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The paper deals with a theoretical study of the effective shear modulus of a magnetic gel, consisting of
magnetizable particles randomly and isotropically distributed in an elastic matrix. The effect of an external
magnetic field on the composite modulus is the focus of our consideration. We take into account that magnetic
interaction between the particles can induce their spatial rearrangement and lead to internal anisotropy of the
system. Our results show that, if this magnetically induced anisotropy is insignificant, the applied field reduces
the total shear modulus of the composite. Strong anisotropy can qualitatively change the magnetomechanic effect
and induce an increase of this modulus with the field.
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I. INTRODUCTION

Composites of fine magnetic particles in soft polymer
matrices (e.g., ferrogels, magnetic elastomers, and magne-
torheological elastomers) have attracted considerable interest
of researchers and engineers because of a rich set of unique
physical properties, valuable for many industrial and biomed-
ical applications [1–13]. One of the qualities of these systems,
interesting from both scientific and practical points of view,
is their ability to change mechanical properties and behavior
under the action of an external magnetic field. Uniaxial
elongation and magnetostriction of magnetic gels have been
studied in many works (see, for example, [13–20]). The shear
effects in composites with particles united in linear chainlike
aggregates were studied in [21–23]. The general conclusion of
these works is that an external magnetic field can significantly
increase the shear modulus of these composites.

The chainlike aggregates are created on the stage preceding
the composite curing, by application of an external magnetic
field (field of polymerization) to the suspension of the magnetic
particles in the liquid polymer. At the same time, very often
magnetic gels are synthesized without the field. In this case
the spatial disposition of the particles is rather random and
isotropic (see, for example, [15,17,24]).

Experiments [15,17] have demonstrated that, in soft gels,
a magnetic field can induce the spatial rearrangement of the
particles and even lead to their unification int heterogeneous
structures, aligned along the field. Obviously, these internal
transformations can lead to a significant change of the
macroscopic properties of the composite materials.

The aim of this work is a theoretical study of the
effect of an external magnetic field on the shear elastic
modulus of magnetic gels with an initially homogeneous and
isotropic distribution of magnetizable spherical particles in
a continuous matrix. The field-induced rearrangement of the
particles and anisotropy of their dispositions is the focus of
our consideration.

*Corresponding author: A.J.Zubarev@urfu.ru

The matrix is taken to be elastic, with the linear law of
deformation, and incompressible. It should be noted that the
approximation of incompressibility is not fulfilled for all gels.
However, it allows us to restrict calculations and to get the final
results in quite transparent forms. The analysis of the effects of
the composite compressibility can be considered as a natural
generalization of this model.

The principal problem of the theory of composite materials
is the analysis of cooperative effects of the multiparticle inter-
actions. Usually these effects are taken into account by using
various empirical and semiempirical methods, whose accu-
racy, and even qualitative adequacy, a priori, is unknown [25].

In order to achieve a clear understanding of the microscopic
nature of the physical properties of magnetic gels as well as
their macroscopic behavior, mathematically rigorous models,
free from intuitive and heuristic constructions, must be devel-
oped. In this work we consider a gel with a low or moderate
concentration of spherical particles of the magnetic filler. This
allows us to use the regular approximation of the pair inter-
action between the particles and to avoid a semiempirical in-
tuitive hypothesis with uncontrolled accuracy. We believe that
this approach can be considered as a necessary robust back-
ground for the development of the models for more concen-
trated systems where the multiparticle effects are significant.

The paper is organized as follows. In Sec. II we discuss
the main points of the physical model. In Secs. III and IV we
consider the particles’ relative displacements, as consequences
of the macroscopic shear of the composite and the action of the
applied field. In Sec. V the estimates of the composite shear
modulus are presented. We summarize in Sec. VI.

II. PHYSICAL MODEL AND MAIN APPROXIMATIONS

We consider a system of identical spherical non-Brownian
magnetizable particles embedded in an elastic continuous
medium. For maximal simplification of the mathematics, we
restrict ourselves to the case of the moderate field and suppose
that the linear law of particle magnetization if fulfilled.
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FIG. 1. Illustration of the system under consideration. The gra-
dient of the shear displacement is directed along the axis Oz. The
coordinate axis Oy is not shown for simplicity.

Let the composite be placed in a uniform magnetic field
H and experience small shear deformation in the plane,
perpendicular to the field (see Fig. 1). It is convenient to
introduce the Cartesian coordinate system with the axis Oz in
the field direction and the axis Ox in the direction of the shear.
By using the well-known results of the theory of magnetizable
media (see, for example, [26,27]), as well as the mathematical
similarity between the stationary Navier-Stokes equation at
low Reynolds and the Lamé equation of deformation of an
elastic poorly compressible medium [25], one can present the
needed component of macroscopic (measurable) stress σ in
the composite as

σ = σel + σm, (1)

where σel = Gelγ , σm = 1
2ϕμ0〈Mx〉 > H , and σ = σxz. Here

σel is the shear stress in the elastic composite with the hard
particles, Gel is the corresponding shear modulus of the
composite, and σm is the part of the total stress provided
by the applied magnetic field. The magnitude Mx is the
corresponding component of a particle’s magnetization; the
angular brackets mean averaging over all relative positions of
the particles in the composite; γ = ∂ux

∂z
; ux is the component

of the macroscopic (measurable) vector u of the composite
displacement; ϕ is volume concentration of the particles; μ0

is the vacuum magnetic permeability.
By using the Batchelor and Green results [28] of effective

viscosity of moderately concentrated suspension, as well as
the identity between the Navier-Stokes and Lamé equations,
one can estimate the modulus Gel as

Gel = G0(1 + 2.5ϕ + 5.2ϕ2). (2)

Here G0 is the shear modulus of the pure host matrix.
Usually this formula leads to good agreement with experiments
until the concentrations ϕ ∼ 10%−15%.

One needs to note that, in principle, the solid particles
can change the conformation of the macromolecules of the
host polymer and therefore can change the elastic modulus of
the matrix. The possibility of these transformations, induced
by the chemical interaction of the ions, dissolved from the
particle’s surface, and the polymer macromolecules, as well
as the effect of this interaction on the mechanic properties of
the composites, has been discussed, for example, in [29]. Here

we will neglect these effects and focus on the mechanic and
magnetic interactions between the particles.

Our main goal now is to determine the component 〈Mx〉 of
the particle magnetization. In order to get the mathematically
rigorous results, we will estimate 〈Mx〉 taking into account
interaction only between two particles, ignoring the effect
of any third one. It should be noted that the Batchelor-
Green formula (2) has been derived in the framework of the
pair approximation, taking into account mechanic interaction
between the particles through the perturbations of the carrier
medium.

Let us consider two particles and put the origin of the
Cartesian coordinate system, shown in Fig. 1, in the center
of one of them. We will denote the radius vector of the center
of the second particle by r .

The component Mx of magnetization of each particle,
shown in Fig. 1, appears because of mutual magnetization
of the particles. The simplest way to take this interaction into
account is to use the well-known dipole-dipole approximation.
However, this approach describes quite well magnetic interac-
tion between the particles only when they are far from each
other and the distance r between their centers significantly
exceeds the diameter d of the particle. At the same time, the
effects of the mutual magnetization are especially strong at
the close dispositions of the particles, where their magnetic
interaction is multipolar. We will estimate the energy U (r) of
the particles’ interaction by using the extrapolation formula
obtained in [30] from the results of numerical study of the
problem on two linearly magnetizable particles:

U = −3μ0μf H 2v

7∑
k=3

(
α − 1

α + 2

)pk

×
[

ak

(ρ − bk)k
+ ck

(q − dk)k
cos2θ

]
. (3)

Here ρ = 2r/d; α = μp/μf ; μp and μf are the rela-
tive magnetic permeabilities of the particle and the host
matrix, respectively; v = πd3/6 is the particle volume; and
pk,ak, . . . ,dk are parameters whose values are tabulated in
[30]. For ρ � 1 the fit formula (3) coincides with the
well-known relation for the energy of the dipole-dipole
approximation.

The y component of the torque 
, acting on the cluster
of the particles, can be calculated from two general relations.
On the one hand, 
y = − ∂U

∂θ
cos φ [30,31] (φ is the azimuthal

angle, not shown in Fig. 1 for brevity); on the other hand,

y = −2μ0vMxH [27] (the multiplier 2 appears here because
we are dealing with a cluster consisting of two particles).
Equating these relations and taking into account the relations
μf = 1 and α � 1, fulfilled for typical magnetic gels and
elastomers, we find Mx for the given relative disposition of the
particles:

Mx = 3H

7∑
k=3

ck

(ρ − dk)k
sin θ cos θ cos φ. (4)

Let g(r) be the pair distribution function over relative
positions of the particles. For convenience we suppose that
the normalization condition g → 1 when r → ∞ is held. In
the frame of the pair approximation, the average magnetization
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of a particle can be presented as

〈Mx〉 = n

∫
Mx(r)g(r)d r, n = ϕ

v
.

Here n is number of particles in a unit volume of the
composite and v, again, is the volume of the particle. The
distribution function g can be presented as g = g0 + δg,
where g0 corresponds to the isotropic nondeformed composite
before the field application and δg reflects the change of
the function because of the particles’ rearrangement and the
sample deformation. In the isotropic composite, where g0

depends only on the absolute value r of the radius vector
r , the equality

∫
Mx(r)g0(r)d r = 0 is held. Therefore,

〈Mx〉 = ϕ

v

∫
Mx(r)δg(r)d r. (5)

The function δg can be determined from the following
equation [32]:

δg = −div(gw). (6)

Here w is the vector of the relative displacement of the
particles, which is determined by two factors: the particles’
rearrangement under magnetic interaction between them and
the macroscopic shear of the composite as well. We will
consider separately these displacements and the corresponding
changes δg of the distribution function g.

III. MAGNETICALLY INDUCED DISPLACEMENT
OF THE PARTICLES

Let us suppose that the sample does not undergo macro-
scopic deformation and the particles’ rearrangement takes
place because of their magnetic interaction. By using (3),
we determine the components of the force F = −∇U of
magnetic interaction between two particles. The vector of
their relative displacement wm, induced by this interaction,
can be determined from the theory [33] of mutual motion of
two particles in a suspension combined with the mathematical
identity of the Navier-Stokes and Lamé equations:

wm = β̂ · F. (7)

Here β̂ is tensor of the particles’ displacement. According to
[33], the Cartesian components of this tensor can be presented
as

βii = β0

[
(GB − HB)

x2
i

r2
+ HB

]
,

βij = β0(GB − HB)
xixj

r2
(8)

β0 = 2

3πG0d
,

where G0 again is the shear modulus of the host elastic
matrix, i,j = x,y,z, and GB(r) and HB(r) are functions of
the distance r between centers of the particles. Explicit forms
of these functions, valid for all values of r , are unknown. Their
asymptotic approximations are given in [33]:

GB ≈ 2(ρ − 2), HB ≈ 0.401 for ρ → 2,

GB ≈ 1 − 3
2ρ−1 + ρ−3 − 15

4 ρ−4 + O(ρ−6),

HB ≈ 1 − 3
4ρ−1 − 1

2ρ−3 + O(ρ−6) for ρ → ∞. (9)

The dimensionless distance ρ between the particles is
defined in (4). Numerical dates for GB(ρ) and HB(ρ) are
tabulated in [33].

In the spherical coordinate system, with the radius r

and polar and azimuth angles θ and φ, respectively (x =
r sin θ cos φ; y = r sin θ sin φ; z = r cos θ ), after simple, but
cumbersome calculations, we get the following relations for
the components of the displacement vector wm :

wmr = κβ0μ
′(r)GB(r)(3cos2θ − 1),

wmθ = −6κβ0
μ(r)

r
HB(r) sin θ cos θ, (10)

wmφ = 0.

Here

μ(r) =
7∑

k=3

ck

(ρ − dk)k
, μ′(r) = dμ

dr
, κ = 3μ0H

2v.

By using (6), in the first approximation with respect to the
displacement wm, the change δgm of the distribution function
can be determined as

δgm = −div(g0wm). (11)

Combining (10) and (11), one can obtain, after calculations,

δgm = −κβ0f (r)(3cos2θ − 1),

f (r) = 1

r2

d

dr
(r2g0GBμ′) − 6g0

μ

r2
HB. (12)

The function δgm describes the structural anisotropy that
appears in the nondeformed composite under the action of the
applied field.

IV. PARTICLE DISPLACEMENT DUE TO THE
COMPOSITE SHEAR

Let us suppose now that the sample experiences macro-
scopic shear in the direction Ox and the gradient of the
sample displacement is directed along Oz. The vector wγ of
the corresponding relative displacement of the particles again
can be determined by using the identity of the Navier-Stokes
and Lamé equations [25], as well as the relation [28] for the
relative motion of two particles in a suspension. In the spherical
coordinate system the result reads

wγr = γ r(1 − AB) sin θ cos θ cos φ,

wγθ = γ r
[
cos2θ + 1

2BB(sin2θ − cos2θ )
]

cos φ, (13)

wγφ = −γ r
(
1 − 1

2BB

)
cos θ sin φ.

Here γ is the macroscopic dimensionless shear of the
sample and AB(r) and BB(r) are functions of r. Their explicit
forms for the whole range of r have not been determined in
the literature; asymptotic relations are given in [28] as

AB ≈ 1 − 4.077(ρ − 2), BB ≈ 0.406 for ρ → 2,

AB ≈ 5ρ−3 − 40
3 ρ−5 + 25ρ−6,

BB ≈ 16
3 ρ−5 for ρ → ∞. (14)

In the range 2 < ρ < 20, the numerical values of AB and
BB are tabulated in [28].
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Note that the equality AB(r) = 1 is held at r = d (i.e., at
ρ = 2). Thus the condition wγr (r = d) = 0 of the particles’
nonintersection is fulfilled in (13). At the same time the
components wγθ and wγφ are not zero at d, i.e., ρ = 2. This
means that the particles can slip over each other, being in
physical contact.

By using Eq. (7), in the first approximation with respect to
γ , one can present the change δgγ of the distribution function,
produced by the macroscopic shear, as

δgγ = −div[(g0 + δgm)wγ ]. (15)

Combining (12), (13), and (15), after some transformations
we get

δgγ = δg(1)
γ + δg(2)

γ ,

δg(1)
γ = −div(g0wγ ) = −γ

[
1

r2

d

dr
[r3(1 − AB)g0]

− 3g0(1 − BB)

]
sin θ cos θ cos φ,

δg(2)
γ = −div(gmwγ ) = κβ0γ

[
1

r2

d

dr
[r3(1 − AB)f ]

× (3cos2θ − 1) + 3f (1 − 5cos2θ

−BB(2 − 5cos2θ ))
]

sin θ cos θ cos φ. (16)

The function f (r) is defined in Eq. (12). The term δg(1)
γ

corresponds to mutual rearrangement of the particles due to the
macroscopic shear of the composite and the term δg(2)

γ is due to
the combination of the shear and magnetic interaction between
the particles. Substituting δg = δgm + δgγ into (5) and taking
into account (4) and the equality ϕ

v

∫
Mx(r)δgm(r)d r = 0,we

arrive at the relations

〈Mx〉 = 〈Mx〉(1) + 〈Mx〉(2),

〈Mx〉(1) = ϕ

v

∫
Mx(r)δg(1)

γ (r)d r, (17)

〈Mx〉(2) = ϕ

v

∫
Mx(r)δg(2)

γ (r)d r.

By using (16) in (17), one can get, after some transforma-
tions,

〈Mx〉(1) = − 3
5γHϕJ, (18)

where

J =
∫ ∞

0
μ(ρ)

[
d

dρ
{g0ρ

3[1 − AB(ρ)]}

− 3ρ2[1 − BB(ρ)]

]
dρ,

and

〈Mx〉(2) = − 3

35
γHϕ

κβ0

a2

∫ ∞

0
f (ρ)q(ρ)ρ2dρ, (19)

where q(ρ) = 2μ′(1 − AB)ρ + 3μ(8 − BB). The function
f (ρ) represents the function (r), defined in (13), after
substituting r for ρ. A prime here and in the following means
derivation over ρ.

By using the explicit form (13) for the function f ,
integrating by part in (18) and (19), and taking into account
that

g0 = 0 for ρ < 2, μ → 3

ρ3
,

g0 → 1, AB → 0, f (ρ) → 0 for ρ → ∞.

we arrive at the relations

J = 3 −
∫ ∞

2
g0{ρ3(1 − AB)μ′ + 3ρ2[1 − BB(ρ)]μ}dρ

(20)

and

〈Mx〉(2) = 4

35
μ0γ

H 3

G0
ϕK,

(21)

K =
∫ ∞

2
g0(r2μ′q ′GB − 6μHBq)dρ.

V. RESULTS AND DISCUSSION

In order to calculate the integrals in (20) and (21), one needs
to determine the initial distribution function g0 as well as the
functions AB(ρ), BB(ρ), GB(ρ), and HB(ρ). We choose the
distribution function g0 of the hard spheres in the isotropic
nondeformed composite by using the simplest form, which
takes into account the steric interaction between the particles
and the short-range order, created by this interaction [34]:

g0 =
⎧⎨
⎩

0, r < d

1 + 8ϕ
(
1 − 3r

4d
+ r3

16d3

)
, d < r < 2d

1, r > 2d.

(22)

It has been noted that the explicit analytical forms of
AB(ρ), BB(ρ), GB(ρ), and HB(ρ) in the whole range of ρ

are unknown. Some numerical values of these functions are
tabulated in [28,33]; however, they are given for different
magnitudes of ρ, which is why these tables are inconvenient
for numerical integration in (20) and (21).

In order to get acceptable estimates for J and K, we suggest
the following extrapolation forms for the functions AB(ρ),
BB(ρ), GB(ρ), and HB(ρ), which coincide with the asymptotic
values of the functions (9) and (14) in the corresponding
limiting cases with respect to ρ:

AB(ρ) =
{

1 − 4.077(ρ − 2) for 2 < ρ < 2.13

5ρ−3 − 40
3 ρ−5 + 25ρ−6 for ρ > 2.13,

BB(ρ) = 0.406
(

16
3

)
(2ρ)−5(

16
3

)
(2ρ)−5 + 0.406(2−5 − ρ−5)

,

(23)

GB(ρ) = 2(ρ − 2)
∣∣1 − 3

2ρ−1 + ρ−3 − 15
4 ρ−4

∣∣
2(ρ − 2) + ∣∣1 − 3

2ρ−1 + ρ−3 − 15
4 ρ−4

∣∣ ,
HB(ρ) = 0.401(ρ − 1)

0.401(ρ − 2) + 1
.

The results of calculations of these functions, by using the
extrapolations (21) and the tabulated values of [28,33], are
shown in Fig. 2. A comparison of these results allows us to
consider the simple extrapolations (21) as quite acceptable
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FIG. 2. Functions AB (ρ), BB (ρ), GB (ρ), and HB (ρ), calculated
by using the forms (23) (solid lines) and the tables of [28,33] (dotted
ones).

approximations for the first estimates of the integrals J and K .
Substituting (22) and (23) into the integrals in (20) and (21),
we get

J ≈ 2.5 − 0.213ϕ, K ≈ 48 + 99ϕ. (24)

One needs to note that the parameters J and K are
determined by using the form (22) of the distribution function
g0. The first terms on the right-hand side of (22) correspond
to the stepwise function

g0 =
{

0, r < 2
1, r > 2

typical for the ideal gas of the hard spheres. In this approx-
imation J ≈ 2.5 and K ≈ 48. The second, proportional to
the concentration ϕ, terms appear in (24) due to the spatial
correlations between the spherical particles, mirrored by the
term with ϕ in Eq. (22).

Combining the relations (1) with (17) and (18), one can get

σm = σ (1)
m + σ (2)

m ,

σ (1)
m = 1

2ϕμ0〈Mx〉(1)H = G(1)
m γ, (25)

σ (2)
m = 1

2ϕμ0〈Mx〉(2)H = G(2)
m γ.

Here σ (1)
m and σ (2)

m are the magnetically induced parts of the
total stress σ , which appear due to the change of the particles’
mutual disposition, as a consequence of, respectively, the
macroscopic shear deformation of the isotropic composite and
the combination of this deformation with the magnetically
induced particles rearrangement. The parameters G(1)

m and G(2)
m

are the corresponding parts of the magnetic contributions to
the total shear modulus G, which can be written as

G = Gel + G(1)
m + G(2)

m .

Taking into account (18), (20), (21), (24), and (25), we
arrive at the following results:

G(1)
m = −0.3μ0ϕ

2H 2(2.5 − 0.213ϕ),
(26)

G(2)
m = 2

35
ϕ2 μ2

0H
4

G0
(48 + 99ϕ).

If the rearrangement of the particles, induced by their
magnetic interaction, is insignificant (|G(1)

m | > G(2)
m , i.e., G0 �

μ0H
2) the field reduces the total shear modulus G of the

composite (G(1)
m is negative). In the opposite case (μ0H

2 >

G0), the magnetically induced anisotropy of the particles’
dispositions is strong enough (G(2)

m > |G(1)
m |) and the magnetic

field enhances the modulus. It should be noted that in very
soft gels this rearrangement can lead to the appearance of
chainlike and other heterogeneous anisotropic structures (see,
for example, [15,17]). However, analysis of these strong
structural transformations is beyond the present consideration.

The second term (−0.213ϕ) in parentheses in the formula
(26) for G(1)

m takes place due to correlations in the positions of
the particles in the composite. This term reduces the absolute
value of G(1)

m and enhances the total modulus G.
Let us estimate now the moduli G(1)

m and G(2)
m . By using the

typical magnitudes ϕ ∼ 0.1 and H ∼ 100 kA/m in the first
relation in (26), we get |G(1)

m | ∼ 102 Pa. The second relation
in (26) leads to the estimate G(2)

m /G0 ∼ (ϕμ0H
2/G0)2; the

same magnitudes of the field and the concentration give
G(2)

m /G0 ∼ (103 Pa/G0)2. Therefore, for the soft gels with
G0 ∼ 103 Pa, the modulus G(2)

m , which appears due to the
magnetically induced rearrangement of the particles, is quite
comparable with the host polymer modulus G0. The term G(1)

m ,
for these parameters of the system, is an order of magnitude
less than G0 and G(2)

m .
It is interesting to discuss the effect of the multipolar inter-

action (3) between the particles as compared with the effect
of the often-used simplest dipole-dipole approximation. In the
last approximation, the energy U of the interparticle interaction
and the component Mx of the particle magnetization can be
obtained from Eqs. (3) and (4), setting ai = 0 and ci = 0 for
i = 4, . . . ,7. After that, instead of (24), we get

J ≈ 1.62 − 1.68ϕ, K ≈ 9.1 + 6ϕ. (27)

A comparison of (24) and (27) shows that the multipolar
effects are significant and must be taken into account for the
determination of macroscopic properties of magnetic gels.
Nevertheless, in both approximations the parameter J is
positive. This means that G(1)

m is negative.
The result G(1)

m < 0, from the first point of view, is rather
unexpected. Its microscopic explanation can be given from the
following considerations.

Let us suppose that we determine the component Mx of
particle 1 in Fig. 3. This component appears due to magnetic
interaction between particle 1 and some particle 2. Because the

FIG. 3. Sketch of the positions of particle 2 before and after
the macroscopic shear. The dashed arrows illustrate the particle 2
displacement. The vector M is magnetization of particle 1.

022605-5



M. T. LOPEZ-LOPEZ, D. YU. BORIN, AND A. YU. ZUBAREV PHYSICAL REVIEW E 96, 022605 (2017)

initial spatial distribution of the particles is isotropic, particle
2, with equal probability, can be situated either to the left or
symmetrically to the right of the axis Oz. Obviously, if particle
2 is to the left of this axis, the magnetization vector M of the
first particle deviates to the left (i.e., Mx is negative); if particle
2 is situated to the right of Oz, the component Mx is positive.
Because of the symmetrical positions of the second particles
in the nondeformed sample, the resulting value of Mx , before
deformation, is zero. However, after the shear, the left particle
2 becomes closer to particle 1 than the right particle. That
is why its influence on the magnetization M is stronger than
the effect of the right particle. As a consequence, the resulting
vector M is deviated to the left of the axis Oz, i.e., the resulting
component Mx is negative. This leads to the negative sign of
the term G(1)

m .

VI. CONCLUSION

We have suggested a model of the effective shear mod-
ulus of magnetic gels with a random and isotropic spatial
distribution of spherical magnetizable particles in an elastic
matrix. The model is based on the mathematically regular
approximation of the pair interaction between the particles and
takes into account the effects of the elastic (through the host
matrix deformations) as well as magnetic interaction between
the particles. The appearance of internal anisotropy of the
composite, because of the particles’ rearrangement under the
magnetic interaction, is taken into account.

Our analysis shows that, if the magnetically induced
anisotropy of the composite is insignificant, magnetic inter-
action between the particles leads to decreasing dependence
of the effective shear modulus on the applied magnetic field.
If the anisotropy is strong enough, the modulus increases with
the field.

It should be noted that the presented results were obtained
under the assumption that the particles are spherical and

magnetically soft (do not have remnant magnetization). That
is why the particles do not rotate (turn round) under the action
of the local magnetic field. In real composites these conditions
can be broken. Moreover, on the stage of composite synthesis
and matrix polymerization, some of the particles can form
various heterogeneous aggregates. In the cured matrix these
aggregates can turn round, under the field and the shear action,
as whole clusters. This effect can mask the effects of the
interparticle interaction considered in the present work and
induce an increasing dependence of the composite modulus on
the applied field. Analysis of these situations requires detailed
study and is left for future work.

Keeping in mind the development of a mathematically
regular approach, we have considered only relatively small
displacement of the particles in the elastic matrix. In soft
ferrogels the particles, under the action of a strong field, can
undergo large displacements and form various anisotropic
heterogeneous structures. These structural transformations
induce hysteretic magnetic and mechanic behavior of the
composites [15,17]. An approach for the description of these
phenomena has been suggested in [35].
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