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Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search
for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials
containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their
steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic
thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte
between two parallel, blocking electrodes. We consider the application of a temperature gradient across the
device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the
thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward
the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations
for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion
under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of
equations is linearized in the (experimentally relevant) limit of a “weak” temperature gradient. From this, we
show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ2, where D is the Brownian
diffusion coefficient of both ion species, and κ−1 is the Debye length. However, the concentration gradient due
to the Soret effect develops on the bulk diffusion time, L2/D, where L is the distance between the electrodes.
For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders
of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs
after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion
coefficients, which simply set the magnitude of the steady-state thermovoltage.
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I. INTRODUCTION

The thermoelectric effect is the generation of a voltage
across an electrically conducting material in response to an
applied temperature gradient. When subjected to a temperature
gradient, charge carriers will tend to migrate toward colder
regions of the material [1], but they have differing thermal
diffusion coefficients, thereby generating a “thermovoltage,”
VT . This is analogous to the “diffusion potential” generated
under an applied concentration gradient of charge carriers [2].
The thermovoltage is related to the temperature difference
across the material, �T , by the Seebeck coefficient, Se, or
thermopower,

VT = −Se�T, (1)

where the negative sign is by definition such that the lower
temperature corresponds to a higher potential. The ability
of a thermoelectric material to convert thermal energy into
electrical energy is characterized by the figure of merit,
ZT = Se2σT/λ, where σ is the electrical conductivity and
λ is the thermal conductivity [3]. Physically, this represents
the electrical energy stored relative to the thermal energy
dissipated via conduction. Traditional thermoelectric devices
utilize inorganic semiconducting materials, which contain
electronic charge carriers, resulting in ZT ≈ 0.1–1, while
nanostructured devices have been fabricated with ZT ≈ 2–3.5
[4–6], achieved by having large electrical conductivities,
O(103S/cm), at room temperature, and Seebeck coefficients of
O(100 μV/K) [6,7]. However, this still places their efficiency
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below that of other heat engines [4]. Moreover, these inorganic
thermoelectrics are usually composed of rare, expensive, and
sometimes toxic materials [8].

Due to these drawbacks, there has been recent interest
in “soft” thermoelectric materials containing ionic charge
carriers, such as ionic liquids [9–11], nonaqueous organic
electrolytes [12], and mixed ionic-electronic conducting
polymers [13–17]. Although these come with a reduction
in electrical conductivity compared to semiconductor-based
thermoelectrics, they can be competitive due to having much
larger Seebeck coefficients, on the order of mV/K [12,15–17].
This enables such materials to store more charge [17], and it
provides a pathway for designing devices that have figures of
merit comparable to semiconductor-based devices. In addition,
the materials used tend to be much cheaper to process and less
toxic, making them good candidates for wearable devices and
mass production [8].

For example, Zhao et al. [17] utilized polyethylene
oxide with anionic end groups and sodium ions as the
counterions to obtain a Seebeck coefficient of 11.1 mV/K.
Chang et al. [15] used polymeric ethylenedioxythiophene
(PEDOT) and polystyrenesulfonate (PSS) doped with silver
ions and achieved Se = 0.1 mV/K with ZT = 0.13, stable
over O(103 s), compared to the undoped material, which
exhibited a decay in Se over O(100 s). Kim et al. [16] use
a PSS-based thermoelectric generator to achieve an ionic
Seebeck coefficient of 8 mV/K and ZT = 0.4. A nonaqueous
solution of tetrabutylammonium nitrate in dodecanol was
reported to have Se = 7 mV/K by Bonetti et al. [12].

Given the growing interest in and improvement of these
devices, an investigation of the dynamics of diffuse ionic
charge carriers in thermoelectric materials is warranted.
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However, mathematical modeling for even the simplest case
of a binary electrolyte has not included an analysis of the
charging dynamics, and instead considers only the steady-state
thermovoltage and ion distributions across a device [18–20].
At steady state, in an electroneutral binary electrolyte, the
Seebeck coefficient is SeE = kB(α+ − α−)/e [20], where kB

is Boltzmann’s constant, e is the elementary charge, and the
subscript E denotes the steady-state electroneutral solution
value. The quantities α+ and α− are the reduced Soret
coefficients, which are related to the ratios of the thermal
diffusion coefficients to the Brownian diffusion coefficients
of the cation (+) and anion (−), respectively. For the similar
problem of a suddenly applied voltage at a constant, uniform
temperature, the relevant time scale for the charging of the
Debye, or diffuse, screening layers of ionic charge adjacent to
the electrodes is the RC time, L/Dκ , where L is the distance
between electrodes, 1/κ is the Debye length, and D is the
Brownian diffusion coefficient of the ions [21]. However, it is
not clear what the time scale would be for a suddenly applied
temperature gradient, since the ions undergo both Brownian
and thermal diffusion. A central goal of the present paper is to
address this point.

Therefore, we systematically investigate the charge dy-
namics of a prototypical ionic thermoelectrochemical cell
subjected to a suddenly applied temperature gradient between
two parallel, perfectly blocking electrodes. We find that, for
“weak” applied temperature gradients (where “weak” will be
defined precisely in what follows), the Debye time, 1/Dκ2, is
the relevant time scale for development of the thermovoltage
and charging of the diffuse layers, whereas the diffusion time,
L2/D, is the time scale of bulk diffusion of neutral salt across
the cell. In Sec. II, we formulate the mathematical problem
and obtain the time scales for charge, salt, and thermovoltage
evolution. In Sec. III, we examine the time evolution of the
profiles for these quantities across the cell. In Sec. IV, we
offer some concluding remarks.

II. PROBLEM FORMULATION

Consider two parallel electrodes a distance 2L apart that
are not connected via an external circuit (Fig. 1). The space
between the electrodes is occupied by a fully dissociated binary
electrolyte solution with positive ion number density n+ and
negative ion number density n−. The cations (+) and anions
(−) have equal charge number, z, and equal Brownian diffusion
coefficients, D, but differing thermal diffusion coefficients,
DT,i , such that their reduced Soret coefficients are α+ and α−,
respectively, and α+ �= α−. Initially, at time t < 0, the system
is in thermal equilibrium at a constant, uniform temperature
T0, with uniform ion number densities n+,0 and n−,0. At
time t � 0, the electrode at x = +L (henceforth referred to
as the hot electrode) is heated to a temperature TH > T0 while
the electrode at x = −L (the cold electrode) is maintained at
the initial temperature T0.

As the heat propagates through the cell, the ions migrate
via the Soret effect toward the cold electrode [1,22], which
is balanced by Brownian diffusion and electromigration via
the induced electric field within the cell. The ions migrate at
different rates according to their reduced Soret coefficients,
αi = T DT,i/2D. For example, in the simple salt KCl, the

FIG. 1. Sketch of the model problem. The initial, isothermal state
is depicted in (a); the charges are uniformly distributed. Upon heating
the electrode at x = +L to a temperature TH > T0, the charges
migrate toward the colder regions of the cell, shown in (b). Two
effects are depicted in (b): the concentration gradient and the regions
of net charge near the electrodes.

Brownian diffusion coefficients are approximately equal [23]
but the reduced Soret coefficients are α+ = 0.5 and α− = 0.1
[19]. This tendency to migrate at different rates results in a local
electric field and hence a macroscopic voltage across the cell,
termed the thermovoltage, which acts to ensure no net current.

Assuming the distance between the electrodes is much
smaller than the other dimensions, which is reasonable
considering devices often have separations on the order of
millimeters [15–17], the dynamics of this system are governed
by the one-dimensional ion conservation equation,

∂n±
∂t

= −∂j±
∂x

, (2)

where t is time, and j± is the flux of the cations (+) or anions
(−), given by [19]

j± = −Dn±

(
∂ ln n±

∂x
± ze

kBT

∂φ

∂x
+ 2α±

∂ ln T

∂x

)
, (3)

where e is the elementary charge, kB is Boltzmann’s con-
stant, T is temperature, and φ is the electrostatic potential.
Equation (3) therefore represents the sum of the Brownian-
diffusive, electromigrative, and thermodiffusive fluxes of ions,
respectively.

The electrostatic potential is governed by Poisson’s equa-
tion,

− ∂

∂x

(
ε
∂φ

∂x

)
= ρ = ez(n+ − n−), (4)

where ε is the permittivity of the solution and ρ is the ionic
charge density. Finally, the temperature evolves according to
the heat equation,

∂

∂t
(ηCpT ) = ∂

∂x

(
λ

∂T

∂x

)
, (5)

where η is the density, Cp is the heat capacity per mass, and λ

is the thermal conductivity of the solution.
These equations are supplemented with the following

initial conditions specifying temperature, and the uniform ion
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densities:

T (x,t < 0) = T0, (6a)

n±(x,t < 0) = n±,0. (6b)

The boundary conditions specify no flux of ions and no
electric field at the electrode surfaces, and the temperature
applied to the electrodes:

j±(x = +L,t � 0) = 0, (7a)

j±(x = −L,t � 0) = 0, (7b)
∂φ

∂x
(x = ±L,t � 0) = 0, (7c)

T (x = +L,t � 0) = TH , (7d)

T (x = −L,t � 0) = T0. (7e)

Equation (7c) arises from Gauss’s law and the fact that there
is no external circuit connected to either electrode through
which they could develop a charge. Note that (7d) assumes
the electrode is instantly heated from T0 to TH . The ultimate
quantity of interest, the thermovoltage generated, is calculated
from an integral of the resultant electrostatic potential gradient
across the entire cell,

VT =
∫ +L

−L

∂φ

∂x
dx = φ(L,t) − φ(−L,t). (8)

A. Linear dynamics under weak temperature gradients

This mathematical problem (2)–(8) is impossible to solve
exactly. Not only are there nonlinearities in the ion flux
equations (3), but the physical properties (permittivity, dif-
fusion coefficients, etc.) of the solution vary with temperature
and hence with time and position. In general, mathematical
expressions, or experimentally determined correlations, to
approximate the temperature dependence of these properties
would be necessary. To make progress, we assume that, after
all transients have died out, the resulting temperature gradient
Gf = (TH − T0)/2L is small, such that Gf � T0/2L. This
condition can be expressed solely in terms of the temperatures
involved as �T � T0, where �T = TH − T0. Assuming a
thermoelectric device is intended to operate at least at room
temperature, T0 ≈ 300 K, then O(1 K) temperature differences
would readily suffice to meet this condition. Several devices
operate in this regime [12,15–17]. Thus, defining a small
parameter δ = Gf 2L/T0 = �T/T0 � 1, we can express all
unknowns as perturbations to their initial state by a small tem-
perature gradient. Hence for a general quantity, f = f0 + δf1,
where f0 is the initial state and f1 is the perturbed contribution
due to the temperature gradient. The resulting O(1) problem
is merely the initial state of the system prior to applying a
temperature gradient, and the O(δ) problem becomes

∂n±,1

∂t
= −∂j±,1

∂x
, (9a)

j±,1 = −D0

(
∂n±,1

∂x
±zen±,0

kBT0

∂φ1

∂x
+2α±,0n±,0

T0

∂T1

∂x

)
, (9b)

∂2φ1

∂x2
= −ρ1

ε0
= −ez

ε0
(n+,1 − n−,1), (9c)

∂T1

∂t
= λ0

η0Cp,0

∂2T1

∂x2
, (9d)

where to obtain (9d) it is assumed that the heat capacity and
density do not change appreciably with temperature such
that the ratios Cp,1/Cp,0 and η1/η0 are negligible. This is a
reasonable assumption for dilute aqueous electrolytes [23].
The initial and boundary conditions for the O(δ) problem are

n±,1(x,t < 0) = 0, (10a)

T1(x,t < 0) = 0, (10b)

j±,1(x = +L,t � 0) = 0, (10c)

j±,1(x = −L,t � 0) = 0, (10d)

∂φ1

∂x
(x = ±L,t � 0) = 0, (10e)

T1(x = +L,t � 0) = T0, (10f)

T1(x = −L,t � 0) = 0, (10g)

and the thermovoltage is obtained from (8) as

VT = δ

∫ +L

−L

∂φ1

∂x
dx = δ[φ1(L,t) − φ1(−L,t)]. (11)

Next, we eliminate temperature as an unknown quantity
by assuming that the heat diffusivity is much greater than
both ion diffusion coefficients, i.e., λ0/η0Cp,0 � D0 and
λ0/η0Cp,0 � T0DT,0. That is, we assume the temperature
within the electrolyte responds instantaneously to variations
in the electrode temperature, compared to the response of
the ions. This assumption is valid for aqueous solutions
of electrolytes, where the ratio λ/ηCpD ≈ 100 [23] and
αi ∼ O(1) [19]. For thermoelectric devices that use large,
nonaqueous, or organic charge carriers, this ratio will be
much greater than unity due to a smaller Brownian-diffusion
coefficient [24] but only a slightly reduced thermal diffusivity
[25]. Therefore, compared to the relatively slow diffusion
of ions, the heat diffuses rapidly through the cell, and the
temperature has the quasisteady linear profile

T (x,t) = T0 + G(t)(x + L), (12)

where G(t) = [TH (t) − T0]/2L is the time-dependent
temperature gradient, reflecting the heating of the hot
electrode. We now assume that the hot electrode achieves
its final temperature instantaneously, and we replace G(t)
with Gf . To eliminate T1 from (9b), we express the
left-hand side of (12) as a perturbation expansion and obtain
∂T1/∂x = Gf /δ = T0/2L. The linearized ion flux is thus

j±,1 = −D0

(
∂n±,1

∂x
± zen±,0

kBT0

∂φ1

∂x
+ α±,0n±,0

L

)
, (13)

and the thermodiffusive contribution has been reduced to a
constant at this order, −D0α±,0n±,0/L.

Next, we define

c = n+ + n−
2z

, (14a)

ρc = n+ − n−
2z

, (14b)

such that c represents the neutral salt concentration and eρc

represents a corresponding charge density. Substituting these
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definitions into (9) and (13) yields

∂c1

∂t
= D

∂2c1

∂x2
, (15a)

∂ρc,1

∂t
= D

∂2ρc,1

∂x2
− Dκ2ρc,1, (15b)

∂2φ1

∂x2
= −2ez2

ε0
ρc,1, (15c)

where 1/κ =
√

ε0kBT0/2e2z3c0 is the Debye length in terms
of the initial state, prior to applying a temperature gradient.
The initial and boundary conditions (10a)–(10d) become

c1(x,t < 0) = 0, (16a)

ρc,1(x,t < 0) = 0, (16b)

∂c1

∂x
(±L,t) = −c0αm

L
, (16c)

∂ρc,1

∂x
(±L,t) = −c0αd

L
, (16d)

where αm = (α+,0 + α−,0)/2 and αd = (α+,0 − α−,0)/2, and
we have used (10e) to eliminate the electrostatic potential
gradient. Note that, at least to first order in the applied gradient,
all thermal dependence is found in the boundary conditions
(16c) and (16d) through the reduced Soret coefficients.
Physically, this means, as we will see, that changing the Soret
coefficients alters only the magnitude of the charge density,
concentration, and thermovoltage at any point in time; the
charging dynamics are unaffected. That is, surprisingly, we
expect the time it takes to reach a steady state to be independent
of the thermal diffusion of the ions.

We now introduce Laplace transforms, defined by

f̂ (x,s) =
∫ ∞

0
e−stf (x,t)dt, (17)

where s is the Laplace frequency. The governing equations are
thus transformed to

d2ĉ1

dx2
= r2ĉ1, (18a)

d2ρ̂c,1

dx2
= k2ρ̂c,1, (18b)

d2φ̂1

dx2
= −2ez2

ε0
ρ̂c,1, (18c)

where

k2 = s

D
+ κ2 and r2 = s

D
,

with boundary conditions

∂ĉ1

∂x
(±L,s) = −c0αm

Ls
, (19a)

∂ρ̂c,1

∂x
(±L,s) = −c0αd

Ls
. (19b)

These equations are readily solved, yielding

ĉ1(x,s) = −c0αm

rLs

(
sinh(rx)

cosh(rL)

)
, (20a)

ρ̂c,1(x,s) = −c0αd

kLs

(
sinh(kx)

cosh(kL)

)
, (20b)

φ̂1(x,s) = −kT0αdκ
2

ezk2s

(
x

L
− sinh(kx)

kL cosh (kL)

)
. (20c)

The Laplace transform of (11) yields V̂ (s) = 2δφ̂1(L,s);
therefore, the Laplace transform of the thermovoltage is given
by

V̂ (s) = −2k�T αdκ
2

ezk2s

(
1 − tanh(kL)

kL

)
. (21)

The first term in both (20c) and (21) is due to the linear
electrostatic potential drop across the bulk, electroneutral
solution. In this region, the electric field that results from
the unequal thermomigration of the ion species is uniform.
However, near the electrodes, diffuse layers with nonzero net
charge develop and screen this electric field on the length scale
1/κ , described by the second term in (20c) and (21).

B. Determining time scales for thermoelectric charging

To determine the time scales for neutral salt diffusion,
charge separation, and thermovoltage evolution, we evaluate
(20) at the cold electrode (x = −L). However, it is difficult to
obtain physical insights into the dynamics from direct analytic
inversion of the resulting equations. Therefore, we consider
the limit of long times, t → ∞, by taking the limit s → 0. By
expressing (20) and (21) as Taylor series about s = 0, we can
obtain expressions of the form (1/s)/(1 + τs), which has an
inverse Laplace transform of (1 − e−t/τ ), where τ is the time
scale that we seek. Doing so, we find

c1(−L,t) ∼ c0αm(1 − e−t/τc ), (22a)

ρc,1(−L,t) ∼ c0αd tanh (κL)

κL
(1 − e−t/τρ ), (22b)

VT (t) ∼ −2kB�T αd

ez

(
1− tanh (κL)

κL

)
(1−e−t/τφ ),

(22c)

where

τc = L2

3D
, (23a)

τρ = 1

2Dκ2

(
1 − 2κL

sinh (2κL)

)
, (23b)

τφ = 1

2Dκ2

3 tanh (κL) + κL[tanh2 (κL) − 3]

tanh (κL) − κL
(23c)

are the time scales associated with diffusion of neutral
salt, diffuse layer charging, and thermovoltage evolution,
respectively.
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FIG. 2. Dimensionless time scales for charge density, τρ (solid),
and salt concentration, τc (dashed), at the cold electrode (the hot
electrode exhibits identical time scales) as well as voltage, τφ (dot-
dashed), vs κL. For κL � 1, all time scales increase with a slope of
2. However, for κL � 1, the charge density and voltage time scales
reach a constant value of 1/2 and 1, respectively, but the concentration
time scale continues to increase at the same rate.

We see in (23) that the time scales for charge density and
thermovoltage are both functions of κL but are proportional
to the Debye time, 1/Dκ2. In fact, for very thin diffuse layers,
κL → ∞, τρ ∼ 1/2Dκ2, and τφ ∼ 1/Dκ2. This contrasts
with the salt diffusion time scale, which is proportional to
the bulk diffusion time, L2/D, and is therefore independent of
concentration and much longer than the Debye time for thin
diffuse layers.

In Fig. 2, we compare the time scales (normalized by
1/Dκ2) as a function of κL. For κL � 1, or thick diffuse
layers, all time scales are proportional to (κL)2 and hence
diffuse charge, salt concentration, and voltage all evolve on
essentially the same time scale, i.e., the diffusion time. For
κL � 1, or thin diffuse layers, the charge and voltage time
scales achieve the limiting values mentioned above while
the salt diffusion time scale continues to increase as (κL)2.
This suggests that the salt concentration profile evolves much
more slowly than the charging of the diffuse layers and the
thermovoltage evolution for thin diffuse layers, which is the
regime in which many devices operate [12,15–17].

Moreover, we see in Eq. (22c) that for thin diffuse layers,
we recover the known steady-state Seebeck coefficient for
an electroneutral solution, −VT (t → ∞)/�T = 2kBαd/ez =
SeE [20]. For finite κL, the Seebeck coefficient is reduced by
SeE tanh (κL)/κL due to screening of the induced electric field
by the nonzero net charge and incomplete charge separation
due to overlapping diffuse layers. As the diffuse layer shrinks,
and hence the regions of nonzero net charge shrink, the
thermovoltage increases to the maximum value predicted for
an electroneutral solution.

In Fig. 3, we plot the salt concentration and charge density
at the cold electrode, calculated from the long-time solutions
(22) and numerical inversion [26] of (20) versus time for
several values of κL. Note that the concentration in Fig. 3(a)

is the perturbed concentration relative to the uniform initial
concentration. The positive perturbed concentration is the
expected result of the Soret effect, namely that both ion
species will be thermally induced to migrate toward the cold
electrode. Further, as κL increases, it takes longer to reach
the steady-state value, as predicted by the time scales (23)
and Fig. 2.

For positive values of αd , which corresponds to α+ > α−,
the cations undergo faster thermal migration than the anions.
This results in the positive diffuse charge at the cold electrode
predicted in Fig. 3(b). Recall that we have assumed that both
ion species have equal Brownian-diffusion coefficients. As κL

increases, the amount of charge stored in the diffuse layer
decreases and the equilibrium state is essentially achieved
progressively closer to t = 1/(2Dκ2), as indicated by the
dashed vertical line in Fig. 3(b).

In Fig. 3(c), we plot the time-dependent Seebeck coefficient
Se(t) = −VT (t)/�T versus time. Surprisingly, the long-time
solution (22c) agrees well with the numerical inversion
even at short times. The steady-state Seebeck coefficient
increases with increasing κL, due to the shrinking diffuse
layers as discussed previously. This indicates that in designing
thermoelectric devices, it is advantageous to have the electrode
separation much larger than the Debye length to achieve large
Seebeck coefficients.

Other quantities, such as the total diffuse charge in the half
of the cell near the cold electrode,

QT (t) =
∫ 0

−L

ρc(x,t)dx, (24)

and the total salt concentration in this same half,

CT (t) =
∫ 0

−L

c(x,t)dx, (25)

also evolve with a long-time exponentially decaying transient
to their steady state, but with different time scales. Using
Laplace transforms on these definitions and substituting (20),
we obtain

Q̂T (s) = c0αd

k2Ls
[1 − sech(kL)], (26)

ĈT (s) = c0αm

r2Ls
[1 − sech(rL)]. (27)

As before, direct inversion masks physical insights. Thus, in
the long-time limit, we obtain

QT (t) ∼ c0αd

κ2L
[1 − sech(κL)](1 − e−t/τQ ), (28a)

CT (t) ∼ c0αmL

2
(1 − e−t/τC ), (28b)

where

τQ = 1

Dκ2

(
1 − 2κL cosh2 (κL/2)

sinh (2κL)

)
, (29a)

τC = 5L2

12D
(29b)
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FIG. 3. Salt concentration (a) and charge density (b) at the
cold electrode (x = −L) along with the Seebeck coefficient (c),
Se(t) = −V (t)/�T , vs time at κL = 0.1, 1, 10, and 100. Numerical
Laplace transform inversions of (20) are shown as solid lines; dashed
lines are the long-time solutions (22). The salt concentration increases
monotonically, scaling as

√
t at early times, until the steady-state level

is reached. The time to achieve steady state increases as κL increases
since the time scale for concentration evolution is L2/D. The charge
density also increases monotonically (again like

√
t at early times)

but achieves progressively lower charge densities at equilibrium for
increasing κL. The Seebeck coefficient increases at approximately
the same rate at early times (proportional to t), but it achieves
progressively greater values, indicating larger thermovoltages, as κL

increases. The vertical dashed line in (b) and (c) indicates the thin
diffuse layer limit of the respective time scales.

are the time scales for total diffuse charge and total salt
concentration. Clearly, the time scales have different κL

dependency than those of the charge density, τρ , and salt
concentration, τc, at the cold electrode. However, for κL � 1,
the total diffuse charge time scale once again becomes the
Debye time, τQ ∼ 1/Dκ2, and for κL � 1, τQ ∼ L2/D,
which is identical to the time scales for the charge density at the
electrodes, τρ . Note also that the total diffuse charge decreases
as κL increases. This reduction in nonzero net charge is what
enables the Seebeck coefficient to increase with κL.

III. EVOLUTION OF CHARGE, SALT,
AND ELECTROSTATIC POTENTIAL

We plot salt concentration, charge density, and electrostatic
potential across the cell obtained via numerical inversion of
(20). The quantities are plotted for κL = 5 at times tDκ2 =
0.01, 0.1, 1, and 1000, with the final time intended to capture
the steady-state profile. In Fig. 4(a), we see that the salt slowly
diffuses away from the hot electrode toward the cold electrode
(for αm > 0). This diffusion begins near the electrodes, and,
as the diffuse layers attain equilibrium, it extends to the bulk
solution until the final linear profile is achieved.

As mentioned in the previous section, for αd > 0, the
cations undergo stronger thermal migration than the anions,
and hence the diffuse layer near the cold electrode obtains
a net positive charge, while the diffuse layer near the hot
electrode obtains a net negative charge, as shown in Fig. 4(b).
Compared to the neutral salt, the diffuse layers are much
nearer to their equilibrium state by tDκ2 ≈ 1. This suggests,
surprisingly, that the majority of ion transport occurs after
diffuse layer charging has occurred. This is similar to what has
been predicted under a suddenly applied voltage [21], where
there exists an initial salt depletion zone near the electrodes
as the diffuse layers form for applied voltages greater than the
thermal voltage, kBT /e. These depletion zones are then filled
on the diffusion time scale L2/D. The difference here is that
for an applied temperature difference, diffuse layers charge
on the time scale 1/Dκ2, whereas for an applied potential
difference, the charging time scale is L/Dκ , which is a factor
of κL longer.

Finally, Fig. 4(c) shows that the electrostatic potential is
linear in the bulk solution, indicating that a uniform induced
electric field exists there. Near the electrodes, the electric field
is screened by the nonzero net charge within the diffuse layers,
leading to a nonlinear profile.

Note that both charge density and electrostatic potential
share the same sign across the cell. This is distinctly different
from the situation observed for an applied voltage, in which
the electrostatic potential and charge density have opposite
signs, and it is a consequence of the dynamics being driven by
a temperature gradient. For instance, consider an electrolyte
for which αd > 0: then, the net negative charge density at
the hot electrode is driven toward the cold electrode by
the electromigrative force [negative potentials in Fig. 4(c)]
together with the thermal migration. This is balanced by the
diffusive flux, which acts to equalize the salt concentration
across the entire cell. Similarly, at the cold electrode (net
charge is positive), the diffusive flux and electromigration
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FIG. 4. Salt concentration (a), charge density (b), and electro-
static potential (c) across the cell at tDκ2 = 0.01, 0.1, 1, and 1000
at κL = 5. The heated electrode is located at x/L = 1 and the cold
electrode is at x/L = −1. At steady state (tDκ2 ≈ 1000), the neutral
salt has a linear profile and the electrostatic potential is linear only in
the bulk solution, away from the net charge of the diffuse layers.

(toward the hot electrode) are balanced by the thermal
migration (toward the cold electrode).

IV. CONCLUSIONS

We have provided a detailed derivation of the charging
dynamics of an ionic thermoelectric system, starting from the

fundamental ion transport equations for dilute electrolytes. We
assumed a weak temperature gradient and defined a parameter
to reflect this, δ = Gf 2L/T0 � 1, which sets a condition
on the temperature difference: �T � T0. This condition can
allow for rather large temperature differences provided the
initial temperature of the device is appropriately chosen.

We predict that the thermovoltage and diffuse layers
develop on the order of the Debye time, 1/Dκ2, for thin diffuse
layers, κL � 1. In this regime, the Debye time is much shorter
than both the diffusion time, L2/D, over which the linear salt
concentration profile develops, and the RC time, L/Dκ , which
is relevant for the related problem of a suddenly applied voltage
in an isothermal system. As an example, consider that a 1 mM
electrolyte solution has a Debye length of 1/κ ≈ 10 nm; then,
assuming D = 10−5 cm2/s and L = 1 mm yields κL ≈ 105

and L2/D = 103 s, while 1/Dκ2 ≈ 10−7 s. This implies that
the thermovoltage (and diffuse layers) develop extremely
quickly as the device charges under a temperature gradient.
However, salt diffusion due to the temperature gradient is
much slower. Although the Debye length for devices used in
experiments [15–17] can be difficult to calculate (as it depends
on charge-carrier concentration, which can be uncertain), with
electrode separations on the order of millimeters, we might
reasonably assume that they operate with thin diffuse layers.

In this paper, we assumed the ions have equal Brownian
diffusion coefficients, and relaxing this assumption would
lead to different time scales; however, we expect to retain the
same ordering of the time scales, i.e., steady thermovoltage
develops more quickly than the steady concentration gradient.
In experiments [15–17], one species is a large polymer
molecule and it diffuses much more slowly (or is essentially
fixed) relative to the other, hence unequal Brownian diffusion
coefficients would be a more accurate representation of
the physical systems. Furthermore, the time scales for salt
diffusion, diffuse charge, and thermovoltage would necessarily
have different limiting values for thin diffuse layers, but the
magnitude of the thermovoltage might not be affected for
weak temperature gradients, as only the Soret coefficients
determine its magnitude. An alternative representation of real
thermoelectric devices could be obtained by representing the
electrolyte as a single ion conductor with a fixed “background”
charge due to the nondiffusing species.

We had assumed the electrodes were not connected to
each other, however the most practical application of a real
device would be to have them connected via some external
circuit in order to utilize the thermovoltage as it develops.
In addition, most surfaces have some native charge, which
we also neglected. Both of these conditions would mean
replacing Eq. (10e) with one relating the time-dependent
electric field to the surface charge density at the electrode
surface. In principle, this surface charge density would also be
temperature-dependent [27–29].

In addition, we have considered only the first-order effects
of a weak temperature gradient. To this order, all thermal
dependency exists only in the boundary conditions, and
hence the Soret coefficients do not appear in the charging
time scales. Perhaps beyond this weak gradient regime, the
Soret coefficients play a greater role in the dynamics of the
system, as opposed to merely determining the magnitude of
the steady-state thermovoltage. One expected outcome is that
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the Seebeck coefficient will depend on the magnitude of the
temperature gradient, i.e., a “nonlinear” Seebeck coefficient.
We will examine this and other issues raised in this section in
future work.
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