-
tend the well-known motion of Brownian passive particles
on a sphere, to the out of equilibrium situation of active
(self-propelling) Brownian particles displacing on a sphere.
Following a Langevin approach, it is possible to analytically
obtain, for both passive and active particles, their angular
mean-square displacement (MSD) at short (# — 0) and long
(t — o0) times. Our theoretical results were compared with
Brownian dynamics simulations and an excellent agreement
was found. At short times a linear dependence in time for
both azimuthal and polar MSDs was obtained. For long times,
and for both passive and active particles, their steady state
angular probability density functions (PDFs) were numerically
reached. Analytical expressions are also offered. A comparison
between passive and active results is also made, and we find
that the steady polar marginal PDF of passive and active
particles are the same.

II. MODEL

Let us analyze Brownian self-propelled particles (swim-
mers) of radius a moving on the surface of a sphere of
radius r. Based on a spherical coordinates’ system (¢,6), it
is possible to identify the unit vectors (e,,ep) which form a
tangential plane on the sphere’s surface (see Fig. 1). Using this
instantaneous tangential plane, we introduce the swimming
velocity term U = Uu(r), being U(r) = vy(t)ey + vo(t)ey, the
instantaneous unit vector in the direction of swimming. Here
U is the magnitude of the swimming velocity which is taken to
be constant for simplicity. Thermal fluctuations in translation,
f(t) = f,(t)ey + fo(t)ey, and rotation, g(t) = /2Dgrnyéy +
~/2Dgngéy, (Where ny and 74 are independent white noise
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FIG. 1. Schematics of the studied problem.

processes, while Dy is a rotational diffusivity constant) are
also included, hence the equations of motion for a swimmer
can be written as

m(é—cos@ sin0432)= —yré—i—yrUv—@—i—f@, (1)
r

. .. . v

m(¢ +2cot00¢) = —yrd + yrU—2—+ f5. ()
r sin 6

Vg = 2DRU¢(T]91)¢ — 77¢U(9) —+ cos 9U¢d), 3)

Vg = v/ 2DRvg(nyvg — Novy) — COS 91)0(]'57 4)

where m is the mass of the swimmer, while y7 and yg are the
resistance coefficients to translation and rotation respectively.
Equations (3) and (4) are obtained by projecting the dynamics
of the orientation vector onto the contravariant local basis
(e®,e?) [16]. At this stage we recall the Smoluchowsky
diffusion equation for the probability density function, P, of
an overdamped passive Brownian particle on the surface of a
sphere, namely,

P Dr 9 (. OP Dr 9°P
— = — —| sinf— 7 )
9t r%sinf 30 20 r2sin? 0 9¢?

where Dr is a translational diffusivity constant. With

Eq. (5), one can formulate its respective Langevin equations
[4], namely, ¢ = (v/2D7/r sin@)&s and 6 = Dr/r*tan +
(v/2Dr /1)&s, where the stochastic variables & and &, are in-
dependent white noise processes (zero mean and §-correlated).
Neglecting inertia (overdamped limit) in Egs. (1) and (2) and
using the previous Langevin equations that generate Eq. (5), we
can explicitly write our Langevin model for active Brownian
particles on the surface of a sphere, namely,

. _ UU9 DT n 2DT

0 6
r r2tané r o, ©
. UU¢ «/ZDT
= , 7
¢ rsin @ + rsin9€¢ ™
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Note that for the passive case, the polar coordinate Eq. (6)
is decoupled from the azimuthal coordinate; however, the az-
imuthal coordinate is coupled to both the swimming direction
and the polar coordinate. This coupling will be appreciated
when solving the mean-square angular displacements at short
times. In this situation, the term ((¢ — ¢o)?) will depend on 6,
as it will be shown in the following section.

III. BROWNIAN MOTION ON A SPHERE: PASSIVE CASE

Let us approximately solve the stochastic Langevin Egs. (6)
and (7) for U = 0 (passive case). To do so, lets consider
that our particle is initially located at around 6y = 7/2;
hence, at very short times, one can find that 0(t) — 6y ~
fot (2D, /r)&s(t"dt’, from which we easily get

(6 — 60)*) =~ Z—IZ"‘t. (10)
r

The latter result was observed to be very robust and remains
valid for even 0 < 6y < m. The inset of Fig. 2(b) shows this
observation, where different initial conditions for the polar
variable namely, 6y = {0.02,0.2,0.4,0.6}, are considered.

In the case of Eq. (7), we use that Eq. (10) is still valid
for 8y <« 1, which implies that for very short times, 0 < 1;
hence, 1/sin(f) >~ 1/6 + 6/6. Thus, we get from Eq. (7) that
d(t) — do = (\/2D, /r) [y [07'(t") + 6(t')/61&4(t')dt'. Using
the latter expression to perform the  product
[¢(t) — o], noticing that [1 + /2D, /r) [ &(t)dt'] " ~
1-— (,/ZDT/r)fOt &(t")dt’, and performing an ensemble
average we get

2 2D T
(1) — o)) = prmeie (1D

e
The above result provides a good estimate for the range
0 <6y <m/2, and by symmetry we can also approximate
the azimuthal MSD for 7/2 < 6y < 7 as ((¢(t) — ¢p)?) =~
2D7(0y — w)~2/r?. The latter approximations are less ac-
curate for 6y around m/2. However, one can construct a
better expression for the case 6y around 7/2 by adding
the previous results, which is ((¢(z) — ¢o)?) ~ 2DT(90*2 +
(6o — m)~2)/r?. Notice from Eq. (11) the dependence of the
azimuthal MSD on the polar initial condition. This dependence

is numerically corroborated in Fig. 2(a).
We now turn to characterize the passive Brownian motion at
long times. To do so, we recall that Eq. (5) has the solution [17],

[e'9] k
PO.g1) =Y Y e DDy 6)yinGo.¢0),

k=0 m=—k
(12)
where Y;""(6,¢) are the spherical harmonics. Given Eq. (12),

the steady marginal probability density functions can be found
as

sin(0)
T

2
p(©) = lim/ P(0,¢;1)sin(0)d¢ = (13)
t—o0 Jo

p(¢) = lim fﬂ P(6,$;1)sin(0)do = L (14)
=00 J 2
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FIG. 2. Comparison between theory and Brownian dynamics simulations for passive particles diffusing on a sphere. (a, b) Angular
mean-square displacements versus time. The theoretical short times [Egs. (10) and (11)] and long times [Egs. (16) and (17)] results for different
initial conditions are presented in dashed lines, while the numerical results are in solid lines. (c) Time evolution of the marginal polar PDF. The
analytical results for p(6;t) are presented in dashed and solid lines, whereas the numerical results are represented with bars. (d, e) Marginal
steady PDFs. The theoretical expressions given by Eq. (13) and (14) are presented in solid (red) lines, while the numerical results appear with
bars. (f) The theoretical value (cos ) = exp (—2Drt/r?) (solid red line) is compared with its numerical value (blue circles).

Using the previous marginal PDFs and the definition of
ensemble average,

b4 2
o= [ ao [ s 0.6 lim Po.gi0sind)
(s)

together with f(6,¢) = (6 — 6o)* and f(6,) = (¢ — do)%,
we get the long-term angular mean-square displacements,

2 _

(O — 00)%) = —— + 600 — ), (16)
4 2

(@ — o)) = % + ol — 270). a7

The previous theoretical expressions were compared to
Brownian dynamics simulations, and the results are presented
in Fig. 2. Figures 2(a) and 2(b) show the angular mean-square
displacements versus time. Here, the theoretical short times
[Egs. (10) and (11)] and long times [Eqgs. (16) and (17)] results,
are presented in dashed lines, while the numerical results are
in solid lines. To see the dependence of the azimuthal mean-
square displacement on the initial polar condition, Fig. 2(a)
shows the results of four different values for this quantity,
namely, 8y = {0.02,0.2,0.4,0.6}, while ¢y was fixed to 7. Note
that7 = Dgt. An excellent agreement between theory and nu-
merics can be observed. Figure 2(b) shows the polar MSD for
different initial conditions (6y = {0.02,0.2,0.4,0.6}); here, the
long-time result given by Eq. (16) is numerically corroborated.
Figure 2(c) shows the time evolution of the marginal polar

PDF, p(@;t) = 02” P(0,¢;1)sin(0)d¢. The analytical results

for p(@;t) are presented in dashed and solid lines, whereas
the numerical results are represented with bars. An excellent
agreement is observed. The analytical expressions for the
marginal steady PDFs [Egs. (13) and (14)] are also numerically
tested. This can be seen in Figs. 2(d) and 2(e), where the
theoretical expressions given by Eqs. (13) and (14) (solid
lines) are compared with the statistics (bars) generated from
the Langevin Eqgs. (6)—(8) for the case U = 0. An excellent
agreement between numerics and theory is observed. Finally,
the mean of the cosine of the angular coordinate (cos ), whose
theoretical value is (cos 8) = exp (—2Drt/r?), is also plotted
in Fig. 2(f). The theoretical value is represented in solid (red)
line while the numerical value taken from Egs. (6)—(8) for
the case U = 0, is plotted in (blue) circles. Note that Fig. 2
can also be regarded as a validation of the Langevin model
we are implementing. In the following section we extend
our results to the case of active (self-propelled) Brownian
particles.

IV. BROWNIAN MOTION ON A SPHERE: ACTIVE CASE

We now use Brownian dynamics simulations to solve
the stochastic Langevin Egs. (6)—(9) for the case of active
Brownian particles moving on the surface of a sphere of
radius r. Let us introduce the dimensionless time 7 = Dgf, the
dimensionless numbers Peg = UDj'/r (which is the ratio
between the persistence length of swimmers and the radius of
the sphere), and k¥ = Dr/rzDR = (4/3)(a/r)2. Note that the
curvature of the system is x = 1/r; hence, k represents the
product of the swimmer’s radius with the sphere’s curvature.
With the latter dimensionless quantities system Eqgs. (6)—(9)
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FIG. 3. Comparison between theory and Brownian dynamics simulations for active particles diffusing on a sphere. (a, b) Time evolution
of the marginal angular PDFs for (Peg,k) set to (1.95,0.0021). Here, Eqgs. (22) and (23) were numerically solved using the statistics generated
from Egs. (18)—(21). (c, d) Steady marginal angular PDFs. From these figures one infers that for ABPs p(0) = sin(0)/2 and p(¢) = 1/2x
(black dashed lines). In the same figures, we superpose in red solid lines, the steady marginal PDFs for the passive case. Note that for the polar
and azimuthal angles, passive and active marginal steady PDFs coincide. (e, f) Curvature effect on the angular MSD. Here, the dimensionless
number k¥ was taken as ¥ = {0.0001,0.0002,0.0005,0.0015}. The theoretical results given by Egs. (24) and (25) are presented in dotted-dashed

black lines.

becomes
6 = Pegus + —— + /2%&,, (18)
tan @

. P6R1)¢ A/ ZE
- , 19
¢ sin @ +sin9§¢ (19)
Vg = ~/205(ng vy — Ngve) + cOS(O)vy P, (20)
0 = ~/205 (11 v5 — 15Vy) — cOS(O) V. 1)

To numerically solve the previous system, a step size of
AT =0.001 and 30 000 realizations were considered. We
randomly choose the initial conditions (6, ¢o,v4(0),v9(0)) =
(0.4,n,1/ﬁ,1/ﬁ). Figures 3(a) and 3(b) show the time
evolution (five different times) of the marginal angular PDFs
defined as

1 pl p2n
p(@;t):/ // P(0,¢,v6,v4; 1) sinOdvgdvyde,
-1J-1Jo
(22)

1 1 T
p(qb;t):/ f / P(6,¢,v9,v¢;1)sinOdvgdvgdd. (23)
-1J-1Jo

Here, the parameters (Peg,k) were set to (1.95,0.0021).
Note that Egs. (22) and (23) are numerically solved using the
statistics generated from Egs. (18)—(21). For longer times, one
can observe that the marginal PDFs reach a steady state. This
is shown in Figs. 3(c) and 3(d). From this figure, one infers that
the steady marginal angular PDFs for ABPs are p(0) = sinf/2

and p(¢) = 1/2n [black dashed lines in Figs. 3(c) and 3(d)].
In the same two figures, we superpose in red solid lines, the
steady marginal PDFs for passive particles. One observes
that for the azimuthal and polar angles, both passive and
active marginal steady PDFs coincide. This result reflects the
symmetry property (rotational invariance) of a sphere.

We now turn to calculate the long time angular MSD. To do
so, we use Eq. (15) together with the respective active steady
PDFs to perform the integral. Note that for the Brownian
motion on a sphere, the mean of the angular variables will
not always coincide with their initial values (6p,¢o). For
example, at short times, we have that lim;_, (0 (7)) = 6y and
lim;_ o (7)) = ¢(0) = ¢y, whereas at long times one can
show that lim;_, o (6(f)) = 7 /2 and lim;_, o (¢(¢)) = 7. Thus,
one should rigorously define the MSD as the mean-square
deviation from the mean (formally the variance for this case).
Using this fact, we arrive to the following long-times results:

72 —8

(OF) — (0(D))*) = 1
T

, (24)

2

(@) — (6@DN*) = 7, (25)
which are also valid for passive particles. The curvature
effect on the angular MSD is shown in Figs. 3(e) and
3(f). Here the dimensionless number ¥ was taken as k¥ =
{0.0001, 0.0002, 0.0005, 0.0015}. These figures simply show
that as the radius of the sphere decreases (k increasing), the
particles will reach is steady state faster. In other words,
particles sample the entire sphere’s surface faster as the
sphere’s radius decreases.
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FIG. 4. (a, b) Comparison between theoretical results and
Brownian dynamics simulations for different swimming veloc-
ities namely, Per = {0,0.41,0.81}, and for the same curvature
parameter k¥ = 0.0015. Here, the dashed lines represent the the-
oretical long time MSD results given by Egs. (24) and (25).
The short times results [Egs. (10) and (17)] are represented
in dotted-dashed lines. Note that for comparison purposes, we
have included in solid red lines, the results for passive parti-
cles. (c) Passive Brownian particles (Pe, = 0) on a sphere with
Kk = 0.0015 and for 7 = {5 (red), 25 (yellow), 50 (green)}. (d) Active
Brownian particles (Pe, = 0.81) with ¥ = 0.0015 and for 7 =
{0.74 (red), 1.29 (yellow), 1.79 (green)}. In both cases, 6y = 0.4 and
po=.

Let us finally verify Eqs. (24) and (25). To do so,
we perform Brownian dynamics simulations for different
swimming velocities namely, Per = {0,0.41,0.81}, and for
the same curvature parameter ¥ = 0.0015. The results are
shown in the Log-Log Figs. 4(a) and 4(b), where the dashed
lines represent the theoretical long time results given by
Egs. (24) and (25), whereas the short times results [Egs. (10)
and (11)] are represented by black dashed-dotted lines. The
numerical results are shown in solid lines. Figures 4(a) and
4(b) show that for short times, Eqs. (10) and (11) are still valid

PHYSICAL REVIEW E 96, 022606 (2017)

for active particles, and that similar to ABPs on a flat surface
[18], the angular MSD of ABPs on curved surfaces has also
a linear (short times) and quadratic dependence (due to self-
propulsion) on time. Note that the angular MSD starts linearly
in time since we are considering the overdamped regime.
Intermediate super-diffusive regions are also observed which
is similar to the behavior of ABPs on flat surfaces et al. [18].

Figures 4(a) and 4(b) also indicate that the long time
angular MSD, for both passive (red solid line) and active
cases, coincides. One can also see that self-propulsion enables
the system to reach its steady state in a shorter period of
time compared to passive particles. Finally, Figs. 4(c) and 4(d)
visually indicates the effect of self-propulsion on the diffusion
of Brownian particles. Figure 4(c) represents passive Brownian
particles (Pe, = 0) on a sphere with ¥ = 0.0015 and for
f = {5 (red), 25 (yellow), 50 (green)}, while Fig. 4(d) shows
active Brownian particles (Pe, = 0.81) with ¥ = 0.0015 and
for 7 = {0.74 (red), 1.29 (yellow), 1.79 (green)}. In both cases,
0y = 0.4 and ¢9 = . Clearly, self-propulsion enables the
particle to sample the entire sphere’s surface in a shorter
amount of time.

V. CONCLUSIONS

In summary, we have studied the effect of self-propulsion
and curvature on the diffusion of active Brownian particles
(ABPs) on the surface of a sphere. Basically, as self-propulsion
increases, the particles reach their steady state in a shorter
amount of time compared to passive particles. In the same
way, as the radius of the sphere decreases (k increasing), the
particles will reach is steady state in a shorter time since the
area to sample is smaller. To quantify the latter observations,
analytical expressions for the the steady angular marginal
PDFs, and for the angular mean-square displacements (short
and long times) for both passive and active Brownian particles
were found. We found that the steady angular (azimuthal and
polar) marginal PDFs of passive and active particles are the
same, thus recovering the rotational invariance of a sphere.
Brownian dynamics simulations were also performed and an
excellent agreement between theory and simulations for both
passive and active particles was observed.

ACKNOWLEDGMENTS

M.S. and L.A. thank Consejo Nacional de Ciencia y
Tecnologia, for support through CONACyT Grant No. CB
2014/237848. The authors sincerely thank an anonymous
referee for his very relevant comments.

[1] N.Batada, L. Shepp, D. Siegmund, and M. Levitt, PLoS Comput.
Biol. 2, e34 (2006).

[2] D. Coombs, R. Straube, and M. Ward, SIAM J. Appl. Math. 70,
302 (2009).

[3] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z.
Dogic, Nature 491, 431 (2012).

[4] D. R. Brillinger, J. Theor. Prob. 10, 429 (1997).

[5] M. M. G. Krishna, J. Samuel, and S. Sinha, J. Phys. A: Math.
Gen. 33, 5965 (2000).

[6] T. Carlsson, T. Ekholm, and C. Elvingson, J. Phys. A: Math.
Theor. 43, 505001 (2010).

[7] P. Castro-Villarreal, A. Villada-Balbuena, J. M. Mendez-
Alcaraz, R. Castaneda-Priego, and S. Estrada-Jimenez, J. Chem.
Phys. 140, 214115 (2014).

022606-5


https://doi.org/10.1371/journal.pcbi.0020034
https://doi.org/10.1371/journal.pcbi.0020034
https://doi.org/10.1371/journal.pcbi.0020034
https://doi.org/10.1371/journal.pcbi.0020034
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nature11591
https://doi.org/10.1023/A:1022869817770
https://doi.org/10.1023/A:1022869817770
https://doi.org/10.1023/A:1022869817770
https://doi.org/10.1023/A:1022869817770
https://doi.org/10.1088/0305-4470/33/34/302
https://doi.org/10.1088/0305-4470/33/34/302
https://doi.org/10.1088/0305-4470/33/34/302
https://doi.org/10.1088/0305-4470/33/34/302
https://doi.org/10.1088/1751-8113/43/50/505001
https://doi.org/10.1088/1751-8113/43/50/505001
https://doi.org/10.1088/1751-8113/43/50/505001
https://doi.org/10.1088/1751-8113/43/50/505001
https://doi.org/10.1063/1.4881060
https://doi.org/10.1063/1.4881060
https://doi.org/10.1063/1.4881060
https://doi.org/10.1063/1.4881060

LEONARDO APAZA AND MARIO SANDOVAL

[8] A. Ghosh, J. Samuel, and S. Sinha, Europhys. Lett. 98, 30003
(2012).

[9] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[10] C. Bechinger, R. D. Leonardo, H. Lowen, C. Reichhardt, G.
Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

[11] M. F. Hagan and A. Baskaran, Curr. Opin. Cell Biol. 38, 74
(2016).

[12] S. Ebbens, Curr. Opin. Colloid Interface Sci. 21, 14 (2016).

PHYSICAL REVIEW E 96, 022606 (2017)

[13] R. GroBmann, F. Peruani, and M. Bir, Eur. Phys. J. Special
Topics 224, 1377 (2015).

[14] R. Sknepnek and S. Henkes, Phys. Rev. E 91, 022306
(2015).

[15] L. M. C. Janssen, A. Kaiser, and H. Lowen, Sci. Rep. 7, 5667
(2017).

[16] Y. Fily, A. Baskaran, and M. F. Hagan, arXiv:1601.00324.

[17] K. Yosida, Annu. Math. Stat. 20, 292 (1949).

[18] B.ten Hagen, S. van Teeffelen, and H. Lowen, J. Phys.: Condens.
Matter 23, 194119 (2011).

022606-6


https://doi.org/10.1209/0295-5075/98/30003
https://doi.org/10.1209/0295-5075/98/30003
https://doi.org/10.1209/0295-5075/98/30003
https://doi.org/10.1209/0295-5075/98/30003
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1016/j.ceb.2016.02.020
https://doi.org/10.1016/j.ceb.2016.02.020
https://doi.org/10.1016/j.ceb.2016.02.020
https://doi.org/10.1016/j.ceb.2016.02.020
https://doi.org/10.1016/j.cocis.2015.10.003
https://doi.org/10.1016/j.cocis.2015.10.003
https://doi.org/10.1016/j.cocis.2015.10.003
https://doi.org/10.1016/j.cocis.2015.10.003
https://doi.org/10.1140/epjst/e2015-02465-0
https://doi.org/10.1140/epjst/e2015-02465-0
https://doi.org/10.1140/epjst/e2015-02465-0
https://doi.org/10.1140/epjst/e2015-02465-0
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1038/s41598-017-05569-6
https://doi.org/10.1038/s41598-017-05569-6
https://doi.org/10.1038/s41598-017-05569-6
https://doi.org/10.1038/s41598-017-05569-6
http://arxiv.org/abs/arXiv:1601.00324
https://doi.org/10.1214/aoms/1177730038
https://doi.org/10.1214/aoms/1177730038
https://doi.org/10.1214/aoms/1177730038
https://doi.org/10.1214/aoms/1177730038
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1088/0953-8984/23/19/194119



