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The salt-induced microheterogeneity (MH) formation in binary liquid mixtures is studied by small-angle x-ray
scattering (SAXS) and liquid state theory. Previous experiments have shown that this phenomenon occurs for
antagonistic salts, whose cations and anions prefer different components of the solvent mixture. However, so far
the precise mechanism leading to the characteristic length scale of MHs has remained unclear. Here, it is shown
that MHs can be generated by the competition of short-ranged interactions and long-ranged monopole-dipole
interactions. The experimental SAXS patterns can be reproduced quantitatively by fitting to the derived correlation
functions without assuming any specific model. The dependency of the MH structure with respect to ionic strength
and temperature is analyzed. Close to the demixing phase transition, critical-like behavior occurs with respect to
the spinodal line in the phase diagram.
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I. INTRODUCTION

Structure formation in the bulk of some complex fluids is a
well-known phenomenon. Examples include the self-assembly
of amphiphiles, block copolymers, room-temperature ionic
liquids, or ionic surfactants into micelles, microemulsions,
lyotropic phases, or other microscopic heterogeneities [1–9].
There, the structure formation can be easily understood in
terms of head-tail asymmetries of the composing molecules
or in terms of an asymmetry generated by external fields
[10]. Commonly, the different components of the system or
molecular groups can be classified in terms of their hydrophilic
vs hydrophobic or polar vs apolar character. In most cases, the
structural length scales of the systems are then governed by the
specific molecular dimensions of these molecular moieties.

However, there are complex fluids that become heteroge-
neous on length scales well above the molecular dimensions.
These fluids comprise binary liquid mixtures in the presence
of antagonistic salts, i.e., systems in which cations and anions
are preferentially dissolved in different components. Experi-
mentally, indications for microheterogeneity (MH) formation
occurred by means of light and small-angle x-ray scattering
(SAXS). An additional length scale was first observed in
water, 3-methylpyridine, and sodium bromide (NaBr) mixtures
[11–13]. A peculiarity of this system is the possible existence
of a tricritical point. These studies led to some controversies,
which have been resolved by realizing that the postulated
MHs were nonequilibrium structures with a long relaxation
time [14–16]. Later, small-angle neutron scattering (SANS)
provided clear evidence for equilibrium MHs in mixtures
of water, 3-methylpyridine, and sodium tetraphenylborate
(NaBPh4) [17–21]. In contrast, no pronounced MH could be
found for mixtures with inorganic salts [22–29].

Up to now, theoretical studies addressing MH formation
have been concentrated on models comprised of a single
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solvent component [30–32] or a binary mixture solvent in
the incompressibility limit [33–37] with dissolved anions and
cations. This approach neglects the binary character of the
solvent mixture. Thus, MH formation is governed solely by
the solvation contrast of the ion species in the solvent. This led
to an interpretation where the antagonistic salt ions behave
similar to ionic surfactants [19–21]. Recently, this generic
approach found some support via SAXS measurements on
water, 2,6-dimethylpyridine, and quaternary ammonium bro-
mide salt mixtures [38]. However, there are other systems in
which attributing MH formation to solvation contrasts alone
[32] does not apply [19–21]. Hence, a full understanding of the
underlying MH formation mechanisms has yet to be achieved.

The present work concentrates on an important aspect of
this general problem, namely the question about the origin
of a characteristic length scale of the MH. Experience tells
us that characteristic length scales are typically the result of
competing mechanisms, and it is the present goal to identify
these for a particular type of system. Here, mixtures of
water (H2O), acetonitrile (ACN, CH3CN), and the antagonistic
salts NaBPh4 or tetraphenylphosphonium chloride (PPh4Cl)
(Sec. II A, Fig. 1) are studied by means of SAXS (Sec. II C).
The resulting scattering intensity is analyzed in terms of a
generic form derived in Sec. II D. In contrast to previous
treatments [30–36], which are based on the intuitive picture
of MH formation being generated by long-ranged monopole-
monopole interactions between the ions, here long-ranged
monopole-dipole interactions are taken into account. Indeed,
it is found for the present system that Coulomb interactions
between the ions alone cannot account for MH formation, but
that monopole-dipole interactions between ions and solvent
molecules are decisive for the MH formation. In Sec. III,
first the SAXS data are discussed (Sec. III A). Next, the
concept of a spinodal line is introduced (Sec. III B) and
the critical-like behavior of the system with respect to this
spinodal line is verified (Sec. III C). Moreover, the dependence
of the characteristic length scale of MHs on the temperature
and the ionic strength are determined (Sec. III D). Finally,
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FIG. 1. Molecular structure of the solvent and antagonistic salt
components: water (H2O), acetonitrile (ACN), [PPh4]+ cations,
and [BPh4]− anions. Color code: oxygen (red), nitrogen (blue),
phosphorus (pink), boron (yellow), carbon (gray), and hydrogen (light
gray).

based on the proposed approach accounting for long-ranged
monopole-dipole interactions, competing mechanisms, which
can give rise to the characteristic length scale of MHs, are
propounded in Sec. IV.

II. METHOD AND EXPERIMENTS

A. Setting

The systems under consideration are binary mixtures of
polar solvents, denoted as components “A” and “B.” The
mixture exhibits a miscibility gap with an upper or lower
critical demixing point at mole fraction xA,c of component A

and temperature Tc. An extensive summary of binary solvent
mixtures with lower (LCST) and upper (UCST) critical points
was compiled by Francis [39]. In this liquid, univalent ions of
an antagonistic salt composed of cations “⊕” and anions “�”
are dissolved. To experimentally study the MH close to the
critical demixing point (Tc,xA,c) by SAXS, the system ideally
fulfills a series of requirements:

(i) The critical temperature Tc should be in the experimen-
tally accessible temperature range and xA,c ≈ 1/2.

(ii) Around room temperature, both components should be
miscible in all proportions.

(iii) The two components A and B of the mixture should
exhibit a good x-ray scattering contrast. In the forward
direction, the scattering contrast is quantified by the difference
of the real parts Re (n) = 1 − δ of the refractive indices of the
two solvent components. For hard x rays of energy E and soft

TABLE I. Solvent properties of water (H2O), acetonitrile
(ACN), 1,4-dioxane (EDO), 3-methylpyridine (3MP), and 2,6-
dimethylpyridine (DMP): melting point Tm [41], mass density �m

[41], refractive index decrement δ for 8 keV x rays [40], electric
dipole moment p [41,42], and static dielectric constant εr [43].

Tm �m δ p εr

(◦C) (g cm−3) (10−6) (D)

H2O 0.0026 0.9982 3.58 1.855 80
ACN −44 0.7857 2.72 3.925 36
EDO 11.75 1.0337 3.63 <0.4 2.2
3MP −18.1 0.9566 3.31 2.4 10
DMP −6.12 0.9226 3.22 1.66 6.9

matter composed of elements from the first or second period,
the refractive index decrement δ ≈ 0.23 × 10−3 cm3 keV2

g
�m

E2

can be estimated from the mass density �m [40].
(iv) The solubility of the antagonistic salt in the solvent

mixture should be �100 mM. Table I summarizes the relevant
parameters of solvents in which MHs have been previously
studied experimentally.

B. Material system

For the experiments presented in this work, mixtures of
water (H2O) and acetonitrile (ACN) were studied by SAXS
(Sec. II C). The system exhibits a miscibility gap with an upper
critical demixing point at xH2O,c = 0.638 and Tc = −1.34 ◦C
[44]. Comparison of the H2O dipole moment (1.855 D) with
ACN (3.925 D) renders ACN the more polar component.
At 8 keV, the refractive index decrement δ for H2O (δ =
3.58 × 10−6) is 32% larger than for ACN (δ = 2.72 × 10−6).
Therefore, compared to water-3MP mixtures used in previous
studies [17,19,21,24,25], the water-ACN system provides a
much larger scattering contrast in SAXS experiments (Table I).
Here, salts with the cations Na+ or [PPh4]+ and with the
anions Cl− or [BPh4]− were studied. From the Gibbs free
energies of transfer �tG

◦(H2O → ACN) it is inferred that
Na+ and Cl− ions prefer H2O over ACN, whereas [BPh4]− and
[PPh4]+ ions prefer ACN over H2O [45–47]. Thus, NaBPh4

and PPh4Cl can be considered as antagonistic salts. To verify
the importance of the antagonistic character of the salt for
MH formation, NaCl with a solubility of 6.1 M in H2O and
40 μM in ACN served as an example for a hydrophilic salt
[48]. In contrast, [PPh4][BPh4] has a solubility of 2.72 nM
in H2O and 1.14 mM in ACN [49]. However, its solubility
in the mixtures was too low to experimentally study the
presence of MH. Measurements were performed for H2O
mole fractions xH2O ∈ {0.635,0.7,0.8} and ionic strengths I ∈
{10,50,200} mM. Purified water was prepared by ultrafiltration
and deionization (Sartorius Arium 611 VF, 18.2 M�). Other
chemicals, namely ACN (Fisher Chemicals, HPLC grade),
NaBPh4 (Sigma Aldrich, �99.5%), PPh4Cl (Sigma Aldrich,
�98.0%), and NaCl (Sigma Aldrich, �99.8%), were used
as received. The robustness of the results has been verified
by repeated preparation and SAXS measurements of some
compositions.

C. Small-angle x-ray scattering

SAXS measurements were performed at a self-constructed
instrument [50] using a rotating Cu anode x-ray generator
(Rigaku MicroMax 007). The beam was monochromatized
(wavelength λ = 1.54 Å) and collimated by a multilayer
optic (Osmic Confocal Max-Flux, Cu Kα) and three four-jaw
slit sets (500 × 500 μm2 slit gap) with 150 cm collimation
length. An incident x-ray flux of ∼107 photons/s at the
sample position was measured by an inversion layer silicon
photodiode (XUV-100, OSI Optoelectronics). Samples were
contained in 1-mm-thick sealed glass capillaries, placed in a
temperature-controlled holder (stability better ±0.05 K), and
mounted inside the vacuum chamber. Two-dimensional (2D)
diffraction patterns were recorded on an online image plate
detector (Mar345). The sample-detector distance of 210 cm
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was calibrated with silver behenate [51,52]. SAXS data,
collected during three or more independent measurements with
1200 s exposure time each, were averaged and corrected by
dark images. Artifacts, originating from high-energy radiation,
were removed by differential Laplace filtering. By azimuthal
integration, the 2D data sets were converted to scattering
intensities I(q) versus momentum transfer q = 4π/λ sin(ϑ)
with total scattering angle 2ϑ . To focus on the scattering
from MHs, for all data sets the corresponding scattering
patterns recorded at 25 ◦C and constant, q-independent offset
values were subtracted from the raw data. This ensures that
for sufficiently high q-values, the average intensity 〈I(q)〉
vanishes.

D. Generic form of the scattering intensity

To gain physical insight from the measured scattering
intensities I(q), a fitting function is required that allows for
an interpretation of the underlying model parameters. The
derivation of the fitting function used in the present work
is based on a model-free reasoning in terms of the direct
correlation functions cij (r),i,j ∈ {A,B, ⊕ ,�}. This approach
is similar to the one employed in Ref. [32].

In a first step, one splits the 3D-Fourier integrals

ĉij (q) = 4π

q

∞∫
0

dr rcij (r) sin(qr) = ĉ<
ij (q) + ĉ>

ij (q) (1)

of the direct correlation functions cij (r) [53] with

ĉ<
ij (q) = 4π

q

R∫
0

dr rcij (r) sin(qr), (2)

ĉ>
ij (q) = 4π

q

∞∫
R

dr rcij (r) sin(qr). (3)

As the integration range in Eq. (2) is a compact interval for
any finite value R, ĉ<

ij (q) is an even and entire function, i.e., it
possesses an expansion of the form

ĉ<
ij (q) = c

<(0)
ij + c

<(2)
ij q2 + O(q4). (4)

Short-ranged interactions, e.g., due to solvation, formation of
coordination complexes, or hydrogen bonding, contribute only
to this part of the direct correlation function, provided the range
R is larger than the interaction range.

For sufficiently large R, the direct correlation functions are
given by cij (r) � −βUij (r) at distances r > R with the pair
interaction potential Uij (r) of species i and j [53]. As solvent
molecules are electrically neutral, i.e., they do not carry an
electric monopole; only dipole-dipole interactions are present
asymptotically, i.e., Uij (r > R) � A

(6)
ij /r6 for i,j ∈ {A,B}.

Note that here “dipole” refers to permanent, induced, or spon-
taneous dipoles and that permanent dipoles are orientationally
disordered. In contrast, the asymptotic interactions at long dis-
tances r > R between a solvent molecule and an ion, which by
definition carries an electric monopole, are not only of the type
monopole-dipole, but additional dipole-dipole contributions
(van der Waals forces) occur, i.e., Uij (r > R) � A

(4)
ij /r4 +

A
(6)
ij /r6 for i ∈ {A,B},j ∈ {⊕,�}. Similarly, two ions, both of

which carry electric monopoles, interact asymptotically at long
distances r > R with monopole-monopole, monopole-dipole,
and dipole-dipole contributions, i.e., Uij (r > R) � A

(1)
ij /r +

A
(4)
ij /r4 + A

(6)
ij /r6 for i,j ∈ {⊕,�} with A

(1)
ij = zizj �B/β,

z⊕ = 1, z� = −1, and the Bjerrum length �B = βe2/(4πε0ε).
A straightforward expansion of

W (α) := 4π

q

∞∫
R

dr r1−α sin(qr) (5)

in powers of q leads to [54]

W (1) = 4π

(
1

q2
− R2

2
+ R4

24
q2 + O(q4)

)
, (6)

W (4) = 4π

(
1

R
− π

2
q + R

6
q2 + O(q4)

)
, (7)

W (6) = 4π

(
1

3R3
− 1

6R
q2 + O(q3)

)
. (8)

From Eq. (3) one infers

c>
ij (q) = −βA

(6)
ij W (6) (9)

for i,j ∈ {A,B},
c>
ij (q) = −β

(
A

(4)
ij W (4) + A

(6)
ij W (6)

)
(10)

for i ∈ {A,B},j ∈ {⊕,�}, and

c>
ij (q) = −β

(
A

(1)
ij W (1) + A

(4)
ij W (4) + A

(6)
ij W (6)

)
(11)

for i,j ∈ {⊕,�}.
Combining the expansions in Eqs. (4) and (9)–(11), one

obtains from Eq. (1) the expansions

ĉij (q) = c
(0)
ij + c

(2)
ij q2 + O(q3) (12)

for i,j, ∈ {A,B},
ĉi,j (q) = c

(0)
ij + c

(1)
ij q + c

(2)
ij q2 + O(q3) (13)

for i, ∈ {A,B},j ∈ {⊕,�}, and

ĉij (q) = −zizj �B

q2
+ c

(0)
ij + c

(1)
ij q + c

(2)
ij q2 + O(q3) (14)

for i,j ∈ {⊕,�}.
The coefficients c

(k)
ij depend on the system as well as on the

thermodynamic state. Note that, due to Eq. (7), nonvanishing
coefficients c

(1)
ij 
= 0 can occur only in the presence of long-

ranged monopole-dipole interactions.
To calculate the partial structure factors, the 4 × 4 matrix

C with components Cij := √
�i�j ĉij (q) is introduced. Here,

�i is the bulk number density of species i. Then, one obtains
the matrix S = (1 − C)−1, whose components Sij are related
to the partial structure factors Sij (q) = √

�i�jSij /�, where
� = ∑

i �i denotes the total number density [53]. Here, only
wave numbers q corresponding to length scales larger than the
molecular sizes are considered, where the form factors of the
solvent species i ∈ {A,B} are essentially given by the numbers
Zi of electrons per molecule: I(q) ∼

∑
i,j∈{A,B}

ZiZjSij (q).
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Performing the matrix inversion inS = (1 − C)−1 by means of
Cramer’s rule, one obtains the following Padé approximation
of the scattering intensity in the range of large length scales
(q → 0):

I(q) � aq2 + bq + c

q2 + mq + n
. (15)

The coefficients a, b, c, m, and n in Eq. (15) depend on the
system and on the thermodynamic state. Given any specific
model for the system under consideration, one would obtain
explicit expressions of these coefficients. However, within the
general approach of the present work, one can merely expect
the coefficients a, c, and n in Eq. (15) to be positive. For later
reference, the expressions of coefficients m and n are given in
the form

m = −M

(
c

(1)
⊕⊕ + 2c

(1)
⊕� + c

(1)
�� + 2

(
1 − c

(0)
AA

)
T

(0)
B T

(1)
B + c

(0)
AB

(
T

(0)
A T

(1)
B + T

(0)
B T

(1)
A

) + (
1 − c

(0)
BB

)
T

(0)
A T

(1)
A(

1 − c
(0)
AA

)(
1 − c

(0)
BB

) − (
c

(0)
AB

)2

)
(16)

with T
(k)
i := c

(k)
i⊕ + c

(k)
i� and

n = N

(
1 + I n̄(

1 − c
(0)
AA

)(
1 − c

(0)
BB

) − (
c

(0)
AB

)2

)
. (17)

The positive coefficients M , N , and n̄ in Eqs. (16) and (17)
are system- and state-dependent. Moreover, M and N vanish
in the salt-free case (I = 0). Writing the denominator in
Eq. (15) in the form (q + m/2)2 + n − m2/4, one recognizes
for m < 0 the occurrence of a maximum of I(q) at q =
qmax := −m/2 with a peak width of half-height 2/ξ , where
ξ := 1/

√
n − m2/4.

III. RESULTS AND DISCUSSION

A. Fits of the scattering intensity

Figure 2 displays examples of measured scattering inten-
sities I(q) (circles) and the corresponding fits according to
Eq. (15) (lines) for water mole fraction xH2O = 0.635 at various
temperatures T . In Fig. 2(a) the case of a pure, salt-free (I = 0)
mixture is shown, where I(q) is monotonically decreasing
with a maximum at wave number q = 0. The increase of the
maximum I(0) upon decreasing the temperature T is related
to the approach of the critical point at xH2O,c = 0.638, Tc =
−1.34 ◦C (Sec. II B). Qualitatively the same monotonically
decreasing scattering intensities I(q) have been observed for
all pure, salt-free mixtures as well as for the mixtures with
added NaCl.

In contrast, adding one of the antagonistic salts NaBPh4

or PPh4Cl to an H2O-ACN mixture results in nonmonotonic
scattering intensities I(q), as is displayed in Fig. 2(b) for
xH2O = 0.635 with I = 50 mM NaBPh4. Upon decreasing the
temperature T , the height of the maxima I(qmax) increases and
the wave numbers qmax of the maximum shift toward smaller
values. These properties are discussed more systematically
in the following sections. The conclusion here is that the
occurrence of a peak in the scattering intensity I(q) at a wave
number q = qmax > 0, which is related to the formation of a
MH of length scale 2π/qmax, is clearly induced by the addition
of antagonistic salt.

The formation of salt-induced MHs has been observed
already before in mixtures of water and 3-methylpyridine by
means of SANS [17,19,21,24,25], and it has been analyzed in

terms of a fitting function

I(q) �
I (0)

(
1 + q2

κ2

)
ξ 2

0

κ2
q4 +

(
1

κ2
+ ξ 2

0 (1 − g2)

)
q2 + 1

(18)

with the bulk correlation length ξ0 of the pure, salt-free
(I = 0) solvent, the inverse Debye length κ = √

8π�BI , and
a parameter g2 describing solubility contrasts of the ions
[32,33,36]. It has been shown in Ref. [32] that Eq. (18) is the
generic form in the absence of monopole-dipole interactions,
i.e., for the case that the structure formation is generated
by short-ranged interactions and long-ranged monopole-
monopole interactions alone. Attempting to fit Eq. (18) to the
SAXS data of the present study of H2O/ACN mixtures leads
to unphysical parameters, such as values of κ2 that are negative
and of wrong magnitude. Therefore, the intuitively appealing
physical picture underlying Eq. (18) of MH formation due to a
competition between short-ranged interactions and Coulomb
interactions among the ions does not apply here, and one
has to find alternatives. This observation is a clear indication
of the importance of monopole-dipole interactions between
ions and solvent molecules in understanding the formation
of salt-induced MHs in mixtures of H2O and ACN. Indeed,
inspection of Eq. (16) shows that the coefficient m in Eq. (15),
and therefore the position qmax = −m/2 of the maximum of
I(q), is different from zero only if there are nonvanishing
coefficients c

(1)
ij . The coefficients c

(1)
ij , which originate from

Eq. (7), describe long-ranged monopole-dipole interactions.
In contrast to the water-ACN system studied in this work,

the small-angle scattering patters from water-3MP mixtures
[17,19,21,24,25] lead to physically meaningful parameters
using Eq. (18). This may be caused by the different ratios
between specific interactions present in the two systems. In
the general case of nonvanishing monopole-dipole interactions
(e.g., water-ACN), it is expected that the scattering patterns
I(q) for binary mixtures of dipolar fluids can be described by
Eq. (15). In the case of vanishing or negligible monopole-
dipole interactions (e.g., water-3MP), Eq. (18) may apply.
However, so far there is currently no theory available that
can a priori predict from common solvent properties (Table I)
whether Eq. (15) or Eq. (18) has to be used.
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FIG. 2. Scattering intensities I(q) of binary mixtures of H2O and
ACN for water mole fraction xH2O = 0.635 at various temperatures T .
Circles represent the measured SAXS data, whereas lines correspond
to fits of Eq. (15). Panel (a) displays the case of the pure, salt-
free mixture, which leads to monotonically decaying I(q) with a
maximum at q = 0. Panel (b) shows the case of I = 50 mM NaBPh4

added to the mixture in panel (a), which exhibits a maximum of I(q)
at wave number q = qmax > 0. In both panels (a) and (b), the height
of the maxima increases upon decreasing the temperature, i.e., upon
approaching the two-phase coexistence region in the phase diagram.
Moreover, panel (b) shows a decrease of qmax, i.e., an increase of the
length scale 2π/qmax of the MH, upon decreasing the temperature.

B. Spinodal line

By fitting Eq. (15) to the measured SAXS data, one
obtains the coefficients a, b, c, m, and n as functions of
the solvent composition xH2O, the salt type, the ionic strength
I , and the temperature T . Inspection of these dependencies
led to the observation of n being a linear function of T for
sufficiently high temperatures, as is demonstrated in Fig. 3
by the fitted values of n in the range T > Tb (violet squares
with a solid green line underneath). Extrapolation of the
linear high-temperature data (dashed blue line) toward n = 0
(blue circle) leads to the characteristic temperature Ts and the
slope N , by means of which the dashed blue and the solid
green lines in Fig. 3 are given as n(T � Ts) = N (T − Ts).
However, in the low-temperature range T < Tb the fitted
values of n (violet squares with a dashed red line underneath)
deviate from the extrapolated linear high-temperature behavior

.

xH2O

T

TbTs

NaBPh4

I = 10 mM
xH2O = 0.7

.

T (◦C)

n
(n

m
−

2
)

0-5-10

0.2

0.1

0

FIG. 3. Parameter n of the generic form Eq. (15) of the scattering
intensity I(q) as a function of the temperature T for water mole
fraction xH2O = 0.7 and ionic strength I = 10 mM of added NaBPh4.
Upon extrapolating (dashed blue line) the linear high-temperature
behavior (solid green line), one obtains the spinodal temperature Ts

(blue circle). Below the binodal temperature Tb (red dot), the low-
temperature behavior (dashed red line) occurs, which corresponds to
the phase-separated system.

with a progressively larger magnitude upon decreasing the
temperature.

To interpret this finding, one first infers from Eq. (15)
that macroscopic concentration fluctuations I(0) = c/n are
inversely proportional to n and therefore maximal at T = Tb.
If the measured values of n (violet squares in Fig. 3) followed
the linear high-temperature trend n(T � Ts) = N (T − Ts)
down to T ↘ Ts , concentration fluctuations would diverge
[I(0) → ∞]. This suggests the interpretation of T = Ts(xH2O)
as the spinodal line in a T -xH2O phase diagram (dashed
black line in the inset of Fig. 3). However, other than
exactly at the critical composition xH2O = xH2O,c, divergence
of concentration fluctuations upon decreasing the temperature
is preempted by phase separation, which takes place at the
binodal line T = Tb(xH2O) in a T -xH2O phase diagram (solid
black line in the inset of Fig. 3). After phase separation has
set in (red dots in the inset of Fig. 3), the distance of the
two coexisting phases (dashed red lines in the inset of Fig. 3)
from the spinodal line increases upon further decreasing the
temperature, which leads to a decrease of the concentration
fluctuations I(0).

The dependence of the binodal temperature Tb and of the
spinodal temperature Ts on the composition xH2O, on the ionic
strength I , and on the salt type is shown in Table II. For
the salt-free (I = 0) mixture with xH2O = 0.635, binodal and
spinodal temperatures almost coincide, Tb ≈ Ts , which is in
agreement with the fact that this mole fraction is close to the
critical concentration xH2O,c = 0.638.

The dependence of the spinodal temperature Ts(I ) on the
ionic strength I is displayed in Fig. 4 for water mole fraction
xH2O ∈ {0.635,0.7} and antagonistic salts (“N” ≡ NaBPh4 and
“P” ≡ PPh4Cl). Realizing that the denominator on the right-
hand side of Eq. (17) measures the macroscopic concentration
fluctuations of the salt-free mixture, one expects the scaling
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TABLE II. Binodal temperature Tb and spinodal temperature
Ts for some systems characterized by water mole fraction xH2O ∈
{0.635,0.7}, ionic strength I ∈ {0,10} mM, and the type of salt
(“N”≡ NaBPh4, “P”≡ PPh4Cl, and a blank space indicating no salt).

xH2O 0.635 0.635 0.635 0.7 0.7

I (mM) 0 10 10 0 10
Salt N P N
Tb (◦C) −1.34 −6.66 −4.68 −1.55 −6.36
Ts (◦C) −1.36 −7.25 −5.15 −2.26 −7.44

behavior(
1 − c

(0)
AA

)(
1 − c

(0)
BB

) − (
c

(0)
AB

)2 ∼ [Ts(0) − T ]γ (19)

in the temperature range T < Ts(0), where γ ≈ 1.2372 is the
well-known critical exponent of order-parameter fluctuations
of the 3D-Ising universality class [55]. By definition, n

vanishes at T = Ts(I ), and hence, from Eqs. (17) and (19),
one infers [Ts(0) − Ts(I )]γ ∼ I , i.e.,

Ts(0) − Ts(I ) ∼ I 1/γ . (20)

This scaling behavior is reasonably well confirmed by the
experimental data in Fig. 4.

C. Critical-like behavior

Upon approaching the critical point, well-known critical
behavior occurs, e.g., the divergence of the concentration
fluctuations I(0) and of the bulk correlation length ξ according
to power laws with universal critical exponents [55]. Moreover,
the same critical-like behavior can be expected to occur upon
approaching the spinodal line T = Ts(xH2O,I ) anywhere, i.e.,
not only at the critical point.

Figure 5 displays I(0) = c/m as a function of the
temperature difference T − Ts from the spinodal line for

0.7, N
0.635, P
0.635, N∼ I

1/
γ

.

I (mM)

(T
s
(0

)−
T

s
(I

))
(K

)

10010

100

10

1

FIG. 4. Dependence of the spinodal temperature Ts (blue circle
in Fig. 3) on the ionic strength I for systems with water mole fraction
xH2O ∈ {0.635,0.7} and some antagonistic salts (“N”≡ NaBPh4 and
“P”≡ PPh4Cl). The spinodal temperature Ts(0) for pure, salt-free
(I = 0) mixtures is displayed in Table II. The scaling relation Ts(0) −
Ts(I ) ∼ I 1/γ with the universal critical exponent γ can be justified
by means of general arguments (see the main text).

0.7, 10N
0.7, 0
0.635, 10P
0.635, 200N
0.635, 50N
0.635, 10N
0.635, 0

∼
(T −

T
s ) −

γ

.

(T − Ts) (K)

I(
0)

=
c/

n
(a

rb
.u

ni
ts

)

100101

100

10

1

FIG. 5. Macroscopic concentration fluctuations I(0) for wa-
ter mole fraction xH2O ∈ {0.635,0.7}, ionic strength I ∈ {0,10,50,

200} mM, and some salts (“N”≡ NaBPh4 and “P”≡ PPh4Cl) as a
function of the temperature difference T − Ts from the spinodal.
Close to the spinodal, universal critical-like behavior I(0) ∼ (T −
Ts)−γ with the universal critical exponent γ is observed.

solvent composition xH2O ∈ {0.635,0.7}, ionic strength I ∈
{0,10,50,200} mM, and antagonistic salts (“N”≡ NaBPh4 and
“P”≡ PPh4Cl). At small temperature distances T − Ts inside
the one-phase region of the phase diagram, i.e., for T > Tb,
the expected universal scaling behavior I(0) ∼ (T − Ts)−γ

with the universal critical exponent γ ≈ 1.2372 (Ref. [55]) is
confirmed for all systems.

Similarly, Fig. 6 displays ξ = 1/
√

n − m2/4 as a function
of the temperature difference T − Ts from the spinodal line
for solvent composition xH2O ∈ {0.635,0.7}, ionic strength
I ∈ {10,50,200} mM, and antagonistic salts (“N”≡ NaBPh4

and “P”≡ PPh4Cl). Again, the expected universal scaling

0.635, 10P
0.7, 10N
0.635, 200N
0.635, 50N
0.635, 10N

∼ (T − Ts)−ν

.

(T − Ts) (K)

ξ
=

1/
n
−

m
2
/
4

(n
m

)

101

100

10

1

FIG. 6. Correlation length ξ for water mole fraction xH2O ∈
{0.635,0.7}, ionic strength I ∈ {10,50,200} mM, and some salts
(“N”≡ NaBPh4 and “P”≡ PPh4Cl) as a function of the temperature
difference T − Ts from the spinodal. Close to the spinodal, universal
critical-like behavior ξ ∼ (T − Ts)−ν with the universal critical
exponent ν is observed.
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behavior ξ ∼ (T − Ts)−ν with the universal critical exponent
ν ≈ 0.6301 (Ref. [55]) is found.

These results show the consistency of the interpretation of
Ts as the spinodal temperature, with respect to which critical-
like universality is expected to occur. Moreover, the critical-
like behavior found for the present systems belongs to the
3D-Ising universality class. Hence, adding the antagonistic
salts NaBPh4 or PPh4Cl to H2O + ACN mixtures does not
alter the universality class.

D. Structure of microheterogeneities

As already mentioned after Eq. (17), the scattering intensity
I(q) exhibits a maximum at wave number q = qmax = −m/2
with a peak width of half-height 2/ξ . This maximum is
related to a characteristic wavelength 2π/qmax of concentration
fluctuations, which decay on the scale of the correlation
length ξ = 1/

√
n − m2/4. Since ξ ∼ (T − Ts)−ν , ν ≈ 0.6301

(Fig. 6), and n ∼ T − Ts (Fig. 3) for T ↘ Ts , one expects

qmax = −m

2
=

√
n − 1

ξ 2
� √

n =
√
N (T − Ts)

1/2. (21)

This scaling of qmax with respect to T − Ts is confirmed in
Fig. 7(a) for solvent composition xH2O ∈ {0.635,0.7}, ionic
strength I ∈ {10,50,200} mM, and antagonistic salts (“N”≡
NaBPh4 and “P”≡ PPh4Cl).

It is found empirically that, given composition xH2O and
salt type, the quantity qmax/I

1/4 does not depend on the ionic
strength I for sufficiently large temperature differences T − Ts

from the spinodal, which is shown in Fig. 7(b) for the case
xH2O = 0.635 and NaBPh4. Consequently, at sufficiently high
temperatures T above the spinodal temperature Ts , the wave
number at the peak position qmax scales as qmax ∼ I 1/4.

IV. CONCLUSION AND SUMMARY

All H2O/ACN mixtures with different concentrations of
the two antagonistic salts NaBPh4 and PPh4Cl exhibit MHs
with characteristic length scales in the nm regime. It turned
out that MH formation in these systems cannot be attributed to
monopole-monopole interactions between the ions alone, but
that monopole-dipole interactions between ions and solvent
molecules are necessary for a quantitative understanding. By
taking into account electric monopole-dipole interactions, a
generic form of the SAXS pattern I(q) has been derived
(Sec. II D). Using Eq. (15), the experimental SAXS data
can be quantitatively reproduced by fitting (Fig. 2). The
resultant quantities are as follows: The amplitude of the macro-
scopic concentration fluctuations (Fig. 5), the bulk correlation
length (Fig. 6), and the characteristic periodicity of the MH
[Fig. 7(a)]. In contrast to the parameters extracted by fitting
Eq. (18), i.e., the standard model for MHs, those obtained by
fitting Eq. (15) are all physically meaningful. Detailed analysis
showed that their temperature dependence is governed by the
distance from the spinodal line T = Ts(xH2O,I ) in the phase
diagram (Fig. 3). Upon adding salt, the spinodal line shifts to
lower temperatures (Fig. 4).

A physical understanding of the mechanisms leading to MH
formation caused by monopole-dipole interactions is obtained
by analysis of Eq. (16). Its relevance is given by the relation

0.635, 10P
0.7, 10N
0.635, 200N
0.635, 50N
0.635, 10N

∼ (T − Ts)
1/2

(a)
.

(T − Ts) (K)

q m
a
x

=
−

m
/
2

(n
m

−
1
)

101

1

0.1

0.01

(b)
.

(T − Ts) (K)

q m
a
x
(

B
/
I
)1

/
4

252015105

3

2

1

FIG. 7. Dependence of the wave number qmax of the maximum
of the scattering intensity I(q) (Fig. 2) as function of the temper-
ature difference T − Ts from the spinodal for water mole fraction
xH2O ∈ {0.635,0.7}, ionic strength I ∈ {0,10,50,200} mM, and some
salts (“N”≡ NaBPh4 and “P”≡ PPh4Cl). The wave number qmax is
related to the characteristic length scale 2π/qmax of the MH. Panel
(a) confirms the scaling qmax ∼ (T − Ts)1/2 for small temperature
differences T − Ts from the spinodal derived in the main text. The
collapse of the data points onto one curve in panel (b) shows the
scaling qmax ∼ I 1/4 with the ionic strength I for sufficiently large
temperature differences T − Ts from the spinodal.

of m to the wave number qmax = −m/2 of the MH. The
coefficients c

(1)
ij in Eq. (16) originate exclusively from the

long-ranged part of the monopole-dipole interaction [Eq. (7)].
Typically, induced dipoles are much weaker than permanent
ones. Therefore, expression c

(1)
⊕⊕ + 2c

(1)
⊕� + c

(1)
�� in Eq. (16) can

be neglected. The dominant last term in the large parentheses
of Eq. (16) may be rewritten in order to obtain

qmax ≈ M

(
T

(0)
A

T
(0)
B

)(
1 − c

(0)
AA −c

(0)
AB

−c
(0)
AB 1 − c

(0)
BB

)−1(
T

(1)
A

T
(1)
B

)
. (22)

The inverse matrix in Eq. (22) corresponds to the partial
structure factors S(0) of the pure, salt-free mixture at wave
number q = 0. Hence, due to Yvon’s equation [53], it is
proportional to the integral of the density-density correlation
matrix Ĝ

(0) = �S(0). Therefore, Eq. (22) expresses the scenario
in which MHs with qmax 
= 0 originate from a coupling
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(represented by Ĝ
(0)

) of short-ranged interactions (represented

by T (0)) and long-ranged monopole-dipole salt-solvent interac-
tions (represented by T (1)). It is important to note that T

(k)
i :=

c
(k)
i⊕ + c

(k)
i�, i ∈ {A,B},k ∈ {0,1}, is the sum of cation-solvent

and anion-solvent contributions. In contrast, the scenario
described in Refs. [32,33,36] is based on the differences
between the cation-solvent and anion-solvent interactions.

Based on these formal results, the following picture
emerges: A competing mechanism between charge fluctu-
ations and their monopole-dipole interaction leads to the
formation of MHs. For an antagonistic salt, the ion species
are preferably solvated by different solvent components. The
difference is generated by short-ranged interactions, leading to
short-ranged correlations only. The preference of antagonistic
ions for different solvent components leads to solvation-
induced short-ranged charge-density fluctuations, which give
rise to long-ranged monopole-dipole interactions. These long-
ranged interactions are strongest for the more polar solvent
component. The relative strength of short-ranged interactions
and long-ranged monopole-dipole interactions determines the
characteristic length scale 2π/qmax of these MHs: The stronger
the long-ranged monopole-dipole interaction is, the larger is
qmax [Eq. (16) or (22)], i.e., the smaller the characteristic length
scale of the MH.

Recently, it has been argued that the absence of
MH in H2O/3MP mixtures with simple inorganic salts
[17,19,21,24,25] may be caused by similar anion and cation
sizes [32]. However, there the considered inorganic salts
are not antagonistic. Within the picture proposed above,
the absence of MH can therefore also be understood by
a different mechanism: The absence of charge fluctua-
tions leads to vanishing long-ranged monopole-dipole in-
teractions. Accordingly, in the present study, H2O/ACN

mixtures with I ∈ {10,50} mMNaCl exhibit no MH. This
observation is in agreement with the findings of Takamuku
et al. [22,23,26–29].

In summary, salt-induced MHs in H2O/ACN mixtures
with the antagonistic salts NaBPh4 or PPh4Cl have been
systematically studied by SAXS. A detailed analysis of these
data suggests that these MHs are generated by a competition
of short-ranged interactions and long-ranged electrostatic
monopole-dipole interactions. Besides being consistent with
the present and previous experimental results, this picture
offers an explanation for the occurrence of characteristic length
scales of MHs.

In chemical reactions, microheterogeneous solvent struc-
tures can influence their catalytic activity. These processes in a
macroscopically homogeneous liquid phase can be described
as phase transfer or interfacial reactions at domain bound-
aries [56]. Therefore, the possibility of MH formation with
controlled length scales using near-critical solvent mixtures
with ionic impurities might offer an attractive approach to
tune catalytic reactions. Being partly of electrostatic origin,
salt-induced MHs in fluids may be used for pattern formation
at interfaces. Here, the electrodes could serve to control the
pattern’s size and morphology. Detailed studies on such salt-
induced MH at interfaces are planned for future investigations.
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