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Analytical expressions for the closure probability of a stiff wormlike chain for finite capture radius
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Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient
to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid
fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula
for the probability η(rc) that the distance between the chain extremities is smaller than some capture radius rc. The
formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling
regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at
closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a
vanishing capture radius and of nearly fully extended chains.
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I. INTRODUCTION

Contact formation and reactions between distant sites of a
macromolecule are ubiquitous in nature. For example, DNA
looping is a key process in the regulation of gene expression
[1–6], and loops are also involved in the folding pathway
of polypeptide chains [7] as well as in the higher-order
structure of proteins [8] and chromatin in eukariots [9].
Since stiffer chains have rarer looping events, chain closure
experiments can also be used to probe the elastic properties
of macromolecules as diverse as carbon nanotubes [10],
wormlike micelles [11], or DNA [12–19].

An important step in characterizing contact formation con-
sists of quantifying the probability that two given monomers,
say the end monomers, are closer than some capture radius
rc at equilibrium, possibly under orientational constraints at
the chain extremities [3,20,21]. This closure probability gives
access to the looping time in the reaction controlled regime,
when many end-to-end encounters are necessary to actually
form a link; it is also an important quantity in all studies
of first contact kinetics in polymers [19,22–26]. In general,
the looping probability can depend on geometrical constraints
such as twist alignment restriction (for example due to DNA
helical repeat [13,27]) or constraints on the opening angle
(appearing in particular in the situation of protein-mediated
contact in DNA [16,28–33]). It is also interesting to understand
looping in the absence of orientational constraints. In this case,
one aims to answer the following simple question: what is
the probability η(rc) to find the end monomers closer than the
capture radius rc? The quantity η(rc), on which we focus in this
work, is relevant, for example, when closure occurs through
the pairing of (flexible) single-stranded DNA [15,18] or via
a protein bridge [3,34,35] in the limit of a very soft protein;
η(rc) can also be used to derive upper bounds for the looping
probability with orientational constraints [15,18].

We consider here the calculation of η(rc) in polymers
represented as thin elastic rods (wormlike chains [36]). In
this simple model, which realistically describes a number
of polymers such as DNA [37–41], nonlinearities make the
calculation of the looping probability nontrivial. Analytical
formulas for η (or, equivalently, for the distribution of end-
to-end vectors) have been proposed for very long chains (see,
e.g., Refs. [27,41,42]) or chains that are only weakly bent

[43] (a situation that is not relevant to the closure problem).
Analytical results also exist in the limit of rigid chains, where
noise-induced end-to-end contacts become rare events, since
they can occur only after overcoming a large barrier of bending
energy. In this regime, Shimada and Yamakawa (SY) [27]
provided analytical and asymptotically exact expressions for
the looping probability that are valid in the limit of an infinitely
small capture radius. Other theoretical approaches have been
proposed to calculate the looping probability in more general
situations: exact numerical results have been obtained by using
Monte Carlo [17,34,44–48] or Brownian dynamics [49] simu-
lations, transfer-matrix methods [50,51], or by exploiting the
analogy in Fourier space with a quantum-mechanical problem
[35,52,53], with use of infinite continued fractions [54–57]
or recursive relations [58]. Other approaches use weak-noise
approximations to obtain the closure likelihood in discrete
[31,59,60] or continuous models via path-integral techniques
(in two dimensions) [61], or numerical evaluation of functional
determinants [62]. Approximate extrapolation formulas of
SY’s expressions have also been proposed [35,63]. However,
for stiff chains, explicit and asymptotically exact formulas for
the dependence of the encounter probability η(rc) with the
capture radius in three dimensions, with an identification of
scalings, are not provided by these approaches, and they are
the subject of the present work.

In this paper, we present an analytical calculation of the
end-to-end encounter probability η(rc) for stiff wormlike
chains, and for the distribution p(r) of end-to-end vectors r [see
Eqs. (3) and (9)]. Our analytical formulas are asymptotically
exact at leading order in the limit of stiff chains, when the
end-to-end distance is not too close to the chain contour
length. The formulas are in excellent agreement with the
numerical results obtained in Ref. [55] for a broad range of
parameters, and they lead to the identification of two distinct
scalings. The presence of these distinct scaling regimes can
be associated with a strong variation of the fluctuations of the
chain orientation at closure. The identification of these distinct
scalings, together with the explicit analytical expressions for
η(rc) and p(r), are the main results of this work.

The outline of this paper is as follows. In Sec. II, we
define the model and summarize the analytical formulas
derived in the paper, including their physical interpretation. In
Sec. III, we briefly recall the equations describing the looping
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configuration of minimal bending energy. We calculate p(r)
in the case of finite r in Sec. IV. The case of a smaller
capture radius is considered in Sec. V. In Sec. VI, we provide
explicit expressions for the probability η(rc) to observe the
end monomers separated by a distance less than rc, and
the associated radius-dependent closure factor. In Sec. VII,
we consider a model in which torsional stiffness is also
included, and we check that η(rc) is not modified by this
additional parameter. Concluding remarks are presented in
Sec. VIII.

II. MODEL AND SUMMARY OF RESULTS

A. Model and notations

We consider a polymer represented as an inextensible
continuous curve of contour length L in a three-dimensional
space. We call û(s) the local unit tangent vector, s being the
curvilinear coordinate along the chain (with 0 � s � L). The
energy of a configuration is assumed to be that of a thin elastic
rod resisting bending,

E = κ

2

∫ L

0
ds [û′(s)]2. (1)

Here, the prime denotes differentiation with respect to s, and κ

is the bending elastic modulus, related to the (bend) persistence
length lp by κ = lpkBT , with kB the Boltzmann constant and T

the temperature. We use torque-free conditions at the ends by
imposing that all allowed configurations satisfy (∂s û)s={0,L} =
0. Note that we do not include a torsional stiffness term in the
expression (1), but we check in Sec. VII that torsion does not
influence the value of the distribution of end-to-end vectors,
and it is thus ignored here.

We focus on the calculation of the probability distribution
function (PDF) p(r) of the end-to-end vector r = (rx,ry,rz) =∫ L

0 û(s)ds. We also introduce the probability η(rc) that the
distance between the end monomers is smaller than a capture
radius rc, with η(rc) = ∫

|r|�rc
p(r)dr. To be clear with the

notations, we specify that dr = drxdrydrz and that p(r)dr
is the probability that each spatial coordinate of r is observed
in the interval ]ri,ri + dri[. Note that, for symmetry reasons,
p(r) does not depend on the orientation of r and is thus
related to the PDF q(r) of the end-to-end distance r ≡ |r|
by p(r) = q(r)/(4πr2).

B. Results for the distribution of end-to-end
vectors of stiff chains

The aim of the present paper is to generalize the formula
derived by Shimada and Yamakawa (SY) [27] for stiff chains
(L � lp) and vanishing end-to-end distances:

p(0) � pSY = 112.04
l2
p

L5
e−14.055 lp/L+0.246L/lp . (2)

Here, p is exponentially small with 14.055lp/L, which
represents the minimal bending energy (in units of kBT )
required to form an end-to-end contact, and the term in front
of the exponential, called the preexponential factor, comes
from the integration over fluctuations. The SY expression (2)
and the ring closure probability derived in the same paper
[27] have been used to characterize the closure probability of
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FIG. 1. Dimensionless functions E∗ (a) and h (b) appearing in the
expression (3) of p(r) (continuous lines). We also show asymptotic
values of h,E∗ (dashed lines) showing the compatibility of the results
with those of Refs. [27,43].

various macromolecules such as carbon nanotubes [10], DNA
[5,13–16,51,64], proteins [8], or wormlike micelles [11].

The main result of this work is the following formula, which
generalizes Eq. (2) for nonvanishing end-to-end distances:

p(r) �
(

1 − e
− 2λ0rlp

L2

) lp

rL3
h
( r

L

)
e
−E∗( r

L ) lp

L
+0.246 L

lp , (3)

where E∗ is the dimensionless minimal bending energy to
form a loop of size r ≡ |r|, λ0 = −(E∗)′(0) � 21.55, and h

is a dimensionless function describing the variation of the
entropic prefactor with r̃ ≡ r/L (explicit expressions of E∗
and h are given below). The entropic prefactor in the above
expression is asymptotically exact at leading order in the stiff
limit (lp � L), when the ratio r/L does not tend to unity at
the same time (more precisely, in both cases when r/L or
rlp/L2 is kept constant). The above expression is therefore
relevant to describe the end-to-end encounter probabilities in
the closure problem of stiff chains, for which r is typically not
close to the contour length. Its validity can be controlled by
looking at Fig. 2, which shows that our analytical expression
accurately predicts the values of p for parameters where it
varies by eight orders of magnitude. On the other hand, our
formula requires that L − r � L2/lp to be valid, and it fails
to describe p(r) for stiff chains near full extension, for which
the reduction in the number of available configurations (which
even vanishes for r � L) must be taken into account. This
regime is described by the analytical theory of Ref. [43], and
we show below that our Eq. (3) shares one validity regime
with this theory (see Sec. II D). Note also that in (3) we have
included a next-to-leading-order correction term eαL/lp with
α = 0.246 as in the SY formula; the rigorous calculation of
these corrections for any capture radius is beyond the scope
of this work, but α was numerically found to remain in the
interval [0.2; 0.25] for r < 0.8L and does not significantly
vary with r .

The functions E∗ and h are represented in Fig. 1 and can
be expressed explicitly in terms of a parameter m defined by

2E(m) = K(m)(1 + r̃), r̃ = r/L, (4)

where K(m) and E(m) are, respectively, the complete elliptic
integrals of the first and second kind, with elliptic parameter
m. For finite r̃ , this parameter m is related to the most probable
angle between r and u(0) at closure, denoted π − ϕ0

∗ (see Fig. 3
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FIG. 2. Distribution p(r) of end-to-end vectors r calculated in
this work [Eq. (3), black continuous lines], compared to its exact
value obtained numerically in Ref. [55] (green symbols). We also
show the results of Shimada and Yamakawa (SY) [27] for vanishing
r (black squares) and those of Wilhelm and Frey (WF) [43] valid
near full extension (dashed red lines). Inset: exact p(r) (for the same
values of L/lp , black continuous lines) compared to a naive estimate
that assumes that the variations of p come only from the variations of
the minimal bending energy to form a loop of size r , Eb(r) ≡ κE∗/L
(dashed blue lines).

for angular convention), by

1 − 2m = cos ϕ0
∗, (5)

and explicit expressions of E∗ and h are

E∗(r̃) = 8K(m)[E(m) + (m − 1)K(m)], (6)

h(r̃) = λ

2π

√
(sin ϕ0∗)2

r̃2 + 1 − 2r̃ cos ϕ0∗
, (7)

where

λ(r̃) = −∂r̃E
∗ = 4[K(m)]2. (8)

The values of the optimal angle (5) and of the rescaled
lowest bending energy (6) are well known [34,35]. The main
contribution of the present paper is the identification of the
leading-order behavior of the preexponential factor for a finite
capture radius in Eqs. (3) and (7). Our formula reduces exactly
to the SY result for vanishing end-to-end distances since the
equality 2λh = 112.04 holds for r = 0 (Fig. 1).

We also show that the probability η(rc) that the end-to-end
distance is smaller than rc is well approximated by

η(rc) � 4πrc h(r̃c)

Lλ(r̃c)
G

(
λ0rclp

L2

)
e
−E∗(r̃c)

lp

L
+0.246 L

lp , (9)

with

r̃c = rc/L, G(u) = 1 + e−2u − u−1(1 − e−2u). (10)

C. Scalings and geometric interpretation

The expression for p can be recast in the form

p = K∗e−lpE∗/L, (11)

FIG. 3. Examples of configurations that minimize the bending
energy when the end-to-end vector is fixed to r. In (a) r is finite, and
such configurations are defined up to a single rotation of angle α,
while in (b) r vanishes, and the looping configurations are defined up
to three angles, denoted α,μ,ω. The initial angle ϕ0

∗ is also indicated.

defining a preexponential factor K∗. A remarkable prediction
of Eq. (3) is the existence of two distinct scaling regimes for
K∗, namely

K∗ ∼
{

l2
p/L5 (r � L2/lp),

lp/(rL3) (r � L2/lp).
(12)

The existence of these distinct scaling regimes can be expected
by considering the following geometric argument, illustrated
in Fig. 3. Consider the configurations of minimal bending
energy that satisfy the constraint that the three-dimensional
end-to-end vector is fixed to a value r. Then, for vanishing
r , one realizes that these configurations are defined up to
three angular degrees of freedom [Fig. 3(b)] that describe the
chain’s orientation at closure. The situation is different when
r is finite, in which case the lowest energy configurations
that have a fixed value of r are defined up to one rotational
degree of freedom [Fig. 3(a)]. Consequently, there is a strong
variation with the end-to-end radius of the “number” of lowest
energy configurations with an end-to-end vector inside a fixed
infinitesimal volume dV centered around r. One can thus
expect that the entropic prefactor K∗ behaves differently in
the regimes of small or finite capture radius r . The calculation
presented below enables us to identify the crossover length
scale between these regimes to be L2/lp and to quantify
the value of K∗. This crossover between two regimes also
appears in the expression of η: since G(u → 0) ∼ u2 and
G(∞) = 1, we see that the preexponential factor in Eq. (9)
scales as r3

c l2
p/L5 for vanishing rc, whereas for larger rc the

prefactor scales as rc/L. Thus, the distinct scaling regimes for
the prefactor, present in the expression of p, also appear in
the expressions of η and are due to the variation of the chain
orientational fluctuations at closure.

Equation (12) means that the entropic prefactor K∗ strongly
varies with the end-to-end radius. To illustrate this effect,
we represent in the inset of Fig. 2 the exact value of
p(r) computed in Ref. [55] compared to the naive guess
p = pSYe−[Eb(r)−Eb(0)]/kBT , which takes only into account the
variation of the bending energy barrier to form a loop [called
Eb(r)] and not the variation with r of the entropic prefactor.
Contrary to our formula (3), this estimate is clearly inaccurate
for finite r by several orders of magnitude (Fig. 2, inset),
demonstrating the importance of taking into account entropic
effects in the calculation of p.
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D. Link with existing results for nearly extended chains

We observe in Fig. 2 that our theory is not valid anymore
when r is close to L: the reduction of the number of available
configurations occurring when r → L is not taken into account
by our approach. The consequence of this effect is a strong
variation of p when L − r is comparable to ∼L2/lp. Our
theory is not valid at these length scales, and in particular it
cannot describe the value of p at its maximum. This regime is
described by a result obtained by Wilhelm and Frey (WF)
[43], who performed an expansion around fully extended
configurations and showed that

pWF(r) � lp

L4N H

(
(L − r)lp

L2

)
, (13)

with H (x) = ∑∞
n=1(−1)n+1n2e−xn2π2

π/2. Here the factor N
is used to impose that pWF is a normalized PDF. We present in
Appendix C a derivation of this result with our formalism, and
we show there that the Laplace transform of H takes a simple
form, H̃ (p) = ∫ ∞

0 dx e−pxH (x) = √
p/[4π sinh(

√
p)], and

that the formula

N � 1 − L

3lp
+ 7L2

180l2
p

(14)

is valid up to corrections of order O(e−L/lp ), which are smaller
than 0.5% for lp � L/2. The WF result (13) can be explicitly
linked to our theory by noting that in the joint limit (L −
r)lp � L2 and lp/L � 1 it reads

p(r) � πlp

2L4
e−π2(L−|r|)lp/L, (15)

and we see that this expression coincides with our expression
(3) when r → L, since one can check that h(1) = π/2, and
E∗(x) � π2(1 − x) for x → 1. The above expression is valid
when one can neglect the terms proportional to the second
derivative of E∗ in Eq. (3), leading to the validity regime
(L/lp)1/2 � (L − r)/L � L/lp. Our expression and the WF
result have therefore one validity regime in common, as
illustrated in Fig. 2, providing a supplementary consistency
test of our theoretical approach.

III. LOOPING CONFIGURATIONS OF MINIMAL
BENDING ENERGY

The configurations of minimal bending energy that satisfy
the constraints on the end-to-end vector r = (rx,ry,rz) = a êx

are well known; see, e.g., Ref. [65] for a = 0 and Refs. [34,35]
for a > 0. Here we briefly describe these configurations.
We introduce the spherical angles θ (s),ϕ(s) describing the
orientation of û(s), such that

û = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) (16)

in a fixed Cartesian reference frame (êx,êy,êz). The energy of
the chain [Eq. (1)] expressed in terms of these angles reads

E = κ

2

∫ L

0
ds[(θ ′)2 + (sin θ ϕ′)2]. (17)

The torque-free conditions at the ends impose that all allowed
configurations satisfy θ ′|s=0,L = ϕ′|s=0,L = 0. From now on,
we set the units of length and energy such that L = 1 and

kBT = 1 and we consider the stiff limit κ → ∞, equivalent to
a weak-noise limit.

To describe the configurations that minimize E under the
constraint that r = a êx , we introduce a Lagrange multiplier λ

associated with the constraint rx = a, and we define

F = E + κλ

{∫ 1

0
ds sin θ cos ϕ − a

}
. (18)

Note that we could add two supplementary Lagrange mul-
tipliers associated with the constraints ry = rz = 0, but one
can check that they vanish and therefore do need to be
included. The lowest energy looping configurations are planar;
for simplicity, we describe the optimal configurations lying in
the horizontal plane, with θ = π/2,ϕ = ϕ∗(s). The condition
δF/δϕ = 0 leads to

ϕ′′
∗ + λ sin ϕ∗ = 0, (19)

with ϕ′
∗(0) = ϕ′

∗(1) = 0. This equation can be integrated once,
leading to the first-order nonlinear differential equation

(ϕ′
∗)2 = 2λ[cos ϕ∗(s) − cos ϕ0

∗], (20)

where ϕ0
∗ = ϕ∗(0) is the angle that the polymer extremity

makes with the direction êx in the optimal configuration (see
Fig. 3).

The solutions of these equations can be found in terms of
elliptic functions (see Ref. [34]):

ϕ′
∗(s) = −2

√
mλ cn[(s − 1/2)

√
λ |m], (21)

cos ϕ∗(s) = 1 − 2m sn2[(s − 1/2)
√

λ |m], (22)

where cn(·|m) and sn(·|m) are Jacobian elliptic functions of
elliptic parameter m [66]. The condition ϕ′

∗(0) = 0 imposes
that λ = [2K(m)]2, and therefore cos ϕ0

∗ = 1 − 2m, and m

can be linked to a by requiring that
∫ 1

0 ds cos ϕ∗(s) = a,
which leads to the condition (4), 2E(m) = K(m)(1 + a). The
dimensionless minimal bending energy,

E∗(a) = 1

2

∫ 1

0
ds (ϕ′

∗)2, (23)

is found to have the expression (6) [34,35] and is represented
in Fig. 1(a).

IV. DISTRIBUTION OF END-TO-END VECTORS
FOR FINITE CONTACT RADIUS

In this section, we consider the distribution of end-to-end
vectors obtained in the stiff limit, lp/L → ∞, by keeping
the parameter r/L constant (that is, in our units, the limit
κ → ∞ when r = a is constant). When a is finite, the lowest
energy configurations are degenerate and defined up to one
rotational degree of freedom [see Fig. 3(a)]. Selecting one
optimal looping configuration requires us to specify another
variable; here we consider the quantity z̃, representing a
weighted average vertical extension of the chain, defined as

z̃ =
∫ 1

0
ds cos θ (s) sin ϕ∗(s) = 〈cos θ | sin ϕ∗〉, (24)

where we use the notation 〈f |g〉 = ∫ 1
0 ds f (s)g(s) for any

functions f,g. At this stage, the choice of the weight function
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sin ϕ∗ seems arbitrary, but it will become clearer below; other
choices would lead to more complicated calculations (with the
same final result). We consider the joint probability distribution
function (PDF) of r and z̃, denoted Q(r,z̃), and we will see
later how p can be deduced from Q. By definition,

Q(a êx,0) = Z−1
∫

D[cos θ ]
∫

D[ϕ]e−E[θ,ϕ]

× δ3

(∫ 1

0
ds û − a êx

)
δ(〈cos θ | sin ϕ∗〉), (25)

where Z is a normalization constant that will be calculated
below, and

∫
D[cos θ ]

∫
D[ϕ] is understood as being propor-

tional to the product �n
i=1 sin θidθidϕi when one decomposes

[0; 1] into a large number of n subintervals. Here, the notation
δ3 is used for the three-dimensional Dirac delta function,
δ3(r) = δ(rx)δ(ry)δ(rz).

All chains that satisfy both conditions r = a êx and z̃ = 0
are necessarily around one of the two lowest energy config-
urations lying in the horizontal plane. Therefore, the integral
(25) is dominated by the contribution of the configurations
of the form θ = π/2 + θ1 and ϕ = ϕ∗ + ϕ1, where θ1 and
ϕ1 represent small deviations. Replacing the energy E by F
[Eq. (18)] expanded at quadratic order, and expanding at linear
order the terms inside the δ functions in Eq. (25), we obtain

Q(a êx ; 0) � 2Z−1e−κE∗
∫

D[θ1]

×
∫

D[ϕ1]e− κ
2

∫ 1
0 ds[(θ ′

1)2+Rθ (s)θ2
1 +(ϕ′

1)2+Rϕ (s)ϕ2
1 ]

× δ(〈sin ϕ∗|ϕ1〉)δ(〈cos ϕ∗|ϕ1〉)δ(〈1|θ1〉)
× δ(〈sin ϕ∗|θ1〉), (26)

with

Rϕ(s) = −λ cos ϕ∗, Rθ (s) = −(ϕ′
∗)2 − λ cos ϕ∗. (27)

The factor 2 in Eq. (26) comes from the fact that the fluctuations
around −ϕ∗(s) or +ϕ∗(s) give the same contribution to Q. The
operators −∂2

s + Rθ and −∂2
s + Rϕ can be called fluctuation

operators [34,67]. It is important to note that the operator
−∂2

s + Rθ has one vanishing eigenvalue, associated with the
eigenfunction sin ϕ∗(s) [which is why we used this particular
function in the definition (24) of z̃]. Physically, the presence
of the vanishing eigenvalue is linked to the fact that rotating
the chain by a small angle δα around the axis êx changes
neither the bending energy nor the end-to-end vector, and this
transformation is θ1 → θ1 + (δα) sin ϕ∗(s).

Evaluating (26) now amounts to performing integrals
involving multivariate Gaussian distributions. In Appendix A,
we recall some formulas that give the results of such integra-
tions, including the case of vanishing eigenvalues. Using these
formulas, Q can be expressed in terms of Green’s functions
and functional determinants, namely

Q(a êx ; 0)

= 2 e−κE∗
κ3/2

× λ
{
det′

[
κ

2π

(−∂2
s + Rθ

)]
det

[
κ

2π

(−∂2
s + Rϕ

)]}− 1
2

Za{(2π )3〈sin ϕ∗| sin ϕ∗〉〈sin ϕ∗|Gϕ| sin ϕ∗〉}1/2
,

(28)

where det′(L) represents the determinant after extraction of the
zero mode (thus the product of all nonvanishing eigenvalues
of L). Note that we use the notation

〈f |A|g〉 =
∫ 1

0
ds

∫ 1

0
ds ′f (s)A(s,s ′)g(s ′) (29)

for any functions f,g and symmetric A. In Eq. (28), Gϕ(s,s ′)
is the Green’s function of the Sturm-Liouville operator −∂2

s +
Rϕ ; it can be expressed as

Gϕ(s,s ′) = 1

y ′
ϕ(1)

×
{
yϕ(s)yϕ(1 − s ′) if s < s ′,
yϕ(s ′)yϕ(1 − s) if s > s ′,

(30)

where yϕ(s) is the solution of[−∂2
s + Rϕ(s)

]
yϕ(s) = 0, y ′

ϕ(0) = 0, yϕ(0) = 1. (31)

The function yϕ is therefore a homogeneous solution of the
operator [−∂2

s + Rϕ(s)], but it satisfies only one-half of the
Neumann boundary conditions.

We now calculate the normalization constant Z. We
consider the average angles ϕ̄ = ∫ 1

0 ds ϕ(s) = 〈1|ϕ〉 and θ̄ =
〈1|θ〉, and we denote as q(θ̄ ,ϕ̄) their joint PDF for free chains.
In the stiff limit, polymers in solution are in nearly straight
configurations where the angles θ,ϕ are almost equal to their
average value θ̄ ,ϕ̄. We can therefore pose ϕ � ϕ̄ + ϕ1 and
θ = θ̄ + θ1, and we expand the energy (18) at quadratic order
to get

q(π/2,ϕ̄) =
∫

D[ϕ1]
∫

D[θ1]e− κ
2

∫ 1
0 ds[(θ ′

1)2+(ϕ′
1)2]

× Z−1δ(〈1|θ1〉)δ(〈1|ϕ1〉). (32)

Noting that the uniform function is an eigenfunction of the
operator −∂2

s with vanishing eigenvalue, we apply again the
formulas of Gaussian integration (see Appendix A) and find

q(π/2,ϕ̄) = {
Z det′

[−κ∂2
s /(2π )

]}−1
. (33)

Isotropy imposes that we also have

q(θ̄ ,ϕ̄) = sin θ̄/(4π ). (34)

Comparing the above formulas (for θ̄ = π/2) leads to the
following expression for the normalization constant:

Z = 4π/det′
[−κ ∂2

s /(2π )
]
. (35)

Next, the calculation of functional determinants such as
those appearing in Eqs. (28) and (35) has a long history [68,69],
which is not discussed here. Applying the general formulas of
Refs. [70,71] leads to

det′
(−κ∂2

s /2π
)

det′
[
κ
(−∂2

s + Rθ

)
/2π

] = − [sin ϕ0
∗]2

〈sin ϕ∗| sin ϕ∗〉 , (36)

det′
(−κ∂2

s /2π
)

det
[
κ
(−∂2

s + Rϕ

)
/2π

] = 2π

κ

1

y ′
ϕ(1)

, (37)

where yϕ is defined in Eq. (31). Note that the factor 2π/κ in the
above equation differs from formula (39) of Ref. [70] because
of a slightly different definition of the determinant without the
zero mode.
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A geometrical argument can be used to relate Q and p. We
call pz̃(0|r = aêx)dz the probability that z̃ ∈ [0,dz] given that
r = a êx . Bayes’ theorem leads to

p(a êx) = Q(a êx ; 0)

pz̃(0| r = a êx)
. (38)

We call α the angle between an optimal looping configuration
and the horizontal plane; see Fig. 3(a). For such an optimal con-
figuration, we note from elementary trigonometry that cos θ =
û · êz = sin α sin ϕ∗, and thus z̃ = sin α

∫ 1
0 ds(sin ϕ∗)2. Since

α is uniformly distributed on [0,2π [, we have

pz̃(0|r = a êx) = 2

2π〈sin ϕ∗| sin ϕ∗〉 , (39)

where the factor 2 in the numerator comes from the fact that
z̃ = 0 is obtained either when α = 0 or when α = π . The
above relations imply that

p(a êx) = π〈sin ϕ∗| sin ϕ∗〉Q(a êx ; 0). (40)

Collecting all the above results [Eqs. (28), (35), (36), and
(37)] and inserting them into Eq. (40), we finally obtain

p(r) = κ h(r)

r
e−κE∗

, (41)

where we have defined the dimensionless function h as

h = λ| sin ϕ0
∗|

4π{〈sin ϕ∗|Gϕ| sin ϕ∗〉|y ′
ϕ(1)|} 1

2

. (42)

Reestablishing (temporarily) homogeneity, we obtain

p(r) = lp

rL3
h
( r

L

)
e−(lp/L)E∗(r/L). (43)

We have thus identified how the preexponential factor depends
on the properties of the lowest energy configuration (the initial
angle ϕ0

∗ and the dimensionless force λ = −∂rE
∗), and on the

fluctuation operators linearized around it (the function yφ).
We now show that this result can be simplified by noting

that the function yϕ can be calculated explicitly. Let us consider
the functions

y1(s) = ϕ′
∗(s), y2(s) = y1(s)

∫ s

1/2

du

[y1(u)]2
. (44)

It can be checked that y1 and y2 are independent solutions of
the second-order differential equation −y ′′ + Rϕ(s)y = 0. We
can thus express yϕ as a linear combination of y1,y2:

yϕ(s) = a1y1(s) + a2y2(s), (45)

where a1,a2 are identified by using the boundary conditions
yϕ(0) = 1,y ′

ϕ(0) = 0. After a few algebraic manipulations,
described in Appendix B, we obtain analytical expressions for
a1,a2 and therefore Gϕ , and the formula for h finally simplifies
to

h(r̃) = λ

2π

√
(sin ϕ0∗)2

r̃2 + 1 − 2r̃ cos ϕ0∗
. (46)

Let us now discuss the validity regime of Eq. (43). In
its derivation, we assumed that all chains that satisfy the
conditions z̃ = 0 and r = aêx are close to the configuration
of minimal energy satisfying these two conditions. This

requires κ � 1. Additionally, in Appendix D, we show that
the conditional variance of ϕ1(s) (when r,z̃ are fixed) varies
as 1/(κr) for small r . The assumed hypothesis of small
fluctuations is therefore correct if r � 1/κ (or, equivalently,
r � L2/lp with dimensions). Equation (43) is therefore not
valid for infinitely small end-to-end distance, since in this
limit the fluctuations around the minimal energy configuration
diverge, leading to an (apparent) divergence of the prefactor
in (43), which is similar to the divergence within the WKB
(Wentzel-Kramers-Brillouin) approximation of the probability
amplitude (in quantum mechanics) or the light intensity (in
optics) near caustics [69]. This divergence is due to the
presence of an infinity of classical paths (or optical rays) at
caustics, and it can therefore be compared to the explosion of
the number of lowest energy looping configurations when the
capture radius r becomes small (Fig. 3). A calculation of p(r)
valid for vanishing r is presented in Sec. V.

V. DISTRIBUTION OF END-TO-END VECTORS
FOR SMALL CONTACT RADIUS

In this section, we consider the distribution of end-to-end
vectors for small r (in the sense that r � 1/κ1/2; see below).
The distribution of end-to-end vectors for arbitrarily small r

is not given by Eq. (43), since the prefactor in this expression
diverges for r → 0. The major change arising in this limit is
the degeneracy of the optimal configurations, which are now
defined up to three rotational angles denoted � = {α,μ,ω}
[see Fig. 3(b)] instead of only one. We call �0 the set of
angles such that the looping configuration is in the horizontal
plane, described by θ = π/2,ϕ = ϕ∗(s), as represented by the
blue curve in Fig. 3(b). Let us set λ0 = λ(0) = −∂aE

∗(a)|a=0.
Interpreting κλ0 as an effective force, we see that there is an
energy reduction κλ0rx upon opening the loop by a distance
rx in the direction êx when � is fixed to �0. Therefore, the
probability density of r given that � � �0 takes the form

p(r|� = �0) � C0 eκλ0rx , (47)

where C0 does not depend on r. When writing the above
expression, we implicitly assumed that the variation of energy
with r is well approximated by using the first derivative of E∗

only. This approximation holds if eκ(E∗)′′(0)r2
x /2 � 1, which is

realized when r � 1/
√

κ . In this section, we assume that this
condition is satisfied.

Let us call q(r|� = �0) the PDF of the radius r = r given
that � = �0, which can be obtained by integrating Eq. (47)
over the orientation of r,

q(r|� = �0) = C0r
2
∫ π

0
dθ̃

∫ 2π

0
dϕ̃ sin θ̃ eκλ0r sin θ̃ cos ϕ̃ .

(48)

Now, due to isotropy, q(r|� = �0) does not depend on �0 and
is simply equal to the radial distribution q(r). Performing the
integral in the above expression leads to

q(r) = C0 × 4πr
sinh(λ0κr)

λ0κ
. (49)

The distribution of end-to-end vectors p(r) does not depend
on the orientation of r, and it can be deduced from the radial
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distribution:

p(r) = q(r)

4πr2
� C0

(1 − e−2λ0κr )eλ0κr

2rλ0κ
. (50)

The constant C0 will be identified by requiring that the solution
(50) matches the solution (41) obtained for nonvanishing r . If
we write Eq. (41) in the limit r � 1/

√
κ , we obtain

p(r) � h(0)κ

r
e−κE∗(0)+κλ0r . (51)

We can also consider Eq. (50) in the regime r � 1/κ:

p(r) � C0
eλ0κr

2rλ0κ
. (52)

The above expressions (51) and (52) should be identical since
each of them is valid for κ−1 � r � κ−1/2. They can be
matched if we set the value of C0 to

C0 = 2λ0h(0)κ2e−κE∗(0). (53)

Inserting this result into Eq. (50), we thus find that the
distribution of end-to-end vectors in the limit of vanishing
radius (in the sense that r � 1/

√
κ) is

p(r) � (1 − e−2λ0κr )h(0)κe−κE∗(0)+λ0κr

r
. (54)

Reestablishing homogeneity, we obtain

p(r) = h(0)lp
rL3

(
1 − e

− 2λ0 lp r

L2
)
e
− lp

L
E∗(0)+ λ0 lp r

L2 . (55)

The above expression is valid when r � L3/2/l
1/2
p . It has

in common with Eq. (43) the validity regime L2/lp � r �
L3/2/l

1/2
p in which both expressions reduce to

p(r) = h(0)lp
rL3

e−κE∗(0)+λ0lpr/L2
. (56)

Combining Eqs. (43) and (55), one can build the solution
(3), which provides a correct estimate of the distribution of
end-to-end vectors in all the regimes.

The main result of this section is the functional form
(55), which describes the transition between the regimes in
which the optimal configurations of fixed r are defined up to,
respectively, one or three angular degrees of freedom. We
can check this function by representing f = K∗(r)/K∗(0)
[where K∗ is the preexponential factor, defined by p(r) =
K∗(r)e−κE∗(r)] as a function of u ≡ λ0rlp/L2. Our theory
predicts that the obtained curves should converge in the stiff
limit to give

K∗(r)

K∗(0)
� 1 − e−2u

2u
, u = λ0rlp

L2
. (57)

This prediction is consistent with what is observed in Fig. 4.
Here it is interesting to note that it has already been observed
in Ref. [63] that the preexponential factor should differ from
a constant for small values of r; there it was proposed that

K∗(r)

K∗(0)
� I0(u)e−u, u = λ0rlp

L2
(58)

[see Eq. (19) in Ref. [63], in which we have used λ0r �
[E∗(−r) − E∗(r)]/2, valid for small r/L]. Here I0 is a
modified Bessel function of the first kind. We see in Fig. 4
that the above functional form captures the behavior of K∗(r)
for small rκ , but it differs for larger values, indicating that it

u = λ0r lp / L2
10-1 100 101

K
*(

r)
/K

*(
0)

10-1

100

lp/L= 5/3
lp/L=1
lp/L=0.5

(1-e-2u )/(2u)
I0 (u) e-u

FIG. 4. Value of the ratio of preexponential factors f =
K∗(r)/K∗(0) [defined by p(r) = K∗(r)e−κE∗(r)] as a function of
u ≡ λ0lpr/L2. Symbols are data from Ref. [55], dashed lines with
the same colors are the theoretical predictions of (3). The theoretical
small noise limit f = (1 − e−2u)/(2u) is represented [thick black line,
see Eq. (55)], as well as the form f = I0(u)e−u proposed in Ref. [63]
(red dash-dotted line).

is not an exact expression. We conclude that the behavior of
p(r) for r ∼ L2/lp is asymptotically given by (55) in the limit
of stiff chains.

VI. RADIUS-DEPENDENT CLOSURE FACTOR AND
CUMULATIVE END-TO-END DISTRIBUTION FUNCTION

We consider here the probability η(rc) that the end-to-end
distance r is smaller than a capture radius rc,

η(rc) =
∫

|r|<rc

dr p(r) = 4π

∫ rc

0
dr r2p(r,0,0) (59)

[where the last equality holds because p(r) does not depend on
the orientation of r]. We also derive formulas for the so-called
J factor [72], defined as the ratio of equilibrium reaction con-
stants of cyclization and dimerization. J can also be interpreted
as an effective concentration of end monomers with respect to
the monomers at the other extremity. If looping occurs with
equal probability for all r satisfying r < rc, then [35]

J (rc) = 3

4πr3
c

η(rc). (60)

Here we give explicit formulas for η(rc); corresponding
expressions for J are straightforwardly obtained from Eq. (60).

First, for a small capture radius (meaning that rc �
L3/2/l

1/2
p ), using Eq. (55) we get

η(rc) = 4π
h(0)rce

−E∗
0 lp/L+λ0rclp/L2

λ0L
G

(
λ0rclp

L2

)
, (61)

where we have introduced

G(u) = e−u

u

∫ u

0
dr r(1 − e−2r )er (62)

= 1 + e−2u − u−1(1 − e−2u), (63)
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which has the properties

G(u → 0) � 2u2/3, G(u → ∞) � 1. (64)

Note that, for rc � L2/lp, one has

η(rc) = 4πr3
c

3
× 112.04l2

p

L5
e−14.055lp/L = 4πr3

c

3
p(0). (65)

Now, in the regime rc � L2/lp, the values of r that most
contribute to the integral (59) are those that are close to rc,
hence we can perform this integral by using the value of p

given by Eq. (43), where we use a linear approximation of E∗
for r � rc:

η(rc) � 4π

∫ rc

0
dr

rc

L3
h
( rc

L

)
e
−E∗( rc

L ) lp

L
−λ(rc−r)

lp

L2 , (66)

where we recall that λ = −∂r̃E
∗(r̃). Performing the above

integral leads to

η(rc) = 4πrc h(rc/L)

L λ(rc/L)
e−E∗(rc/L)lp/L, (67)

which is valid when rc � L2/lp, still in the stiff limit
lp � L. The expressions (61) and (67) have in common
the validity regime L2/lp � rc � L3/2/l

1/2
p . Combining the

above formulas, and multiplying by the additional factor
exp(0.246L/lp) (which takes approximately into account the
corrections at next order in L/lp), we obtain

η(rc) � 4πrc h(rc/L)

L λ(rc/L)
G

(
λ0rclp

L2

)
e
−E∗( rc

L ) lp

L
+0.246 L

lp , (68)

where G(u) = 1 + e−2u − u−1(1 − e−2u), Eq. (63). The above
expression is asymptotically exact at leading order in the limit
lp/L → ∞ when either rlp/L2 or r/L is kept constant, and the
next-order corrections are approximately taken into account.
We see that the preexponential factors in Eqs. (65) and (67) are
different. This change of scaling comes from the difference of
the magnitude of the orientational fluctuations of the chain at
closure.

In Fig. 5, we check that our approximate expression (68)
can accurately reproduce the results of simulations performed
in Ref. [48].

VII. EFFECT OF TORSIONAL STIFFNESS
ON CLOSURE PROBABILITY

In this section, we consider the effect of torsional stiffness
C on the value of p(r). We associate with each coordinate s

a local orthonormal basis (ê1(s),ê2(s),ê3(s)), with ê3 = û, and
a rotation vector w(s) such that ê′

i = w × êi . For simplicity,
we restrict the discussion to the model called KP-1 in
Refs. [73,74], where the elastic energy is given by

E =
∫ L

0
ds

{
κ

2
[û′(s)]2 + C

2
[w(s) · û(s)]

}
, (69)

where C is the torsional rigidity. We denote by (êr ,êθ ,êϕ) the
unit basis vectors of the spherical coordinate system in an
external fixed reference frame. Let ψ be the angle between êθ

and ê1. The elastic energy can now be written [73,74]

ET = E[θ,ϕ] + C

2

∫ L

0
ds(∂sψ + cos θ ∂sϕ)2, (70)

L (nm)
0 50 100 150

η
(r

c)

10-10

10-8

10-6

10-4

Simulations
Theory [Eq. (9)]
 (4/3)π r

c
3 p

SY

r
c
 = 10nm

r
c
 = 5nm

FIG. 5. Probability η(rc) of observing the end monomers closer
than rc: theoretical expression (9) (continuous lines), simulations of
Ref. [48] (black circles). We also show the result η � (4πr3

c /3)pSY

(dotted lines) obtained by assuming that the end-to-end encounter
probability density p(r) does not depend on r . Here, lp = 50 nm.

where E is the bending energy. The suffix T in ET (and other
quantities) indicates that torsion is included. The torque-free
boundary conditions for the supplementary field ψ are Neu-
mann conditions ∂sψ |s={0,L} = 0. Consider now the functional
derivatives

δET

δϕ
= δE

δϕ
− C∂s[cos θ (∂sψ + cos θ∂sϕ)], (71)

δET

δθ
= δE

δθ
− C sin θ (∂sψ + cos θ∂sϕ), (72)

δET

δψ
= −C∂s(∂sψ + cos θ∂sϕ). (73)

We see that imposing ∂sψ + cos θ∂sϕ = 0 removes all the
terms proportional to C in Eqs. (71) and (72) and also enables
us to satisfy δET /δψ = 0. The lower-energy configurations
are thus not modified by the torsional stiffness.

Next, let us evaluate the energy functional at quadratic order
around a (horizontal) planar optimal configuration with θ =
π/2 + θ1, ϕ = ϕ∗ + ϕ1, ψ = ψ1,

FT � F (2)([θ1,ϕ1]) + C

2

∫ L

0
ds(ψ ′

1 − θ1ϕ
′
∗)2, (74)

where F (2)([θ1,ϕ1]) is the quadratic expansion of the energy
in the absence of torsion. In the presence of torsion, the joint
PDF QT of r and z̃ becomes

QT (a êx ; 0) = Z−1
T

∫
D[cos θ ]

∫
D[ϕ]

∫
D[ψ]e−ET [θ,ϕ,ψ]

× δ

(∫ 1

0
ds û − a êx

)
δ(〈cos θ | sin ϕ∗〉),

(75)
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where ZT is the partition function of free chains with torsional
stiffness,

ZT =
∫

D[cos θ ]
∫

D[ϕ]
∫

D[ψ]e−ET [θ,ϕ,ψ]. (76)

For free chains, at quadratic order we get ET � E[θ,ϕ] +
(C/2)

∫ L

0 ds(∂sψ1)2 and therefore

ZT = Z

∫
D[ψ1]e− C

2

∫ L

0 ds(∂sψ1)2
. (77)

Using this expression and the quadratic expansion (74), we
obtain by setting g = ψ1 − ∫ s

0 du θ1∂sϕ
∗ [which also satisfies

g′(0) = g′(1) = 0]

QT (a êx ; 0) = Q

∫
D[g]e− C

2

∫ L

0 ds(∂sg)2

∫
D[ψ1]e− C

2

∫ L

0 ds(∂sψ1)2
= Q(a êx ; 0). (78)

The joint PDF Q(r; z̃) is therefore not modified by the presence
of torsional stiffness. Since Eqs. (38) and (39), which relate
Q and p(r), are not modified by the presence of torsion,
we conclude that the value of the torsional stiffness has no
influence on the closure probability, at least in the limit of
stiff chains (lp � L) with finite (or vanishing) r/L. This
generalizes the same result obtained for vanishing end-to-end
distances in Ref. [27].

VIII. CONCLUDING REMARKS

In conclusion, we have performed, in the limit of stiff
chains, a calculation of the equilibrium probability density p(r)
of the end-to-end vector r of a stiff wormlike chain. Up to now,
this quantity was analytically known only for vanishing end-
to-end distances [27] or for nearly extended chains [43]. Here,
the closure factor is analytically calculated for any value of the
end-to-end distance that is not too close to the contour length,
as relevant in the problem of DNA closure assisted by flexible
protein bridges or through the pairing of single-stranded
DNA. The main result is the existence of two distinct scaling
regimes for the preexponential factor, reflecting the fact that
the fluctuations of the chain orientation at closure are highly
dependent on the value of r . Thus, the strong variation of the
preexponential factor is physically associated with a change
in the “number” of lowest energy looping configurations
occurring when r increases. The apparent divergence of the
preexponential factor of p for small r in Eq. (43) is similar
to the divergence within the WKB approximation of the
probability amplitude (in quantum mechanics) or the light
intensity (in optics) near caustics [69]. This divergence is due
to the presence of an infinity of classical paths (or optical rays)
at caustics, and it can therefore be compared to the explosion
of the number of lowest energy looping configurations when
the capture radius r becomes small.

The presence of two distinct scaling regimes for the
preexponential factor is not limited to the simple version of
the wormlike chain model considered here; since it originates
from geometrical considerations, it should also appear in
more complex models of semiflexible polymers. The present
approach could also be adapted to more realistic model
geometries, for example in the case when one of the monomers
is attached to a surface, as frequently occurs in experiments.

In such a situation, the surface modifies the “number” of
available lowest energy looping configurations, and it would
be interesting to see if our calculations could be adapted
to quantify the modification of the closure factor that was
recently observed in numerical simulations for polymers near
a surface [47]. It has also been noted recently [77] that the
model proposed in Ref. [78], which includes a twist-bend
coupling term in the chain elastic energy, could provide a
better description of the results of recent single molecule
experiments. Here we have shown that torsional stiffness
does not modify the end-to-end PDF in the weak noise limit,
due to the decoupling between twist and bend angles. Such
decoupling could disappear in the presence of twist bend
coupling, and it would be interesting to see how to adapt our
calculations of the looping probability to this case.
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APPENDIX A: FORMULAS OF GAUSSIAN INTEGRATION

1. General formulas

We provide some useful formulas of Gaussian integration,
and we describe how to use them to derive Eqs. (28) and (33) in
the main text. First, for any symmetric positive-definite matrix
L of size N × N , we have (see, e.g., Ref. [75])∫

dx e− 1
2

t
x·L·x = 1

{det[L/(2π )]}1/2
, (A1)

where x = (x1, . . . ,xN ) is a column vector, dx =
dx1, . . . ,dxN , and all xi are integrated over ] − ∞,∞[. The
above expression means that the quantity

P (x) = {det[L/(2π )]}1/2e− 1
2

t
x·L·x (A2)

is a normalized probability density distribution. The covari-
ance of xi,xj on the distribution P is (L−1)ij . Now, consider a
set of n column vectors b(i), and define yi = tb(i) · x. Consider
the distribution q(y1, . . . ,yn), which is Gaussian with zero
mean and covariance 〈yiyj 〉 = tb(i) · L−1 · b(j ) = Bij . We
have

q(y1, . . . ,yn) = 1

(det[2πB])1/2 e− 1
2

∑n
i,j=1(B−1)ij yiyj . (A3)

We also have

q(y1, . . . ,yn) =
∫

dx
n∏

i=1

δ(yi − tb(i) · x)P (x). (A4)

Comparing the above expressions for yi = 0 leads to the
following general formula Gaussian integration:

∫
dx e− 1

2
t
x·L·x

n∏
i=1

δ(tb(i) · x) = det[L/(2π )]−1/2

(det[2πB])1/2 , (A5)

where we recall that B is the n × n matrix of elements Bij =
tb(i) · L−1 · b(j ). This expression holds only if L has an inverse,
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and it is useful to generalize it in the presence of vanishing
eigenvalues. Consider now the case in which c is an eigenvector
of L, associated with an eigenvalue μ, which tends to 0. In this
case, L−1 · c = c/μ, and using Eq. (A5) for n = 1 in the limit
μ → 0 gives∫

dx e− 1
2

t
x·L·x δ(tc · x) = {tc · c det′[L/(2π )]}− 1

2 , (A6)

where we denote det′(L) the determinant after extraction of the
zero mode (i.e., the product of all nonvanishing eigenvalues of
L). Next, considering a second vector b orthogonal to c (which
is still associated with an eigenvalue μ → 0), we obtain from
Eq. (A5) for n = 2∫

dx e− 1
2

t
x·L·x δ(tc · x)δ(tb · x) = {det′[L/(2π )]}− 1

2

{2π (tc · c)(tb · f)} 1
2

,

(A7)

where f is the vector that satisfies L · f = b with the condition
tc · f = 0. In the main text, we apply these formulas in the
continuous case, with the inverse matrices and the discrete
determinants replaced by Green’s functions and functional
determinants, respectively.

2. Derivation of Eqs. (28) and (33)

If we use Eq. (A5) with n = 2, L = κ(−∂2
s + Rϕ), and

L−1 = κ−1Gϕ , with Gϕ the Green’s function of (−∂2
s + Rϕ),

we obtain∫
D[ϕ1]e− κ

2

∫ 1
0 ds[(ϕ′

1)2+Rϕϕ2
1 ]δ(〈sin ϕ∗|ϕ1〉)δ(〈cos ϕ∗|ϕ1〉)

= κ
{

det
[
κ
(−∂2

s + Rϕ

)
/2π

]}−1/2

2π

∣∣∣∣〈cos ϕ∗|Gϕ| cos ϕ∗〉 〈cos ϕ∗|Gϕ| sin ϕ∗〉
〈sin ϕ∗|Gϕ| cos ϕ∗〉 〈sin ϕ∗|Gϕ| sin ϕ∗〉

∣∣∣∣
1/2 .

(A8)

Note that by symmetry, 〈sin ϕ∗|Gϕ| cos ϕ∗〉 = 0. Similarly,
using Eq. (A7) with L = κ(−∂2

s + Rθ ), c = sin ϕ∗ (which is
associated with a vanishing eigenvalue of L), and b = 1, we
obtain ∫

D[θ1]e− κ
2

∫ 1
0 ds[(θ ′

1)2+Rθ θ
2
1 ]δ(〈1|θ1〉)δ(〈sin ϕ∗|θ1〉)

= κ1/2
{

det′
[
κ
(−∂2

s + Rθ

)
/2π

]}−1/2

(2π )1/2[〈sin ϕ∗| sin ϕ∗〉〈1|fθ 〉]1/2
(A9)

with fθ/κ playing the role of f in (A7), and thus being the
solution of[−∂2

s + Rθ (s)
]
fθ (s) = 1, 〈sin ϕ∗|fθ 〉 = 0, (A10)

with Neumann conditions f ′
θ (0) = f ′

θ (1) = 0. There is
an obvious solution fθ (s) = − cos ϕ∗/λ to Eq. (A10),
leading to

〈1|fθ 〉 = −
∫ 1

0
ds cos ϕ∗(s)/λ = −a/λ. (A11)

Next, the Green’s function Gϕ satisfies by definition[−∂2
s − λ cos ϕ∗(s)

]
Gϕ(s,s ′) = δ(s − s ′) (A12)

with Neumann boundary conditions. Multiplying Eq. (A12)
by cos ϕ∗(s ′) and integrating over s,s ′ gives

〈cos ϕ∗|Gϕ| cos ϕ∗〉 = −a/λ. (A13)

Using Eqs. (A8), (A9), (A13), and (A11), one obtains the
expression (28) for Q.

Finally, applying Eq. (A6) (where c = 1 is an eigenvector
with vanishing eigenvalue) leads to

∫
D[θ1]e− κ

2

∫ 1
0 ds(θ ′

1)2
δ(〈1|θ1〉) =

{
det

[
κ
(−∂2

s

)/
2π

]}−1/2

〈1|1〉1/2
,

(A14)

which is Eq. (33).

APPENDIX B: DETAILS ON THE CALCULATION
OF THE FUNCTION h

Here we describe the derivation of Eq. (46). First, the
coefficients a1,a2 appearing in Eq. (45) are identified by
using the boundary conditions yϕ(0) = 1,y ′

ϕ(0) = 0. Noting
that y1(0) = 0 and y2(0) = −1/y ′

1(0), we obtain

a2 = 1

y2(0)
= −y ′

1(0) = λ sin ϕ0
∗ (B1)

and

a1 = −y ′
2(0)a2/y

′
1(0). (B2)

The value of y ′
2(0) is found by inserting the known expression

(21) of ϕ′
∗ into (44), leading to

y ′
2(0) = −E(m) + (m − 1)K(m)

4
√

m(1 − m)K(m)
. (B3)

We now consider the constant M defined by

M = −y ′
ϕ(1)〈sin ϕ∗|Gϕ| sin ϕ∗〉. (B4)

Using the value (30) of Gϕ , taking into account the symmetry
properties y1(1 − s) = y1(s) and y2(1 − s) = −y2(s), and
noting that sin ϕ∗ = −y ′

1/λ, we obtain

M = − 2

λ2

∫ 1

0
ds2[a1y1(s2) − a2y2(s2)]y ′

1(s2)

×
∫ s2

0
ds1[a1y1(s1) + a2y2(s1)]y ′

1(s1). (B5)

We write M as

M = a2
1K11 + a1a2(K12 + K21) + a2

2K22, (B6)

where we calculate the terms Kij separately. First,

K11 = − 2

λ2

∫ 1

0
ds2y1(s2)y ′

1(s2)
∫ s2

0
ds1y1(s1)y ′

1(s2)

= − 2

λ2

∫ 1

0

ds2

2
∂s2

{∫ s2

0
y1(s1)y ′

1(s1)

}2

= − 1

λ2
〈y1|y ′

1〉2 = 0, (B7)
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where we have used the fact that y1 vanishes at the boundaries.
Using the same reasoning, we have

K22 = 2

λ2

∫ 1

0
ds2y2(s2)y ′

1(s2)
∫ s2

0
ds1y2(s1)y ′

1(s1)

= 1

λ2

{∫ 1

0
ds y2(s)y ′

1(s)

}2

= 1

λ2

{∫ 1

1/2
ds

∫ s

0
du

1

y1(u)2
y1(s)y ′

1(s)

}2

, (B8)

where we have used the definition (44) of y2 in the last equality.
The above expression can be simplified by integration by parts:

K22 = 1

λ2

{∫ 1

0
ds

(−1)

y1(s)2

y1(s)2

2

}2

= 1

4λ2
. (B9)

Next, we consider

K21 = − 2

λ2

∫ 1

0
ds2y1(s2)y ′

1(s2)
∫ s2

0
ds1y2(s1)y ′

1(s1). (B10)

Integrating by parts yields

K21 = 1

λ2

∫ 1

0
ds2y1(s2)2y2(s2)y ′

1(s2). (B11)

Using again the definition (44) of y2, one finds

K21 = 1

λ2

∫ 1

0
ds y1(s)2y ′

1(s)y1(s)
∫ s

1/2

du

y2
1 (u)

, (B12)

and one can again use integration by parts to find

K21 = − 1

4λ2
〈y1|y1〉. (B13)

The last term is

K12 = 2

λ2

∫ 1

0
ds2y2(s2)y ′

1(s2)
∫ s2

0
ds1y1(s1)y ′

1(s1). (B14)

Integrating the last term yields

K12 = 1

λ2

∫ 1

0
ds2y2(s2)y ′

1(s2)y2
1 (s2). (B15)

Comparing with (B11), we find

K12 = K21 = − 1

4λ2
〈y1|y1〉. (B16)

All the terms ai,Kij have now been calculated. Inserting them
into (B6) and using (21) leads to

M = m(1 − m) +
[
E(m) + (m − 1)K(m)

K(m)

]2

. (B17)

The function h is finally found from

h = λ| sin ϕ∗
0 |

4π
√

M
, (B18)

which by using Eqs. (5), (6), and (8) leads to Eq. (7).

APPENDIX C: EXPANSION NEAR FULLY
EXTENDED CONFIGURATIONS

Here we briefly show how the results of Ref. [43] can
be obtained with our formalism. The unit of length is again
such that L = 1. We investigate the behavior of p near fully
extended configurations: we set r = 1 − � and define

P (�) = p[(1 − �)ex]. (C1)

For small enough �, the configurations that contribute to
P (�) are nearly extended ones, with θ (s) = π/2 + θ1(s) and
ϕ(s) = ϕ1(s), θ1,ϕ1 being small deviations. At leading order,
the coordinates of the end-to-end vector r = (1 − �,0,0) are

0 = ry =
∫ 1

0
ds ϕ1, 0 = rz = −

∫ 1

0
ds θ1, (C2)

1 − � = rx = 1 − 1

2

∫ 1

0
ds

[
θ2

1 + ϕ2
1

]
. (C3)

Note that these expansions are valid up to quadratic order in
θ1,ϕ1, which is crucial for rx , in which linear terms vanish.
Using the above approximations for rx,ry,rz, and using a
quadratic expansion of F near fully extended configurations,
P (�) reads

P (�) � 1

Z

∫
D[θ1]

∫
D[ϕ1]e− κ

2

∫ 1
0 ds[(θ ′

1)2+(ϕ′
1)2]

× δ(〈1|ϕ1〉)δ(〈1|θ1〉)δ
(

� − 1

2
(〈ϕ1|ϕ1〉 + 〈θ1|θ1〉)

)
.

(C4)

This integral is easier to calculate by considering the Laplace
transform

P̃ (q) =
∫ ∞

0
d�e−q�P (�), (C5)

for which we realize that the contributions of the fields θ1 and
ϕ1 factorize to give

P̃ (q) = 1

Z

{∫
D[θ1]e− 1

2

∫ 1
0 ds[κ(θ ′

1)2+qθ2
1 ]δ(〈1|θ1〉)

}2

. (C6)

Applying the formulas of Gaussian integration (A5), and
replacing Z by its value (35), we obtain

P̃ (q) = 1

4π

det′
[−κ∂2

s

/
(2π )

]
det

{[−κ∂2
s + q

]/
(2π )

} κ

2π〈1|G|1〉 , (C7)

where G is the Green’s function of −∂2
s + q/κ . The quantities

appearing in this formula can be calculated if one introduces
the function y(s) defined as

−y ′′(s) + (q/κ)y(s) = 0, y(0) = 1, y ′(0) = 0, (C8)

whose solution is

y(s) = cosh(s
√

q/κ). (C9)

The functional determinants and the Green’s function appear-
ing in (C7) are calculated by using Eqs. (37) and (30) (where
yϕ is replaced by y), leading to

P̃ (q) =
√

q/κ

4π sinh(
√

q/κ)
. (C10)
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The Laplace transform of P (�) thus has a simple expres-
sion. This Laplace transform can be inverted by using the
Bromwich-Mellin formula. With a residue calculation, we find

p[(1 − �)ex] = P (�) � κ

N H (�κ), (C11)

with H (x) = ∑∞
n=1(−1)n+1n2e−xn2π2

π/2, which is the result
of Ref. [43]. Here a normalization factor N has been intro-
duced to enforce the normalization of (C11). The expression
of N is thus

N = 4π

∫ 1/κ

0
du(1 − u/κ)2H (u), (C12)

where we have used the variable u = �κ . Replacing the upper
bound of the integral 1/κ by infinity is equivalent to neglecting
terms of order e−1/κ . With this approximation, using the small-
q expansion of (C10) yields

N = 1 − L

3lp
+ 7L2

180l2
p

. (C13)

The difference between the above expression and the numeri-
cal evaluation of Eq. (C12) is less than 0.5% for lp � L/2. We
finally note that we can obtain the behavior of P for � → 0
by noting that, for large q, H̃ (q) � e−√

q√q/(2π ), which can
be inverted to

H (u) � e−1/(4u)(1 − 2u)/(8π2u5/2), (C14)

which is the first term of the series appearing in Eq. (4) of
Ref. [43].

APPENDIX D: FLUCTUATIONS NEAR A MINIMAL
ENERGY CONFIGURATION

In the derivation of Eq. (41), one assumes that, when r and z̃

are fixed, the fluctuations of the chain around the configuration
of minimal energy are small. Here we compute the magnitude
of these fluctuations. Let us call �([ϕ1,θ1]) the distribution
of ϕ1,θ1 conditional to z̃ = 0 and r = 0, which factorizes into
�([ϕ1,θ1]) = �ϕ([ϕ1])�θ ([θ1]), with [see Eq. (26)]

�ϕ([ϕ1]) ∼ e− κ
2

∫ 1
0 ds[(ϕ′

1)2+Rϕϕ2
1 ]

× δ(〈sin ϕ∗|ϕ1〉)δ(〈cos ϕ∗|ϕ1〉). (D1)

We call 〈ϕ1(s)2〉� the variance of ϕ1 over the distribution �ϕ .
Using formulas for the conditional covariances of multivariate
Gaussian distributions [76], one finds

〈ϕ1(s)2〉� = Gϕ(s,s)

κ
−

[ ∫ 1
0 ds1 cos ϕ∗(s1)Gϕ(s,s1)

]2

κ〈cos ϕ∗|Gϕ| cos ϕ∗〉

−
[ ∫ 1

0 ds1 sin ϕ∗(s1)Gϕ(s,s1)
]2

κ〈sin ϕ∗|Gϕ| sin ϕ∗〉 . (D2)

Using (A12) and (A13), this expression simplifies

〈ϕ1(s)2〉� = Gϕ(s,s)

κ
+ 1

κrλ

−
[ ∫ 1

0 ds1 sin ϕ∗(s1)Gϕ(s,s1)
]2

κ〈sin ϕ∗|Gϕ| sin ϕ∗〉 . (D3)

We thus see that for a small end-to-end radius r , there is a
term ∼1/(rκ) in the expression of the variance 〈ϕ1(s)2〉�.
The criterion of small fluctuations around the minimal energy
configurations (of fixed r,z̃) is therefore rκ � 1.
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