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Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory
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The relationship between the M-species stochastic Lotka-Volterra competition (SLVC) model and the M-allele
Moran model of population genetics is explored via timescale separation arguments. When selection for species
is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics
of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent
selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation
of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and
the times until a species’ extinction in the SLVC model.
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I. INTRODUCTION

Perhaps the most important models in ecology, population
genetics, and game theory are, respectively, the generalized
Lotka-Volterra (LV) model [1], the Moran model [2] (and
its discrete-generation variant the Wright-Fisher model [3]),
and the replicator equations [4]. The generalized LV model
describes the dynamics of an arbitrary number of species
interacting in a pairwise fashion according to an interaction
matrix (which can be used to describe competitive, mutualistic,
and predatory interactions), and is almost always treated
deterministically [5]. The Moran model describes the evolution
of a population of individuals carrying different alleles in a
way that accounts for genetic drift and is therefore inherently
stochastic [6]. The replicator equations describe the time-
evolution of the frequency of players playing a given strategy
in a pairwise game, where strategies increase according to the
average payoff players receive from that strategy when playing
against the population [4]. Historically these models were
viewed deterministically; however, the past decade has seen a
surge of interest in incorporating and analyzing stochasticity
in these models [7–9], typically through casting this as a
birth-death process analogous to the Moran model.

In this paper, we begin by developing a stochastic analog
of the generalized LV model for M species. This stochastic
Lotka-Volterra competition (SLVC) model does not have a
fixed population size (the number of individuals in the system
is free to vary). We then set about determining the conditions
under which its stochastic behavior can be seen to be equivalent
to the neutral haploid multiallelic Moran model [10], the
haploid multiallelic Moran model with constant selection
[11,12] (variously termed the Moran model with directional
selection [13] or frequency-independent selection [12]), and a
Moran version of a game-theoretic model of pairwise games
with multiple strategies [14]. The Moran model in each
instance features a population of fixed size N (the number
of individuals in the system is fixed). We will show that the
SLVC model can be mapped onto each of the above-mentioned
processes under conditions that we summarize in tabular form.
Our analysis relies on timescale separation arguments and is
dependent on the process of population regulation occurring
on a much faster timescale than that of the change in population

composition. Our results are thus valid when selection between
species/alleles/strategies is weak and N is large but finite.

Although the links between the models that we identify
have not been discussed previously, other ways in which
they are related to each other have been explored, and we
will now review these. It is perhaps not surprising that the
deterministic versions of these models have been studied far
more thoroughly than their stochastic analogs. It is well known
that the deterministic LV model in M variables can be mapped
to the replicator equations in M + 1 variables by the inclusion
of an additional variable in the LV model that keeps track
of population size [4]. While this first result by Hofbauer
[15] allowed for a plethora of results to be obtained, these
were all entirely in the deterministic limit (see Ref. [16] for a
comprehensive review).

For our purposes, the most relevant work was not until
the publication of Ref. [7], when interest was ignited in
incorporating demographic stochasticity into the replicator
equations. Here it was first demonstrated that the Moran
model could be formulated with reproduction rates that vary
with population composition to give analogous dynamics to
the replicator equations in the infinite population size and
weak selection limit. Since then, various choices have been
explored for how reproduction rates in the Moran model
might be dependent on population composition (e.g., linear
[7], exponential [9]). These all share the common feature that
they become functionally similar in the limit of weak selection
and by construction also to the replicator equation in the limit
of infinite population size. However, this equivalence between
game theoretic formulations of the Moran model and the
replicator equations has been shown only to hold in the limit of
weak selection [8]. When selection is strong, alternative update
processes, such as an imitation process, map more cleanly to
deterministic replicator dynamics [8].

More recently, efforts have been made to understand the
role of demographic noise in the LV model by developing
stochastic LV models [17–19]. Quite naturally with this has
come a desire to understand how these probabilistic systems
might be related to other canonical models. In Ref. [20] it was
shown that a similar frequency-dependent Moran model to that
used in the game theory literature shares deterministic fixed
points with the LV model. This is perhaps unsurprising, as this

2470-0045/2017/96(2)/022416(19) 022416-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.022416


GEORGE W. A. CONSTABLE AND ALAN J. MCKANE PHYSICAL REVIEW E 96, 022416 (2017)

formulation of the Moran model by construction maps to the
replicator equation in the deterministic limit, which in turn is
known to map to the LV model. It is then suggested in Ref. [20]
that this equivalence in the deterministic limit might be used
to try to understand the stochastic dynamics of the LV model.
However, this misses the crucial point that two systems that
share the same deterministic dynamics need not have the same
stochastic dynamics. This was demonstrated in the present
context in Ref. [21], where it was shown that while increasing
the longevity of a type in an SLVC model (while keeping its
lifetime fecundity fixed) had no effect on the deterministic
dynamics, it could affect the stochastic dynamics, increasing
the fixation probability of the type. In that paper, the emergent
differences between the Moran model with constant selection
and a formulation of the SLVC model with homogeneous
competition were discussed, primarily for the two-allele case.
Finally, the SLVC model in two variables has been mapped to
the Moran model in a single variable [22].

As we have indicated, in this paper we will be using
timescale separation arguments in developing a mapping
between the SLVC model and three formulations of the Moran
model: the neutral model, the model with constant selection,
and the replicator model. Unlike traditional deterministic
approaches that map M LV equations to M + 1 replicator
equations [4], we will map M SLVC equations to M − 1
stochastic replicator equations of the Moran type by elimi-
nation of the fast transient associated with a fast approach
of the system to carrying capacity. When dealing with both
the Moran models and the SLVC model, we will exclusively
look at the limit of weak selection. We will therefore not have
to be overly concerned about the breakdown of equivalence
of the Moran formulation of the replicator equations and the
replicator equations in large selection strength regimes [8]. In
applying our dimensional reduction, we will be careful to deal
correctly with the noise terms in the SLVC model. This allows
us to determine a full stochastic mapping between the SLVC
model and the Moran models, rather than simply inferring the
mapping based on a deterministic equivalence [20]. We will not
consider noise-induced selection effects of the type identified
in Ref. [21], as these lie outside the scope of this paper.
However, unlike in Ref. [21], where competition rates were
taken to be symmetric, we will analyze the effect of varying
competition rates. This will allow for the extension of the
mapping from the SLVC model to the replicator equations, as
well as giving the conditions that the competition matrix must
satisfy in order for the Moran model with constant selection
to be a valid approximation. Finally, this paper will provide
a multivariate extension to the work reported in Ref. [22].
Not only does this extend the treatment given there, but the
multivariate analysis also provides a deeper insight into the
mapping between the models.

II. MODEL DEFINITIONS AND THE MESOSCOPIC
FORMULATION

We define the models at the very basic level of individuals
that are born and die and where changes occur from one
type to another due to the process of competition. In these
individual-level models or individual-based models, the state
of the system at a given time is specified by how many

individuals of the different types are present at that time. The
models are essentially defined by giving functional forms for
the rates at which transitions from one state to another occur.
We will now describe these for each of the models in turn,
starting with the SLVC model.

A. The SLVC model

As discussed in the Introduction, the system is a population
of n1 haploid individuals each of which carries an allele of
type 1, n2 haploid individuals each of which carries an allele
of type 2,..., nM haploid individuals each of which carries an
allele of type M . We denote the state of the system by the
vector n = (n1, . . . ,nM ). Individuals of type α reproduce at a
rate bα and die at a rate dα , α = 1, . . . ,M . The total number
of individuals,

∑M
α=1 nα , is not fixed, instead it is regulated by

the process of competition, which occurs between individuals
of type α and β at a rate cαβ .

The transition rates from state n to a new state n′ are
generalizations of those given for the case of two alleles in
Ref. [22]:

Tα+(nα + 1|nα) = bα

nα

V
,

(1)

Tα−(nα − 1|nα) = dα

nα

V
+

M∑
β=1

cαβ

nα

V

nβ

V
,

where α = 1, . . . ,M and where only the alleles that change in
number have been given as arguments of the transition rates
(the original state is to the right and the new state to the left).
The parameter V is a measure of the size of the system, such
as the volume. It will shortly be used to make a transition to a
mesoscopic description, via the diffusion approximation.

Since the transition rates in Eq. (1) only depend on the
current state of the system, the process is Markovian and can
be described by a master equation for the probability, Pn(t),
of finding the system in state n at time t [23]. It is given by

dPn(t)

dt
=

M∑
α=1

[
Tα+(n|n − να+)Pn−να+ (t)

+ Tα−(n|n − να−)Pn−να−(t) − Tα+(n + να+|n)

×Pn(t) − Tα−(n + να−|n)Pn(t)
]
, (2)

where να+ specifies the number of individuals of type α

that increase during the reaction α +, and να− specifies
the number of individuals of type α that decrease during
the reaction α −. So, να+ = (0, . . . ,0,1,0, . . . ,0) and να− =
(0, . . . ,0,−1,0, . . . ,0), the nonzero entries being in the αth
position. Equations (1) and (2), together with an initial
condition for Pn, completely specify the stochastic dynamics,
so that we can, in principle, find Pn(t) for all t .

We now make the diffusion approximation, mentioned
above, that is, V is assumed sufficiently large that xα ≡ nα/V

is approximately continuous [24]. The other aspect of the
approximation involves expanding out the master equation as a
power series in V −1 and neglecting powers of V −3 and higher.
The master equation for Pn(t) then becomes a Fokker-Planck
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equation (FPE) for P (x,t) [25]:

∂P (x,t)

∂t
= − 1

V

M∑
α=1

∂

∂xα

[Aα(x)P (x,t)]

+ 1

2V

M∑
α,β=1

∂2

∂xα∂xβ

[Bαβ(x)P (x,t)]. (3)

The precise form of the functions Aα(x) and Bαβ(x) are found
by carrying out the expansion, but explicit expressions for
them also exist in terms of the να± and the transition rates
[26]. One finds that

Aα(x) = (bα − dα)xα −
M∑

β=1

cαβxαxβ ,

(4)

Bαα(x) = (bα + dα)xα +
M∑

β=1

cαβxαxβ,

and Bαβ = 0, for α �= β.
The FPE Eq. (3) is useful for systems with one degree of

freedom. However, for those with more than one degree of
freedom, it is very difficult to analyze and, just as importantly,
it is difficult to understand intuitively. For this reason we
move over to the completely equivalent, but very different,
formulation in terms of a set of stochastic differential equations
(SDEs). For the FPE Eq. (3) these take the form [25]

dxα

dτ
= Aα(x) + 1√

V
ηα(τ ), α = 1, . . . ,M, (5)

where τ = t/V , ηα(τ ) is a Gaussian white noise with zero
mean and with a correlator

〈ηα(τ )ηβ(τ ′)〉 = Bαβ(x)δ(τ − τ ′), (6)

and where the SDE is to be interpreted in the sense of Itō.
Equations (5) and (6) together give the mesoscopic description
of the system. The familiar, deterministic, Lotka-Volterra
equations form the macroscopic description and can be found
by taking the V → ∞ limit of Eq. (5).

B. The Moran model

If we are to discuss the relationship of this model to the
Moran model, we need to carry out a similar derivation to that
given above, but for the Moran model, since we are not aware
that the master equation or the Fokker-Planck equation appears
in the literature for the case of M alleles and selection, or at
least not in the form that we require here. The derivation itself
looks more complicated than the one for the SLVC model,
due mainly to the fact that we have to implement the fixed
N constraint by expressing one variable in terms of the other
M − 1. Therefore, we will only give the definition of the model
in terms of the transition rates, and the final form for the
FPE and the SDEs here, leaving the intermediate steps to
Appendix A.

The states of the system will be labeled by n1, . . . ,nM−1,
since nM can be expressed in terms of the other (M − 1)
through nM = N −∑M−1

a=1 na . We will also use the notation
n = (n1, . . . ,nM−1). If we write nM , then it should be under-
stood as being equal to nM = N −∑M−1

a=1 na . In what follows

Greek indices α,β,γ, . . . always run from 1 to M and Roman
indices a,b,c, . . . always run from 1 to (M − 1).

1. The neutral Moran model

First of all, suppose there is no selection. This case is
discussed in the literature; the transition rates are given by
[27]

T (n1, . . . ,na + 1, . . . ,nb − 1, . . . ,nM−1|n) = na

N

nb

N
, (7)

with a �= b, and

T (n1, . . . ,na ± 1, . . . ,nM−1|n) = na

N

N −∑M−1
b=1 nb

N
, (8)

if either allele a increases at the expense of allele M , or allele
M increases at the expense of allele a, respectively.

2. The Moran model with frequency-independent selection

We can now add constant selection, that is, selection for
each allele that does not depend on population composition.
Suppose that Wα is the fitness weighting of allele α, α =
1, . . . ,M . Then Eqs. (7) and (8) become

T (n1, . . . ,na + 1, . . . ,nb − 1, . . . ,nM−1|n) = Wana

W

nb

N
,

(9)
if a �= b;

T (n1, . . . ,na + 1, . . . ,nM−1|n) = Wana

W

N −∑M−1
b=1 nb

N
,

(10)
and

T (n1, . . . ,na − 1, . . . ,nM−1|n) = na

N

WM

[
N −∑M−1

b=1 nb

]
W

,

(11)
where

W =
M−1∑
a=1

Wana + WM

[
N −

M−1∑
b=1

nb

]
. (12)

We can simplify these expressions somewhat by taking the
limit of weak selection. To do this we express Wα as equal to
unity plus a small deviation of order s:

Wα = 1 + sρα, (13)

where ρα is of order one but can be positive or negative.
However, this still leads to rather cumbersome expressions
and the details are given in Appendix A. There we also show
that going over to new (continuous) variables xa = na/N , one
finds that the system can be described by the FPE

∂P

∂t
= − 1

N

M−1∑
a=1

∂

∂xa

[Aa(x)P (x,t)]

+ 1

2N2

M−1∑
a,b=1

∂2

∂xa∂xb

[Bab(x)P (x,t)], (14)

with

Aa(x) = sxa

[
ρa −

M−1∑
b=1

ρbxb − ρM

(
1 −

M−1∑
b=1

xb

)]
, (15)
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to first order in s and

Bab(x) = 2(xaδab − xaxb) + O(s). (16)

As with our treatment of the SLVC model, we note that the
above FPE is equivalent to an Itō SDE,

dxa

dτ
= Aa(x) + 1√

N
ηa(τ ), a = 1, . . . ,M − 1 , (17)

where τ = t/N and ηa(τ ) is a Gaussian white noise with zero
mean and with a correlator

〈ηa(τ )ηb(τ ′)〉 = Bab(x)δ(τ − τ ′). (18)

This is very similar to Eqs. (5) and (6), but with indices a and
b replacing α and β and N replacing V , and with the functions
Aa and Bab taken from Eqs. (15) and (16).

The result for Bab(x) is just that of the neutral case and
has been known for a long time [28]. The result for Aa(x) can
be checked by directly calculating dxa/dτ from the master
equation, as described in Appendix A. As we are explicitly
considering the mapping between the models in the limit of
weak selection, there is no need to go to higher order in s.

3. The Moran model with frequency-dependent selection

We now consider the dynamics of the Moran model if the
selective advantage experienced by an allele is dependent on
the composition of the population. In this scenario the fitness
of an allele a is now denoted by Wa(n), the inclusion of the
explicit n argument indicating the dependence of the fitness on
the nature of the population. The equations for the transition
rates then take a similar form to those in the case when selection
was constant, Eqs. (9)–(12), but with Wa replaced with Wa(n).

We are now left with a choice about how the fitness function
Wa(n) depends on the population composition. A common
approach is to set Wa(n) to a constant reproductive rate,
moderated by a payoff from a game that each allele “plays”
with every other allele in the population [29]. There are many
distinct ways to implement this; however, in line with Ref. [14],
we make the specific choice

Wα(n) = 1 + s

[
M−1∑
b=1

gαb

nb

N
+ gαM

(
1 −

M−1∑
b=1

nb

N

)]
, (19)

where gαβ is the payoff to allele α from interacting with
type β.

As in the case of the Moran model with constant selection
(addressed in Sec. II B 2), we can expand the master equation
in terms of 1/N and s, and assuming that N is large and s

small (formally s ≈ N−1), obtaining an approximation for the
system dynamics in terms of an FPE of form Eq. (14). This is
discussed in Appendix A, where it is shown that in this case
A(x) is given by

Aa(x) = sxa

[
GaM +

M−1∑
b=1

Gabxb

−
M−1∑
b=1

GbMxb −
M−1∑
b,c=1

Gbcxbxc

]
, (20)

to first order in s, while the form of B(x) remains unchanged
from that given in Eq. (16). Here we have defined the quantities

Gaβ ≡ gaβ − gMβ ; Gab ≡ Gab − GaM. (21)

Once again, this FPE is equivalent to an SDE of the form
Eq. (17), but with A(x) taken from Eq. (20).

It is interesting that it is the quantities GaM and Gab that
appear in the final expression for Aa(x), and not simply gab.
The quantity Gaβ can be interpreted as a relative fitness, namely
the payoff to allele a against an opponent β relative to the
payoff to allele M against the same opponent. Similarly, Gab

is a relative relative fitness, namely the relative payoff to allele
a against an opponent with an allele b relative to the relative
payoff against an opponent with an allele M .

At this order in s the dynamics of the system in the deter-
ministic N → ∞ limit are equivalent to replicator dynamics
[4,7]. As we discuss in the Introduction this equivalence does
not hold at higher orders in s [8]. However, since we will work
for the remainder of the paper in the weak selection limit, the
mapping that we will develop between the SLVC model and
the Moran model with frequency-dependent selection can also
be interpreted as a mapping between the SLVC model and a
stochastic version of the replicator dynamics.

III. REDUCTION OF THE LOTKA-VOLTERRA MODEL

In this section, we will show that at medium to long times
the LV model with M degrees of freedom reduces to an
(M − 1)-dimensional model. We can then ask if there are
any similarities between this reduced SLVC model and the
Moran model. The reduction is accomplished by the systematic
elimination of a fast mode, using techniques that we developed
previously [22,30,31]. These require that we first understand
the broad features of the deterministic (V → ∞) dynamics,
before we go on to study the stochastic dynamics. We begin
with the neutral (s = 0) model; effects due to selection will
be introduced as perturbative corrections to the neutral case,
since, as usual, we expect s to be small.

A. The neutral model

The assumption that individuals of type α, α = 1, . . . ,M ,
have equal fitness, that is, the theory is neutral, implies that
they all have equal birth, death, and competition rates: bα ≡
b0, dα ≡ d0, cαβ ≡ c0. In this case, Eq. (4) reduces to

Aα(x) = xα

⎡
⎣(b0 − d0) − c0

M∑
β=1

xβ

⎤
⎦,

(22)

Bαα(x) = xα

⎡
⎣(b0 + d0) + c0

M∑
β=1

xβ

⎤
⎦.

To characterize the deterministic dynamics, we first determine
the fixed points of the dynamics by setting Aα(x) = 0 for all α.
It is clear that there are two classes of fixed points depending
on whether

∑M
β=1 xβ is or is not equal to (b0 − d0)c−1

0 . If it
is not, then xα = 0 for all α. So there is a fixed point at the
origin and an (M − 1)-dimensional hyperplane of fixed points
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given by

M∑
β=1

xβ = (b0 − d0)c−1
0 . (23)

It is useful at this stage to rescale the xα variables and time
to eliminate the constants b0, c0, and d0 from as much of the
calculation as possible. To do so we introduce the new variables
yα = c0xα/(b0 − d0), α = 1, . . . ,M and a new timescale τ̃ =
(b0 − d0)τ . Then the deterministic dynamics becomes

dyα

dτ̃
= Ãα( y) ≡ c0

(b0 − d0)2
Aα(x) = yα

⎡
⎣1 −

M∑
β=1

yβ

⎤
⎦,

(24)

using Eq. (22). The fixed points are now the origin and the
(M − 1)-dimensional hyperplane

∑M
β=1 yβ = 1.

Further insight can be gained by calculating the Jacobian,

Jαβ = ∂Ãα

∂yβ

= δαβ

⎡
⎣1 −

M∑
γ=1

yγ

⎤
⎦+ yα[−1], (25)

at points on this hyperplane. This is a highly degenerate matrix,
with all columns identical to each other and equal to the matrix
with entries −yα . It follows that there is a degenerate set of
(M − 1) eigenvalues equal to zero, reflecting the existence of
the hyperplane of fixed points. The remaining eigenvalue is
equal to the trace of the Jacobian: −∑M

β=1 yβ = −1. We will
label the zero eigenvalues λ(a) = 0, a = 1, . . . ,M − 1 and the
nonzero eigenvalue λ(M). In addition, we will denote the left
and right eigenvectors of the Jacobian corresponding to the
eigenvalue λ(α) by u(α) and v(α), respectively. They will be
normalized so that

∑M
γ=1 u(α)

γ v(β)
γ = δαβ . For example, the left

and right eigenvectors corresponding to the nonzero eigenvalue
λ(M) = −1 are

u(M) =

⎛
⎜⎝

1
...
1

⎞
⎟⎠, v(M) =

⎛
⎜⎝

y1
...

yM

⎞
⎟⎠, (26)

respectively.
It is now possible to describe the neutral deterministic

dynamics rather simply. If the system starts away from the
hyperplane

∑
α yα = 1, it will move toward the hyperplane at

a rate governed by the nonzero eigenvalue of the Jacobian, that
is, unity in the rescaled time and (b0 − d0)−1 in the original
time variable. Once it reaches the hyperplane, it remains at this
point, since all points of the hyperplane are fixed points. The
hyperplane is thus a center manifold (CM) of the dynamics
[32]. This dynamics is, of course, so simple that it is of limited
interest, except that it forms the basis of the method that we
will use to investigate the stochastic dynamics and of the
dynamics with selection. For example, under the influence of
weak noise, we would expect the system to similarly collapse
onto the CM, but with a noisy trajectory, and once on the
CM to move around purely stochastically. For this reason the
direction perpendicular to the CM, v(M), is called the fast
direction and the other directions, v(a), a = 1, . . . ,(M − 1),

FIG. 1. Plot illustrating a single realization of the stochastic
dynamics (blue noisy line) of the neutral SLVC model [defined
by Eqs. (1) and (2)] with n scaled by V . Trajectories quickly
collapse from M to M − 1 dimensions (here M = 3 to M = 2),
after which the dynamics are constrained to the subspace specified
by Eq. (23), the deterministic center manifold (CM) (white plane).
The system then moves neutrally within this plane until one of the
absorbing states (red circles) is reached. Parameters used are given in
Appendix C.

the slow directions. These dynamical processes are illustrated
in Fig. 1.

In our subsequent analysis we will need to map the initial
condition of the SLVC model, y(0), to an initial condition on
the CM yCM. This is most easily achieved by first introducing
new variables to describe the deterministic dynamics of the
neutral model. These are fa = xa/

∑M
β=1 xβ , a = 1, . . . ,M −

1, and ψ =∑M
β=1 xβ . By direct substitution into the dynamical

equations dxα/dt = Aα(x), with Aα(x) given by Eq. (22),
one finds that dfa/dt = 0, that is the fa are constants of the
motion. This implies that they do not change from their initial
values: fa = f (0)

a at all times t . The only dynamical variable is
ψ , which satisfies the equation dψ/dt = ψ[(b0 − d0) − c0ψ].
Therefore, the dynamics simply consists of ψ(t) decreasing
(increasing) if it is larger (smaller) than (b0 − d0)/c0, until it
reaches this value. At this point the deterministic dynamics
ceases, as the system is now on the CM. Using fa = f (0)

a this
point, labeled with the superscript CM, is given by

xCM
a∑M

β=1 xCM
β

= x(0)
a∑M

β=1 x
(0)
β

. (27)

Using
∑M

β=1 xCM
β = (b0 − d0)/c0, and going over to the scaled

variables yα , one finds that the initial condition on the CM is
given by

yCM
a = y(0)

a∑M
β=1 y

(0)
β

. (28)
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A useful mathematical tool to separate the fast and slow
dynamics is the projection operator defined by

Pαβ =
M−1∑
a=1

v(a)
α u

(a)
β . (29)

Suppose it is used to operate on the vector φβ =∑M
κ=1 Cκv

(κ)
β ,

where the Cκ are arbitrary constants. Then

M∑
β=1

Pαβφβ =
M∑

β,κ=1

Cκ

M−1∑
a=1

v(a)
α u

(a)
β v

(κ)
β

=
M∑

κ=1

Cκ

M−1∑
a=1

v(a)
α δaκ =

M−1∑
k=1

Ckv
(k)
α , (30)

that is, the fast term CMv
(M)
β has been wiped out.

We can use the projection operator directly as given by
Eq. (29), or observe that

Pαβ =
M∑

γ=1

v(γ )
α u

(γ )
β − v(M)

α u
(M)
β = δαβ − v(M)

α u
(M)
β , (31)

by completeness. Since u
(M)
β = 1 for all β, we may write

this as

Pαβ = δαβ − v(M)
α = δαβ − yα. (32)

We also note that
∑M

α=1 Pαβ = 0.
The projection operator can be used to determine the

stochastic dynamics on the CM. In terms of the rescaled
variables, Eq. (5) becomes

dyα

dτ̃
= c0

(b0 − d0)2

1√
V

ηα(τ ) ≡ 1√
V

η̃α(τ̃ ), α = 1, . . . ,M,

(33)

since from Eq. (22) we see that on the CM Aα(x) = 0. We also
note that Bαβ = 2b0xαδαβ on the CM, and so

〈η̃α(τ̃ )η̃β(τ̃ ′)〉
= c2

0(b0 − d0)−4 〈ηα(τ )ηβ(τ ′)〉

= c2
0(b0 − d0)−4 δαβ 2b0

(b0 − d0)

c0
yα (b0 − d0)δ(τ̃ − τ̃ ′)

= 2b0c0(b0 − d0)−2 δαβ yα δ(τ̃ − τ̃ ′). (34)

Application of the projection operator in Eq. (32) to
dyβ/dτ̃ , which we denote as ẏβ , gives ẏα −∑M

β=1 v(M)
α ẏβ .

However, on the CM,
∑M

β=1 ẏβ = 0, and we recover ẏα .

Therefore, defining a projected noise ζα =∑M
β=1 Pαβη̃β , the

SDE Eq. (33) becomes

dyα

dτ̃
= 1√

V
ζα(τ̃ ), α = 1, . . . ,M. (35)

Although Eqs. (33) and (35) look similar, there are some
significant differences. First, in Eq. (35), there are only
(M − 1) independent variables (since

∑
α yα = 1) and noises

(since
∑

α Pαβ = 0 implies that
∑

α ζα = 0). Second, the

noises, ζα(τ̃ ), now have a different correlation function:

〈ζα(τ̃ )ζβ(τ̃ ′)〉 =
M∑

γ=1

M∑
κ=1

Pαγ Pβκ〈η̃γ (τ̃ )η̃κ (τ̃ ′)〉

= 2b0c0

(b0 − d0)2 δ(τ̃ − τ̃ ′)
M∑

γ=1

Pαγ Pβγ yγ

= 2b0c0

(b0 − d0)2
[yαδαβ − yαyβ] δ(τ̃ − τ̃ ′),

(36)

using Eqs. (32) and (34).
In summary, the noisy dynamics on the CM is governed

by the SDEs in Eq. (35), where the noise correlation is given
by Eq. (36). However, as pointed out above, only (M − 1) of
the yα and the noises are independent. We therefore choose
the dynamical variables to be the first (M − 1) yα and denote
these by za .

The SDEs then become

dza

dτ̃
= 1√

V
ζa(τ̃ ), a = 1, . . . ,M − 1, (37)

where ζa(τ̃ ) is a Gaussian noise with zero mean and with a
correlator

〈ζa(τ̃ )ζb(τ̃ ′)〉 = 2b0c0

(b0 − d0)2
[zaδab − zazb] δ(τ̃ − τ̃ ′). (38)

The choice of independent variables is chosen to mirror those
in the Moran model: the first (M − 1) being independent, with
the final one being determined through the condition yM =
1 −∑M−1

a=1 ya . In the Moran model this condition comes from
the constraint

∑M
α=1 nα = N , whereas in the SLVC model it

comes from the equation of the CM.

B. The model with selection

Introducing selection into the neutral model implies that
the birth, death, and competition rates can now be different for
different alleles. We write

bα = b0(1 + εβα), dα = d0(1 + εδα), cαβ = c0(1 + εγαβ),

(39)

where ε is a small selection constant, which will be taken to be
proportional to the selection constant, s, in the Moran model,
when we compare both models.

The SLVC model to first order in ε can now be constructed.
There is no need to modify the Bαβ(x) beyond their neutral
form, as working in the weak selection limit, ε is small, and
terms of order ε/N2 in the FPE can be neglected. The functions
Aα(x) are given by [after rescaling as in Eq. (24)]

Ãα( y) = c0

(b0 − d0)2
Aα(x) = yα + ε

(b0βα − d0δα)

(b0 − d0)
yα

− yα

M∑
β=1

yβ − ε

M∑
β=1

γαβyαyβ + O(ε2). (40)

If we now search for fixed points of the dynamics—values
of y such that Ãα( y) = 0—it is found that generically there
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is at most one fixed point that is not on the boundary of the
allowed region of y variables. This result is known to be true
for the LV model [4,20,33]; we infer the result for the reduced
model by exploiting the mapping to the Moran model with
frequency-dependent selection, which we will demonstrate in
Sec. IV C. We therefore deduce that a CM does not exist for
nonzero ε.

Although a CM no longer exists, we would still expect the
time-scale separation argument used previously for the neutral
case to apply. The timescale for the fast mode to collapse will
only be changed by small terms of order ε, but now the collapse
will not be onto a CM, but onto an (M − 1)-dimensional
subspace on which there is a weak deterministic dynamics
(of strength ε) in addition to the same noise as was found
in the neutral case. This subspace will not be planar, but
we will nevertheless determine it by asking that there is no
deterministic dynamics in the fast direction as defined by the
eigenvector v(M) found in the neutral case; i.e., we ask that
u(M) · Ã( y) = 0. An equivalent condition, using the explicit
form for u(M) given in Eq. (26) is

∑M
α=1 Ãα = 0. This is

an approximation, but in previous work where it has been
used [22,30,31] it has been found to be a very good one. The
condition is also consistent with the other terms that appear
in the SDE, given in the neutral case by Eq. (35), that is,∑

α ẏα = 0 and
∑

α ζα = 0. In a similar fashion we will also
continue to use Eq. (28) as an approximation for the initial
condition of the system on the slow subspace.

This condition on Ã( y) determines the equation of the slow
manifold. To zeroth order in ε it gives yM = 1 −∑M−1

a=1 ya ,
the equation of the CM. Therefore, to determine the order ε

correction to this equation, which gives the slow manifold, we
write

yM = 1 −
M−1∑
a=1

ya + εf (y1, . . . ,yM−1) + O(ε2), (41)

where f is a function to be determined. Substituting Eq. (41)
into the condition

∑M
α=1 Ãα = 0 gives

f (y1, . . . ,yM−1) =
M−1∑
a=1

(b0βa − d0δa)

(b0 − d0)
ya + (b0βM − d0δM )

(b0 − d0)

×
(

1 −
M−1∑
a=1

ya

)
−

M−1∑
a,b=1

�abyayb

−
M−1∑
a=1

ya{γaM + γMa − 2γMM} − γMM,

(42)

where we have introduced the combinations of constants,

�ab = γab − γaM − γMb + γMM. (43)

This is the same combination of γαβ as appears in the definition
of Gab given by Eq. (21), and the same interpretation in terms
of relative quantities holds. In fact, using Eq. (39) we may
introduce a similar quantity for the full competition rates cαβ :

Cab ≡ cab − caM − cMb + cMM = εc0�ab. (44)

We can now eliminate yM from the function Ãα( y) given
by Eq. (40) to find

Ãa(y)
∣∣
SS = εya

{
[(�a − γaM ) − (�M − γMM )]

−
M−1∑
b=1

[(�b − γbM ) − (�M − γMM )]yb

−
M−1∑
b=1

�abyb +
M−1∑
b,c=1

�bcybyc

}
+ O(ε2), (45)

where SS indicates that this is Ãα( y) evaluated on the slow-
subspace and where, for clarity, we have introduced

�a ≡ b0βa − d0δa

b0 − d0
. (46)

Introducing the reduced variables za as in the neutral case,
we may add the term in Eq. (45) to the SDE given in Eq. (37)
to give the reduced SDE in the case with selection:

dza

dτ̃
= Ãa(z)|SS + 1√

V
ζa(τ̃ ), a = 1, . . . ,M − 1, (47)

where the noise is as in the neutral case, that is, with the
correlator given by Eq. (38) and where Ãa(z)|SS is evaluated
at first order in ε.

In this section, we have shown that even though the M-allele
SLVC model begins with one more degree of freedom than the
M-allele Moran model, after some time the extra degree of
freedom decays away and the models begin to resemble each
other. In the next section, we seek to determine the precise
conditions under which their dynamics are equivalent.

IV. COMPARISON OF THE REDUCED SLVC MODEL AND
MORAN MODELS

A. The neutral models

It is clear that the reduced SLVC model written in the form
of Eq. (37) is precisely the neutral Moran model [Eqs. (15) and
(16) with s = 0] up to a constant in the correlation function.
The identification can be taken a little bit further by noting
that the average population size of the SLVC model on the
CM, Eq. (23), in terms of the number of individuals in the
system is

〈N (LV)〉 = (b0 − d0)V/c0. (48)

We can then transform Eq. (37) back into a FPE equation in
the natural units t of the SLVC process, to obtain

∂P (z,t)

∂t
= 1

2〈N (LV)〉2

M−1∑
a,b=1

∂2

∂za∂zb

[Bab(z)P (z,t)], (49)

where

Bab(z) = 2
b0

c0
(b0 − d0)(zaδab − zazb). (50)

Comparing Eq. (14) [with A(x) = 0 and B(x) taken from
Eq. (16)] with Eq. (49), we see that in units of t , the natural
timescale of the underlying stochastic processes, the timescale
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TABLE I. Summary of the mappings between the Moran model in various forms and the SLVC model. Mappings are valid at long times
in the limit where N is large but finite, and s and ε are small.

All cases Neutral Constant selection Frequency-dependent selection

Moran type Eqs. (14), (17) Eq. (16), (A(x) = 0) Eqs. (15), (16) Eqs. (20), (16)
equations

SLVC type Eqs. (3), (5) Eq. (4) Eq. (4) Eq. (4)
equations

Mapping x(M)
a = c0x

(LV)
a /(b0 − d0) ε = s ≡ 0 ρα = (b0βα − d0δα)/(b0 − d0) gαM = (b0βα − d0δα)/(b0 − d0)

N (M) = (b0 − d0)V/c0 −γaM −γaM

≡ 〈N (LV)〉 s = ε(b0 − d0)/b0 s = ε(b0 − d0)/b0

t (M) = [b0(b0 − d0)/c0]t (LV) γab − γaM − γMb + γMM = 0 γab − γaM − γMb + γMM =
τ (M) = b0τ

(LV) −[gab − gaM − gMb + gMM ]

of the neutral SLVC model, is related to that of the Moran
model by t (M) = [b0(b0 − d0)/c0]t (LV) for fixed N = 〈N〉.

Some further algebra also allows us to calculate how the
neutral Moran model and the neutral SLVC model are related
in the SDE representation given Eqs. (17) and (5). Along with
the scaling x(M)

a = c0x
(LV)
a /(b0 − d0), we find τ (M) = b0τ

(LV).
These results are summarized in Table I.

B. The models with frequency-independent selection

In Sec. IV A we showed that the neutral reduced SLVC
model and neutral Moran model are identical up to a rescaling
of time. In this section we ask under what conditions the
reduced SLVC model behaves identically to the Moran
model with frequency-independent selection, defined by
Eqs. (14)–(16).

This is carried out by comparing the constant terms, the
terms linear in yb and the quadratic terms, in the bracket
multiplying εya in Eq. (45) with the corresponding bracket
in Eq. (15). Comparing the constant terms gives ρa − ρM =
(�a − γaM ) − (�M − γMM ). The linear terms now match if∑

b �abyb = 0 for all yb, that is, if �ab = 0 for all a and b. This
last condition implies that there is no quadratic term, as is clear
from Eq. (15). Thus, the condition for the mapping to exist
is �ab = 0 and the relationship between the ρa and the γaM

that is required to carry out the mapping is ρa = �a − γaM+
constant. If we also identify ρM = �M − γMM , then this
constant is zero, and we may then state that the reduced
SLVC model behaves identically to the Moran model with
frequency-independent selection if �ab ≡ 0 and if we make
the identification

ρα = b0βα − d0δα

b0 − d0
− γαM. (51)

Assuming that this mapping can be carried out, we now
transform Eq. (45) back into a FPE equation in the natural
units t of the SLVC process to obtain

∂P (z,t)

∂t
= − 1

〈N (LV)〉
M−1∑
a=1

∂

∂za

[Aa(z)P (z,t)]

+ 1

2〈N (LV)〉2

M−1∑
a,b=1

∂2

∂za∂zb

[Bab(z)P (z,t)], (52)

where Aa(z) is a rescaled form of Ãa(y)|SS—reversing the
rescaling carried out in Eq. (40):

Aa(z) = (b0 − d0)2

c0
Ãa(z)|SS, (53)

and where B(z) retains the form given in Eq. (50). Comparing
Eqs. (14)–(16) with Eqs. (52), (53), and (50), we see that the
two equations are identical if we rescale time in the SLVC such
that t (M) = [b0(b0 − d0)/c0]t (LV) and simultaneously make the
identification

s = ε(b0 − d0)

b0
, (54)

along with the condition �ab = 0 for all a and b. The
equivalence of the reduced SLVC model and Moran model in
the SDE setting is obtained by again enforcing the condition on
�ab and Eq. (54), but rescaling time instead by τ (M) = b0τ

(LV).
We note that is different to the rescaling adopted in the analysis
of the M = 2 version of this correspondence [22], where
factors of γαβ were included.

One can also ask about the nature of the fixed points in
the Moran model and the reduced SLVC model under the
conditions outlined above. From Eq. (15) the fixed points of
the model are given by solutions to

0 = xa

(
ρ̂a −

M−1∑
b=1

ρ̂bxb

)
, (55)

where ρ̂a ≡ ρa − ρM . An analysis of this equation shows that
the only fixed points are on a boundary, unless all the ρα are
equal. However, if all the ρα are equal there is no selection,
so in this case of frequency-independent selection there are no
interior fixed points.

C. The models with frequency-dependent selection

We can now repeat a similar analysis to that described
in Sec. IV B to ask under what conditions the reduced SLVC
model behaves identically to the Moran model with frequency-
dependent selection, defined by Eqs. (14), (20), and (16).

Once again, we compare the constant terms, the terms
linear in yb, and the quadratic terms, in the bracket mul-
tiplying εya in Eq. (45) with the corresponding bracket in
Eq. (20). Comparing the constant terms gives gaM − gMM =
(�a − γaM ) − (�M − γMM ). The linear terms now match if
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∑
b Gabyb = −∑b �abyb for all yb, that is, if Gab = −�ab for

all a and b. This last condition implies that the quadratic terms
match. Thus, the parameters of the two models are related by
�ab = −Gab and also by gaM = �a − γaM+ constant. If we
also identify gMM = �M − γMM , then this constant is zero,
and we may then state that the reduced SLVC model behaves
identically to the Moran model with frequency-independent
selection if Gab = −�ab and if we make the identification

gαM = b0βα − d0δα

b0 − d0
− γαM. (56)

We may once again carry out rescalings and transformations
as in Sec. IV B, which lead to Eqs. (52), (53), and (54).

Under the conditions outlined above it can be shown
that the deterministic frequency-dependent Moran model
(equivalently the replicator equations) admits at most one
stable fixed point on the interior region [33]. This is clearly
also true for the reduced version of the SLVC model, since we
have shown that it maps to the frequency-dependent Moran
model. A more detailed discussion of these deterministic
considerations can be found in Ref. [20].

V. UTILIZATION OF THE MAPPINGS

A useful feature of the mappings that have been derived
above is that we can now use analytic results obtained for the
Moran model to make predictions about the SLVC model. In
this section we illustrate this by mapping various results for
fixation probabilities and times in the Moran model to those
in the SLVC model, providing predictions for the extinction
probabilities and mean time to extinction of species in certain
scenarios.

A. The neutral models

In the neutral Moran system, it is possible to separate out
the dynamics of the different alleles [34]; rather than consider
the dynamics of the many different interacting alleles, we
can instead split the population into two subpopulations, one
containing an allele of interest and the other containing all
of the remaining alleles. Using this approach it is possible to
calculate the probability of any series of extinctions and the
time until the rth extinction. These results, together with the
mappings provided by Table I, allow us to calculate the same
quantities for the SLVC model. The full calculation is detailed
in Appendix B; however, here we state the main results for the
SLVC model.

Let S = (αM,αM−1, . . . ,α2) be a series of species extinc-
tions in the neutral M-species SLVC model, such that species
αM goes extinct first, followed by αM−1 finally leaving only
species α1 in the population. The probability of this series of
extinctions, P

S

Fix, given initial conditions x(0), is given by

P
S

Fix =
M−1∏
a=1

x(0)
αa∑M

β=1 x
(0)
β −∑a−1

b=1 x
(0)
αb

. (57)

We can also use this result to calculate the probability that
species α goes extinct first, P

{α}
Ext ; this is simply the sum of

Eq. (57) over all S that do not contain αα as an element (i.e.,
species α never fixates but rather is the first to reach extinction).

FIG. 2. Plots of the time until the first extinction of an allele
(a) and the probability that each allele goes extinct first (b) in the
neutral models with M = 5 species, plotted as a function of the
projected initial condition on the center manifold. Simulation results
are obtained from Gillespie simulation of Eqs. (7) and (8) (Moran)
and Eq. (1) (SLVC), averaged over 103 runs. Analytic results are
obtained from Eq. (58) with r = 1 and the sum of Eq. (57) over
all extinction sequences that begin with a particular allele. To vary
the initial condition on the CM as a function of a single variable,
the initial condition for x(0) in both the Moran and SLVC models
has been parameterized by κ (see Appendix C, where the remaining
parameters are also given).

We find excellent agreement between this result and those
obtained from simulations (see Fig. 2).

We now move to considering the mean unconditional time
until the extinction of the rth species, 〈T (LV)

(r) (x(0))〉. Given an
initial distribution of species x(0) in the SLVC model, this is
given by

〈
T

(LV)
(r) (x(0))

〉 = − c0〈N (LV)〉2

b0(b0 − d0)

M−1∑
a=r

(−1)a−r

(
a − 1

r − 1

)

×
∑

α

(∑a
b=1 x(0)

αb∑M
β=1 x

(0)
β

)
ln

[∑a
b=1 x(0)

αb∑M
β=1 x

(0)
β

]
,

(58)

where 〈N (LV)〉 is the average number of individuals in the
SLVC model at carrying capacity [see Eq. (48)]. Here the
summation over α = {α1,α2, . . . ,αa} denotes summation over
all possible subsets of the set of positive integers {1,2, . . . ,M}
with a entries. Again, this matches very well the results
obtained from simulating the underlying stochastic models
(see Fig. 2).
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Note that in the Moran model, extinctions will occur on
a timescale proportional to N2 when measured in units of
t (M) (see Appendix B), while in the SLVC model we predict
fixation to occur on a timescale c0〈N〉2/[b0(b0 − d0)] (see
Table I). From this we see that increasing the birthrate, b0,
in the SLVC model increases the rate of “genetic drift” in the
SLVC model relative to the Moran model. However, a perhaps
less intuitive result is that increasing the average genotype
lifetime b0 − d0 also increases the relative rate of genetic drift,
while conversely increasing competition rate, c0, slows down
the rate of genetic drift in the SLVC model relative to the Moran
model.

B. The models with frequency-independent selection

It is very difficult to obtain results on the fixation probability
of an allele in a multiallele Moran model when each of the
alleles is under a different selection pressure, and to our

knowledge no analytic results for this problem have been
obtained. Progress can be made however if one assumes that all
of the alleles are under one or other of two selective pressures.
In this case, the entire system dynamics can be decomposed
into two processes: a Moran process with selection between the
two subpopulations and neutral drift within each population.
The fixation probability of any allele can then be expressed
as the product of the fixation probability of its subpopulation,
multiplied by its fixation probability within the subpopulation.

The full calculation is detailed in Appendix B, while here
we simply give the key results in the context of the SLVC
model. Suppose that the M species in the SLVC model are
interacting in such a way that their dynamics can be described
by frequency-independent selection [see Eq. (51) and Table I].
Now further suppose that although their birth, death, and inter-
action parameters may all be distinct, they are such that they
only give rise to two distinct selection pressures when mapped
to the Moran model with frequency-dependent selection; that is

b0βα − d0δα − (b0 − d0)γαM = b0β̄1 − d0δ̄1 − (b0 − d0)γ̄12 1 � α � θ,
(59)

b0βα − d0δα − (b0 − d0)γαM = b0β̄2 − d0δ̄2 − (b0 − d0)γ̄22 θ < α � M.

The fixation probability of any species in the SLVC model is then described by

P
{α}
Fix = 1 − exp

[−ε〈N (LV)〉ω12
∑θ

b=1 x
(0)
b

/(
b0
∑M

β=1 x
(0)
β

)]
1 − exp [−ε〈N〉ω12/b0]

x(0)
α∑θ

β=1 x
(0)
β

, 1 � α � θ,

(60)

P
{α}
Fix =

{
1 − 1 − exp

[−ε〈N (LV)〉ω12
∑θ

b=1 x
(0)
b

/(
b0
∑M

β=1 x
(0)
β

)]
1 − exp [−ε〈N〉ω12/b0]

}
x(0)

α∑M
β=θ+1 x

(0)
β

, θ < α � M,

where

ω12 = (b0(β̄1 − β̄2) − d0(δ̄1 − δ̄2) − (b0 − d0)[γ̄12 − γ̄22]),

(61)

and where we have made use of Eqs. (28) and (54). We find
excellent agreement between these results and results obtained
from simulations, as illustrated in Fig. 3. Determining the
probability of first extinction is not possible however;
this requires knowing the probability of time ordering of
extinctions (whether fixation in the subpopulation occurs
before fixation in the population as a whole).

More generally, we find good agreement between the Moran
model and the SLVC model with conditions and mappings
taken from Table I, even when analytic results are not available
(see Fig. 5).

C. The models with frequency-dependent selection

The inclusion of cubic terms in the multiallelic model
with frequency-dependent selection makes obtaining analytic
results for the fixation probability and time even more
challenging than in the case with frequency-independent
selection. However, analytic progress can again be made under
the condition that the elements of the payoff matrix can be
partitioned such that only two distinct strategies exists within

the population (see Appendix B). Here we describe the results
of this calculation in relation to the SLVC model.

We first make the assumption that the competition matrix
γαβ can be partitioned such that

γαβ = γ̄11, α,β � θ ; γαβ = γ̄12, α � θ < β ,

γαβ = γ̄22, α,β > θ ; γαβ = γ̄21, β � θ < α,

while the birth and death terms can be partitioned such that

βα = β̄1, δα = δ̄1, 1 � α � θ,

βα = β̄2, δα = δ̄2, θ < α � M.

Then the fixation probability of any species in the population
is shown in Appendix B to be given by

P
{α}
Fix = 1 − χ [l(x(0))]

1 − χ [l(1)]

x(0)
α∑θ

β=1 x
(0)
β

, if 1 � α � θ,

(62)

P
{α}
Fix = 1 − χ [l(x(0))]

1 − χ [l(1)]

x(0)
α∑M

β=θ+1 x
(0)
β

, if θ < α � M,

where

χ [l(x(0))] = erfi[l(x(0))]

erfi[l(0)]
, if �̄11 < 0,

(63)

χ [l(x(0))] = erfc[l(x(0))]

erfc[l(0)]
, if �̄11 > 0.

022416-10



MAPPING OF THE STOCHASTIC LOTKA-VOLTERRA . . . PHYSICAL REVIEW E 96, 022416 (2017)

FIG. 3. Plots of the unconditional mean time until the fixation
of a single allele/species (a) and the probability of the fixation of an
allele/species (b) for the Moran and SLVC models with frequency-
independent selection in the case M = 6 alleles/species. In these plots
all alleles in the Moran model are under one of two selection pressures,
while in the SLVC model all species have differing parameters that
combine to give two selection pressures, making the system mappable
to the Moran model presented. Analytic results for the probability
of fixation are obtained using Eq. (60). Simulations results are the
mean of 103 stochastic simulations of the Moran and SLVC models.
Parameters used are given in Appendix C where the parametrization
of x(0) in terms of κ is also described.

Here erfi and erfc are, respectively, the imaginary and
complimentary error functions [35,36], and the function l(x(0))
is defined as

l(x(0)) =
√

ε(b0 − d0)〈N (LV)〉
2b0|�̄11|

[
−�̄11

∑θ
b=1 x

(0)
b∑M

β=1 x
(0)
β

+ b0(β̄1 − β̄2) − d0(δ̄1 − δ̄2)

b0 − d0
− (γ̄12 − γ̄22)

]
.

(64)

In addition, the notation l(1) and l(0) means the value of l when
(
∑θ

b=1 x
(0)
b )/(

∑M
β=1 x

(0)
β ) = 1 and (

∑θ
b=1 x

(0)
b )/(

∑M
β=1 x

(0)
β ) =

0, respectively. Using this analytic result we find good
agreement between our theory and results obtained from
simulations, as illustrated in Fig. 4.

We note, however, that in Fig. 4 there begins to be disagree-
ment for the time to fixation. This difference is likely caused
by the existence of an interior stable fixed point in the system.
In general, our method of fast-variable elimination is expected

FIG. 4. Plots of the unconditional mean time until the fixation of
a single strategy/species (a) and the probability of the fixation of a
strategy/species (b) for the Moran and SLVC models with frequency-
dependent selection in the case of M = 4 strategies/species. In these
plots all players play one of two pairwise strategies, while in the
SLVC model all species have one of two competition matrices,
making the system mappable to the stochastic replicator model
presented. Analytic results for the probability of fixation are obtained
using Eq. (62). Simulations results are the mean of 103 stochastic
simulations of the Moran and SLVC models. Parameters used are
given in Appendix C (where the parametrization of x(0) in terms of κ

is also described); however, we note that they are such that an interior
fixed point exists for the deterministic dynamics.

to perform well when s is small and N is relatively large [30].
However, when an interior fixed point is present, another factor
comes into play—the validity of the diffusion approximation
itself. As the distribution of stochastic trajectories about the
fixed point becomes increasingly stable (for instance, by in-
creasing N ), the FPE obtained via the diffusion approximation
is known to become less accurate near the boundaries [37].
Therefore, although our approximation of the FPE becomes
more accurate with increasing N , the FPE itself becomes less
reliable in this regime for increasing N . The disagreement
hinted at here between the Moran-replicator and SLVC models
will then only be calculable outside the diffusion limit.

Solving for fixation times in this scenario becomes increas-
ingly difficult; as we have discussed, they are not straightfor-
ward to obtain even in a two-type system, as the emergence
of very stable fixed points creates deviations between the
underlying stochastic process and the diffusion approximation
that have to be carefully corrected for Ref. [37]. Adding more
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FIG. 5. Plots of the mean time until first extinction of an allele
(a) and the probability that each allele becomes extinct first (b) in
the Moran and SLVC models with frequency-dependent selection in
the case of M = 4 strategies/species. Each allele is under distinct
selection pressures with differing game payoffs, g, or competition
terms, γ . Full details of the parameters used are given in Appendix C.
Although no analytic results for this system are available, we see
good agreement between the Moran model and the SLVC model.
Simulations are the average of 103 runs.

types compounds this difficulty. However, comparing results of
simulations of the Moran model with the SLVC model, we can
see that the mapping between the models remains qualitatively
intact (see Fig. 4) and that the mapping also holds under a broad
range of parameter regimes in which there is no interior fixed
point (see Fig. 5).

VI. CONCLUSIONS

In this paper, we have defined a mapping between var-
ious incarnations of the Moran model in M − 1 variables
and the SLVC model in M variables, which accounts for
demographic noise. In particular we have concentrated on the
mapping between three forms of the Moran model: the neutral
Moran model, the Moran model with frequency-independent
selection, and the Moran model with frequency-dependent
selection. While the Moran model is formulated in terms of a
population of fixed size N , the populations in the SLVC model
do not strictly have a fixed size. However, at long times they
approach a carrying capacity around which they stochastically
fluctuate. The key to making an analytic bridge between these
models has been in noting the following: if selection is weak
and the population size is large, the SLVC model approaches

its carrying capacity (and is confined in its vicinity) on a much
faster timescale than that on which the composition of the
population changes. By working in an SDE (or equivalent
FPE) setting that approximates the stochastic dynamics, the
fast timescales can be clearly identified. On removing these fast
transient dynamics, the SLVC model can be approximated by a
reduced model in M − 1 variables that is of similar form to the
Moran model, and thus a precise mapping can be determined.

Our analysis begins with a consideration of the neutral
SLVC model, which we define as that in which all birth,
death and competition rates are equal for all species. This
setting allows us to determine a CM for the system and in
turn calculate the reduced form of the neutral SLVC model.
The neutral setting also serves as a useful reference case
for determining the reduced form of the nonneutral SLVC
model; the reduced nonneutral dynamics can be calculated
using a perturbation theory around the neutral system. We
find that the SLVC model maps to the Moran model with
frequency-dependent selection with no conditions other than
those stated in our approximation, that selection is weak and
the population size is large (see Table I). We note that for
any given set of parameters in the SLVC model, a unique
choice of payoff matrix in the Moran model does not exist.
This is because it is the relative (rather than absolute) values
of the payoff matrix that are consequential for the dynamics
[see Eq. (21)]. The SLVC model maps to the Moran model
with frequency-independent selection with conditions on the
competition matrix that ensures that there is no frequency-
dependent selection in the SLVC model. Finally, and as already
stated, the SLVC model maps to the neutral Moran model
with the largest number of conditions; that birth, death and
competition rates are the same for each species.

Although we have used the neutral SLVC model as a
reference case for our fast-variable elimination procedure,
other choices of reference case are possible. In fact, a similar
approach to that outlined in this paper can be taken by
implementing a perturbation theory around any choice of
parameters that generates a CM in the LV dynamics. More
generally, CMs in the LV system can also be achieved by
setting cακ = cβκ and bα − dα = bβ − dβ for all α and β.
Although the species are no longer identical (even in the
absence of selection), a reduced form of the dynamics can
still be calculated. However, breaking the symmetry between
the species in this way can give rise to noise-induced selection
(see, for instance, Ref. [38], where the competition terms are
varied, and Refs. [21,39], where the birth and death rates are
varied in two-species systems). In this paper we have not
explored these possibilities, instead focusing on developing a
clean mapping between models in which neutrality is defined
in the usual way. However, considering the emergence of such
noise-induced effects for the M-species SLVC model will be
of great interest for further work.

In general we have stated that we expect the mapping that
we have developed between the SDEs for each model to hold
under the same range of validity as the approximations we
have employed. From the diffusion approximation that gave
rise to the SDEs we require that the number of individuals
in both the SLVC model and Moran models is large (large V

and N , respectively) while from the fast-variable elimination
procedure we additionally require that selection is weak
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(small ε and s, respectively). However, as noted in Sec. V C,
this picture becomes more complicated in the case of
frequency-dependent selection when a stable coexistence
fixed point is present. In this case, as the system size increases,
the diffusion approximation can become an increasingly poor
predictor of the fixation properties of the system [37]. Thus,
although the mapping between the SDEs becomes increasingly
accurate with increasing N and V , the underlying stochastic
dynamics of the systems may not converge in this limit. It is
likely that this is the origin of the discrepancy between the
fixation times in the SLVC model and Moran model in Fig. 4.
Further work is required using other approximations of the
underlying master-equation, such as the WKB approximation
[40], to determine to what extent the mapping established
here remains valid with respect to fixation times. However,
it should be stressed that although the fixation time becomes
poorly matched in this case, the mapping in terms of fixation
probabilities still works very well (see Fig. 4).

The mappings defined in this paper have a clear utility.
Namely, the problem of calculating many stochastic quantities
relating to the SLVC model (such as fixation probabilities and
times) is reduced to finding a related result in the relevant
Moran model together with an implementation of the mapping
that we have defined in Table I. While stochasticity in the
Lotka-Volterra model has received relatively little attention,
there is a vast literature of results pertaining to the Moran
model and its variants. In Sec. V of this paper, we have
illustrated how fixation properties for the SLVC model can be
derived in a straightforward way by employing the mapping
to the Moran process. No doubt there are more rich and
interesting behaviors that can be uncovered in a similar
way. Since the SLVC model maps with the least stringent
conditions to the Moran model with frequency-dependent
selection, the increasing number of analytic results related to
multi-strategy game theory [14,33] are of special note. While
consideration of these numerous possible extensions is beyond
the scope of this current paper, the inclusion of mutation
in the SLVC model may be of particular interest. This is in
part because of the large body of analytic work that exists
in the population genetic [41] and game theory literature
[14] that relies on small mutation rates to gain analytic
traction.

The form of the Moran model familiar to most population
geneticists is that with frequency-independent selection. By
construction this ignores interactions between alleles that alter
each other’s fitness. In terms of deriving analytic results on
population genetics, understanding the frequency-independent
case is clearly the first aspect to consider. However, it is
naive to imagine that nature would conform to this scenario.
Frequency-dependent selection is in some sense the hallmark
of an ecological system and arises continuously in biological
systems. Indeed, despite conscious attempts to remove ecology
from microbial experiments, frequency-dependent selection
is often seen to emerge [42]. Just as these experimental
findings have started to motivate theoretical studies [43], from
the perspective of theoretical ecology there is an increasing
awareness that demographic stochasticity can have important
consequences [44]. It is our hope that the work presented here
will prove to be of use to researchers in ecology, population

genetics, and game theory in seeing concrete parallels,
distinctions, and applications in each other’s work.
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APPENDIX A: DERIVATION OF THE FOKKER-PLANCK
EQUATION FOR THE MORAN MODEL

In Sec. II of the main text we defined the M-allele Moran
model with selection through the transition rates in Eqs. (9)–
(11). We considered two types of selection. In the first type,
the fitness weightings, Wa , were independent of the number of
individuals carrying a particular allele, that is, independent of
n. For the second type, the fitness weightings depended on the
population composition in a way that was given by Eq. (19).
In both cases, when these transition rates are substituted into
the master equation,

dP (n,t)

dt
=
∑
n′ �=n

[T (n|n′)P (n′,t) − T (n′|n)P (n,t)], (A1)

they give the stochastic dynamics of the population. In this
appendix, we will derive the FPE for the M-allele Moran model
with selection, by applying the diffusion approximation to the
master equation with these particular transition rates.

To make the diffusion approximation we write xα = nα/N

and introduce the notation Fα,β(x) for the above transition
rates for moving from state xα to state xα + N−1 and from
state xβ to state xβ − N−1. In terms of the x variables, the
master Eq. (A1) becomes, after expanding in powers of N−1,
relabelling, and combining,

∂P

∂t
= − 1

N

M−1∑
a �=b

∂

∂xa

[{Fa,b(x) − Fb,a(x)}P (x,t)]

− 1

N

M−1∑
a=1

∂

∂xa

[{Fa,M (x) − FM,a(x)}P (x,t)]

+ 1

2N2

M−1∑
a �=b

∂2

∂x2
a

[{Fa,b(x) + Fb,a(x)}P (x,t)]

+ 1

2N2

M−1∑
a=1

∂2

∂x2
a

[{Fa,M (x) + FM,a(x)}P (x,t)]

− 1

N2

M−1∑
a �=b

∂2

∂xa∂xb

[Fa,b(x)P (x,t)] + O

(
1

N3

)
.

(A2)
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This is the FPE for the Moran model:

∂P

∂t
= − 1

N

M−1∑
a=1

∂

∂xa

[Aa(x)P (x,t)]

+ 1

2N2

M−1∑
a,b=1

∂2

∂xa∂xb

[Bab(x)P (x,t)], (A3)

where

Aa

(
x
) =

M−1∑
b �=a

{[Fa,b

(
x
)− Fb,a(x)]

+ [Fa,M (x) − FM,a(x)]},

Baa(x) =
M−1∑
b �=a

{[Fa,b(x) + Fb,a(x)]

+ [Fa,M (x) + FM,a(x)]},
Bab(x) = −[Fa,b(x) + Fb,a(x)] (a �= b). (A4)

This is as far as one can go without using the specific forms
for the transition rates, so now we consider the two cases
of frequency-independent selection and frequency-dependent
selection in turn.

1. The Fokker-Planck equation for the Moran model with
frequency-independent selection

Before beginning the derivation, we simplify the expres-
sions in Eqs. (9)–(11) by using Eq. (13) and expanding in s.
Since

∑M
γ=1 Wγ nγ = N + s

∑M
γ=1 ργ nγ , we have

⎡
⎣ M∑

γ=1

Wγ nγ

⎤
⎦

−1

= N−1

⎡
⎣1 + s

N

M∑
γ=1

ργ nγ

⎤
⎦

−1

= N−1

⎧⎨
⎩1 − s

N

M∑
γ=1

ργ nγ

+ s2

N2

⎛
⎝ M∑

γ=1

ργ nγ

⎞
⎠

2

+ O
(
s3
)
⎫⎪⎬
⎪⎭.

Therefore,

T (n1, . . . ,na + 1, . . . ,nb − 1, . . . ,nM−1|n)

= na

N

nb

N
+ s

na

N

nb

N

⎧⎨
⎩ρa −

M∑
γ=1

ργ

nγ

N

⎫⎬
⎭+ O(s2), (A5)

if a �= b,

T (n1, . . . ,na + 1, . . . ,nM−1|n)

= na

N

N −∑M−1
b=1 nb

N
+ s

na

N

N −∑M−1
b=1 nb

N

×
⎧⎨
⎩ρa −

M∑
γ=1

ργ

nγ

N

⎫⎬
⎭+ O(s2), (A6)

and

T (n1, . . . ,na − 1, . . . ,nM−1|n)

= na

N

N −∑M−1
b=1 nb

N
+ s

na

N

N −∑M−1
b=1 nb

N

×
⎧⎨
⎩ρM −

M∑
γ=1

ργ

nγ

N

⎫⎬
⎭+ O(s2). (A7)

In terms of the Fαβ(x) these are, omitting terms of order s2

and higher,

Fa,b(x) = xaxb

⎧⎨
⎩1 + s

⎡
⎣ρa −

M∑
γ=1

ργ xγ

⎤
⎦
⎫⎬
⎭, for a �= b,

Fa,M (x) = xa

(
1 −

M−1∑
b=1

xb

)⎧⎨
⎩1 + s

⎡
⎣ρa −

M∑
γ=1

ργ xγ

⎤
⎦
⎫⎬
⎭,

FM,a(x) = xa

(
1 −

M−1∑
b=1

xb

)⎧⎨
⎩1 + s

⎡
⎣ρM −

M∑
γ=1

ργ xγ

⎤
⎦
⎫⎬
⎭.

(A8)

Using these specific forms, one finds from Eq. (A4) that

Aa(x) = s

M−1∑
b �=a

xaxb(ρa − ρb)

+ sxa

(
1 −

M−1∑
b=1

xb

)
(ρa − ρM ) + O(s2),

Baa

(
x
) = 2

M−1∑
b �=a

xaxb + 2xa

(
1 −

M−1∑
b=1

xb

)
+ O(s),

Bab

(
x
) = −2xaxb + O(s), (a �= b). (A9)

After the introduction of the new time scale τ = t/N ,
the FPE may be written in terms of the set of (M − 1)
SDEs Eq. (17). The function Aa(x) may be slightly
rewritten to give Eq. (15). Similarly, the diagonal
elements of the functions Bab(x) may be simplified to
Baa(x) = 2xa − 2x2

a = 2xa(1 − xa), giving Eq. (16).
The result for Bab(x) is known [28]. One check on the form

of Aa(x) is to take M = 2, so that a and b take only the value 1.
Then, dropping the index on A and on x, we have that A(x) =
sρ1x(1 − x) − sxρ2(1 − x) = s(ρ1 − ρ2)x(1 − x), which is
the known result for two alleles, up to a constant [24]. As
a second, and more substantial, check we can start from the
master equation with transition rates Eqs. (9)–(11) and work
out the equation for d〈nk〉/dτ . One finds

d〈xk〉
dτ

=
M−1∑
a �=b

δka

Waxaxb∑M
γ=1 Wγ xγ

−
M−1∑
a �=b

δkb

Waxaxb∑M
γ=1 Wγ xγ

+
M−1∑
a=1

δka

Waxa∑M
γ=1 Wγ xγ

(
1 −

M−1∑
b=1

xb

)

−
M−1∑
a=1

δka

WMxa∑M
γ=1 Wγ xγ

(
1 −

M−1∑
b=1

xb

)
. (A10)
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There are a number of points to be made about this equation.
First, we have replaced na by Nxa . Since na always appears
in the combination na/N , there was no need to take N → ∞
to eliminate extra factors of N . Second, there should be angle
brackets around all the terms on the right-hand side; these
have been omitted so that the expression does not look so
cluttered. This is permitted, since in the limit N → ∞, the
average of products is the product of the averages, that is,
〈xaxb〉 = 〈xa〉〈xb〉. In the following we will also omit the angle
brackets on the left-hand side, since we are attempting to derive
the macroscopic equation, which is an equation for the macro-
scopic variable xa , written without angle brackets. Finally, we
also note that the factor

∑M
β=1 Wγ xγ is common throughout in

the denominator, and so we may multiply through by it, to find

⎛
⎝ M∑

γ=1

Wγ xγ

⎞
⎠ dxk

dτ

= Wkxk

M−1∑
b �=k

xb − xk

M−1∑
a �=k

Waxa

+Wkxk

(
1 −

M−1∑
b=1

xb

)
− WMxk

(
1 −

M−1∑
b=1

xb

)

= Wkxk

M−1∑
a=1

xa − xk

M−1∑
a=1

Waxa

+ (Wk − WM ) xk

(
1 −

M−1∑
b=1

xb

)
. (A11)

We now write Wα = 1 + sρα , as in Eq. (13). The terms of order
1 on the right-hand side are seen to cancel, and so the whole of
the right-hand side is of order s, and Wα may be replaced every-
where by sρα . In addition, the factor in brackets on the left-hand
side is

∑M
γ=1 xγ + O(s), and so to the order we are working at

is simply equal to 1. Therefore, the macroscopic equation reads

dxk

dτ
= sρkxk

M−1∑
a=1

xa − sxk

M−1∑
a=1

ρaxa

+ s(ρk − ρM ) xk

(
1 −

M−1∑
b=1

xb

)
+ O(s2)

= sρkxk − sxk

M−1∑
a=1

ρaxa

− sρMxk

(
1 −

M−1∑
b=1

xb

)
+ O(s2), (A12)

which has the form dxk/dτ = Ak(x), where Ak(x) is given
by Eq. (15).

2. The Fokker-Planck equation for the Moran model with
frequency-dependent selection

In this case the average fitness of the population [see
Eq. (12)] can be expressed as

W(n) = N

⎧⎨
⎩1 + s

N2

⎡
⎣M−1∑

a,b=1

gabnanb +
(

N −
M−1∑
b=1

nb

)

×
M−1∑
b=1

(gbM + gMb)nb + gMM

(
N −

M−1∑
b=1

nb

)2
⎤
⎦
⎫⎬
⎭.

(A13)

This then leads to the following results for the combinations
of transition rates which are of interest to us:

Fab(x) − Fba(x) = sxaxb

[
M−1∑
c=1

(gac − gbc)xc + (gaM − gbM )

×
(

1 −
M−1∑
c=1

xc

)]
+ O(s2) (A14)

and

FaM (x) − FMa(x)

= sxa

(
1 −

M−1∑
b=1

xb

)[
M−1∑
c=1

(gac − gMc)xc

+(gaM − gMM )

(
1 −

M−1∑
c=1

xc

)]
+ O(s2). (A15)

Substituting these expressions into Eq. (A4), one finds that

Aa(x) = sxa

{
[gaM − gMM ] +

M−1∑
b=1

[gab − gaM − gbM

−gMb + 2gMM ]xb −
M−1∑
b,c=1

gbcxbxc +
M−1∑
b,c=1

gbMxbxc

+
M−1∑
b,c=1

gMbxbxc −
M−1∑
b,c=1

gMMxbxc

}
, (A16)

with the form of Bab(x) being the same as in the frequency-
independent case, given in Eq. (A9). Now interchanging the
b and c labels in the sum involving gMbxbxc in Eq. (A16),
and introducing GaM = gaM − gMM and Gab = gab − gaM −
gMb + gMM one obtains Eq. (20) in the main text.

As for the case of frequency-independent selection, we can
check this result for Aa(x) by calculating d〈nk〉/dτ directly
from the master equation. The steps leading to Eq. (A11)
still hold—as long as Wα is replaced by 〈Wα(x)〉, but as in
the frequency-independent case, since we are deriving what
is the macroscopic equation this is simply W (〈x〉), that is,
W (x). The comments below Eq. (A11) also hold here, and
substitution of the order s term in Eq. (19) does indeed give
dxk/dτ = Ak(x), where Ak(x) is given by Eq. (A16).
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APPENDIX B: USING RESULTS FROM THE MORAN
MODEL TO CALCULATE FIXATION QUANTITIES

IN THE SLVC

In this appendix we will use results on fixation probabilities
and times in the Moran model to calculate equivalent quantities
in the SLVC model. In the first section, we will consider the
neutral model. Here we will calculate the probability of fixation
of any species and the probability of any series of extinctions,
as well as the unconditional mean time until each successive
extinction. In the following two sections we will derive results
for the fixation of alleles in the frequency-independent model
and frequency-dependent model, respectively. In particular, in
these later two cases we shall calculate the fixation probability
of alleles in degenerate scenarios in which there are M species
but only two selection strengths (frequency-independent se-
lection) or two competition regimes (frequency-dependent
selection).

1. The neutral models

We first calculate the probability of a particular sequence of
extinctions. Consider an M-allele single locus neutral haploid
Moran model with the frequency of each allele denoted za , a =
1, . . . ,M − 1. We wish to calculate the fixation probability of
a particular allele, say allele b, with frequency zb. We begin
by noting that if we are only interested in the dynamics of a
single allele, we can group together the remaining alleles and
treat these as a single type. The frequency of the remaining
type, which we shall denote z′

r is then simply given by z′
r =

1 − zb. In a two allele system, the fixation probability of an
allele is simply equal to its relative initial frequency in the
population [24]:

P
{b}
Fix = z

(0)
b

z
(0)
b + z

′(0)
r

= z
(0)
b .

This is the probability that allele b fixates, or equivalently, that
b does not go to extinction.

We next consider the dynamics within the subpopulation
of frequency z′

r . We ask what is the fixation probability of an
allele c (of frequency z(0)

c in the global population) within the
subpopulation. This is given by

P
{c}|(subpop. 1)
Fix = z(0)

c

z
′(0)
r

= z(0)
c

1 − z
(0)
b

.

The probability that c fixates first within the subpopulation,
followed by b fixating in the global population is then

P
{b,c}
Fix = P

{b}
Fix P

{c}|(subpop. 1)
Fix

= z
(0)
b

z(0)
c

1 − z
(0)
b

.

Equivalently, this is the probability that allele c is the final allele
to become extinct, while allele b does not go to extinction.

Iterating this argument over successive subpopulations, the
probability of a given sequence S = (αM,αM−1, . . . ,α2) of
extinctions is [34]

P
S

Fix =
M−1∏
a=1

z(0)
αa

1 −∑a−1
b=1 z

(0)
αb

,

where αM is the first to go extinct, αM−1 the second,..., until
only allele α1 remains. Our final step is to simply transform this
into a function of the original x(0) initial condition variables
using Eq. (28). This leads to Eq. (57) of the main text.

We next calculate the unconditional mean time to fixation
of the rth allele. In the Moran model with the frequency of
each allele denoted by za , this is given by 〈T (M)

(r) (z(0))〉 [34]

〈
T

(M)
(r) (z(0))

〉 = −N2
M−1∑
a=r

(−1)a−r

(
a − 1

r − 1

)

×
∑

α

(
a∑

b=1

z(0)
αb

)
ln

[
a∑

b=1

z(0)
αb

]
. (B1)

Here the summation over α = {α1,α2, . . . ,αa} denotes sum-
mation over all possible subsets of the set of positive integers
{1,2, . . . ,M} with a entries. For instance, for M = 3 and
a = 2,

∑
α

(
2∑

b=1

z(0)
αb

)
ln

[
2∑

b=1

z(0)
αb

]

= (z(0)
1 + z

(0)
2

)
ln
[
z

(0)
1 + z

(0)
2

]+ (z(0)
1 + z

(0)
3

)
ln
[
z

(0)
1 + z

(0)
3

]
+ (z(0)

2 + z
(0)
3

)
ln
[
z

(0)
2 + z

(0)
3

]
. (B2)

We also note that the result Eq. (B1) differs slightly from that
given in Ref. [22] in that we have stated it in natural time
units of the Moran model (that is in t (M), see Table I), rather
than rescaled time, which accounts for the N2 prefactor in our
description.

Finally, we require that Eq. (B1) is given in units and
variables appropriate for the untransformed SLVC model.
Using Table I, we can transform each of the initial conditions
in Eq. (B1) into their equivalent values in the SLVC model
formulation [see also Eq. (28)] as well as rescaling time into
the natural units of the Moran model t (LV). Recalling that the
average population size in the SLVC model at carrying capacity
is denoted 〈N (LV)〉, we find that the time to fixation in the SLVC
model in its natural units is given by Eq. (58).

2. The models with frequency-independent selection

We begin by recalling the dynamics of the two-allele Moran
model, in which allele 1 has fitness W1 = 1 + sρ1 and allele
2 has fitness W2 = 1 + sρ2, that is, the M = 2 version of the
model described in Sec. II B 2. The drift and diffusion terms
for this system are, respectively,

A(z1) = s(ρ1 − ρ2)z1(1 − z1),
(B3)

B(z1) = 2z1(1 − z1),

to the order we are working in s. The fixation probability of
allele 1 can be obtained by solving the backward FPE [25,45]
and is given by

P
{1}
Fix = 1 − exp [−sN (ρ1 − ρ2)z1]

1 − exp [−sN (ρ1 − ρ2)]
. (B4)

The fixation probability of allele 2 is then P
{2}
Fix = 1 − P

{1}
Fix .

We now move on to the M-allele Moran model, but where
the M alleles are acted on by only two distinct selection

022416-16



MAPPING OF THE STOCHASTIC LOTKA-VOLTERRA . . . PHYSICAL REVIEW E 96, 022416 (2017)

pressures, ρ̄1 and ρ̄2. Suppose that θ of the alleles are acted
upon by selection pressure ρ̄1. We choose to label these
1, . . . ,θ . Then those labeled θ + 1, . . . ,M are acted under
selection pressure ρ̄2, that is,

ρα = ρ̄1 α = 1, . . . ,θ,
(B5)

ρα = ρ̄2 α = θ + 1, . . . ,M.

Therefore, the first θ alleles can be said to constitute sub-
population 1, while final M − θ alleles can be designated
subpopulation 2. Since the dynamics within each subpopu-
lation are neutral, we can say that the probability of each
subpopulation fixating is simply given by P

{1}
Fix and P

{2}
Fix [see

Eq. (B4)]. The reason that this can be done is that different
alleles in each subpopulation only differ by the labels given
to them; we can therefore choose to label them as only
belonging to a particular subpopulation, without changing
the dynamics. Meanwhile, again since the subpopulations
are neutral, the probability that each allele fixates within its
respective subpopulation is simply equal to its initial frequency
within the subpopulation. Therefore, the probability that any
allele α fixates is equal to the product of the probability that
it fixates within its subpopulation and the probability that its
subpopulation fixates;

P
{α}
Fix = 1 − exp

[− sN (ρ̄1 − ρ̄2)
∑θ

b=1 z
(0)
b

]
1 − exp[−sN (ρ̄1 − ρ̄2)]

× z(0)
α∑θ

b=1 z
(0)
b

, 1 � α � θ,

P
{α}
Fix =

{
1 − 1 − exp

[− sN (ρ̄1 − ρ̄2)
∑θ

b=1 z
(0)
b

]
1 − exp[−sN (ρ̄1 − ρ̄2)]

}

× z(0)
α[

1 −∑θ
b=1 z

(0)
b

] , θ < α � M,

(B6)

where the initial frequency of the M th allele, z(0)
M is understood

to be given by 1 −∑M−1
b=1 z

(0)
b . Notice that unlike in the neutral

case, we cannot determine the probability of allele extinctions
in a particular order. This is because we can only break
this nonneutral system down into two distinct subpopulations,
whereas in the neutral case we could break the system down
into any focal allele, plus the remainder of the population.

The final task is to write the above equations in terms
of the original SLVC model variables and parameters. Note
that the mapping for the parameter ρa depends on a com-
bination of the parameters in terms of the original SLVC
model variables (see Table I). To make use of the calculation
above, we require that each ρα for α � θ is identical; however,
this does not mean that the parameters in the SLVC model
need be identical; we merely require that b0βα − d0δα − (b0 −
d0)γαM = ρ̄1 for α � θ and b0βα − d0δα − (b0 − d0)γαM =
ρ̄2 for α > θ . This leads to the equivalent expressions given
by Eq. (59) for the model for the model under consideration,
which can be seen clearly in the parameters used to generate
Fig. 4 (see Appendix C). The fixation probabilities in SLVC
model notation are then given by Eq. (60) of the main text.

3. The models with frequency-dependent selection

Let us begin by recalling the dynamics of the two-strategy
model, that is, the M = 2 version of the model described in
Sec. II B 3:

A(z1) = sz1(1 − z1)(G12 + G11z1),
(B7)

B(z1) = 2z1(1 − z1),

to the order we are working in s. The fixation probability of
allele 1 can be obtained by solving the backward FPE [25,45].
Defining the function

l
(
z

(0)
1

) =
√

sN

2|G11|
(
G12 + G11z

(0)
1

)
, (B8)

one finds

P
{1}
Fix = 1 − χ

[
l
(
z

(0)
1

)]
1 − χ [l(1)]

, (B9)

where

χ
[(

z
(0)
1

)] = erfi
[
l
(
z

(0)
1

)]
erfi[l(0)]

, if G11 > 0,

(B10)

χ
[(

z
(0)
1

)] = erfc
[
l
(
z

(0)
1

)]
erfc[l(0)]

, if G11 < 0.

Here erfc and erfi are the complementary and imaginary error
functions, respectively [35,36]. Again, the fixation probability
of strategy 2 is P

{2}
Fix = 1 − P

{1}
Fix .

In a similar fashion to the frequency-independent case, we
now envisage a scenario in which we have multiple strategies,
but the payoff matrix can be partitioned such that

gαβ = ḡ11, α,β � θ ; gαβ = ḡ12, α � θ < β ,

gαβ = ḡ22, α,β > θ ; gαβ = ḡ21, β � θ < α.

Let the first θ alleles be subpopulation 1, while final
M − θ alleles can be designated population two. Since the
dynamics within each subpopulation are neutral, we can say
that the probability of each subpopulation fixating is simply
given by P

{1}
Fix [see Eq. (B9)] and P

{2}
Fix = 1 − P

{1}
Fix . Meanwhile,

the probability that each allele fixates within its respective
subpopulation is simply equal to its initial frequency within
the subpopulation. Therefore, the probability that any allele
α fixates is equal to the product of the probability that it
fixates within its subpopulation and the probability that its
subpopulation fixates:

P
{α}
Fix = 1 − χ [l(z(0))]

1 − χ [l(1)]

z(0)
α∑θ

b=1 z
(0)
b

, if 1 � α � θ,

P
{α}
Fix = 1 − χ [l(z(0))]

1 − χ [l(1)]

z(0)
α

1 −∑θ
b=1 z

(0)
b

, if θ < α � M,

(B11)

where

χ [l(z(0))] = erfi[l(z(0))]

erfi[l(0)]
, if Ḡ11 > 0,

(B12)

χ [l(z(0))] = erfc[l(z(0))]

erfc[l(0)]
, if Ḡ11 < 0,
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and where

l(z(0)) =
√

sN

2|Ḡ11|

(
Ḡ12 + Ḡ11

θ∑
b=1

z
(0)
b

)
. (B13)

Here, by l(1) and l(0) we mean the value of l when
∑θ

b=1 z
(0)
b =

1 and
∑θ

b=1 z
(0)
b = 0, respectively. Finally, writing this as a

function of the SLVC variables and parameters, we obtain
Eq. (62) of the main text.

APPENDIX C: PARAMETERS USED IN FIGURES

In Fig. 1, the parameters used for the SLVC are

M = 3, b0 = 3, d0 = 2,

c0 = 0.1, V = 100, ε = 0. (C1)

In Fig. 2, the parameters used for the SLVC are

M = 5, b0 = 3, d0 = 1,

c0 = 0.1, V = 20, ε = 0, (C2)

and the parameters used for the Moran model are

N = 200. (C3)

The initial conditions used in the SLVC model and Moran
model are, respectively,

x(0,LV) = 10

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3κ
1
3κ

3
6 (1 − κ)
2
6 (1 − κ)
1
6 (1 − κ)

⎞
⎟⎟⎟⎟⎟⎟⎠

, x(0,M)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3κ
1
3κ

3
6 (1 − κ)
2
6 (1 − κ)
1
6 (1 − κ)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C4)

In Fig. 3, the parameters used for the SLVC are

M = 6, b0 = 2, d0 = 1,

c0 = 0.1, V = 10, ε = 0.04, (C5)

β =

⎛
⎜⎜⎜⎜⎝

1
2

0.5
−1
1
0

⎞
⎟⎟⎟⎟⎠, δ =

⎛
⎜⎜⎜⎜⎝

0
2

−1
−2

2
0

⎞
⎟⎟⎟⎟⎠, (C6)

γ16 = 1,

γ26 = 1,

γ36 = 1,

γ46 = 0,

γ56 = 0,

γ66 = 0,

γ61 = −1,

γ62 = 0.4,

γ63 = 0.2,

γ64 = 0,

γ65 = 0,

, (C7)

and the parameters used for the Moran model are

N = 100, s = 0.02, (C8)

ρ =

⎛
⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞
⎟⎟⎟⎟⎠. (C9)

Note that these choices of parameters make the models
mappable to each other (see Table I). Also note that although
the values of the parameters γMa are needed to specify the
dynamics of the SLVC simulation, they are not required for the
mapping, and thus the same mapping between the SLVC model
and the Moran model with frequency-independent selection
holds for any order one choice for the parameters γMa . The
initial conditions used in the SLVC model and Moran model
are, respectively,

x(0,LV)
0 = 10

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6κ

2
6κ

3
6κ

1
6 (1 − κ)

2
6 (1 − κ)

3
6 (1 − κ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x(0,M)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6κ

2
6κ

3
6κ

1
6 (1 − κ)

2
6 (1 − κ)

3
6 (1 − κ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C10)

In Fig. 4, the parameters used for the SLVC are

M = 4, b0 = 2, d0 = 1,

c0 = 0.1, V = 20, ε = 0.03, (C11)

β =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, δ =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, (C12)

γ =

⎛
⎜⎝

4 4 −1 −1
4 4 −1 −1

−4 −4 1 1
−4 −4 1 1

⎞
⎟⎠, (C13)

and the parameters used for the Moran model are

N = 200, s = 0.015, (C14)

g =

⎛
⎜⎝

−6 −6 3 3
−6 −6 3 3
−1 −1 −2 −2
−1 −1 −2 −2

⎞
⎟⎠. (C15)

Note that these choices of parameters make the models
mappable to each other (see Table I). The initial conditions
used in the SLVC model and Moran model are, respectively,

x(0,LV)
0 = 10

⎛
⎜⎜⎜⎝

2
3κ
1
3κ

1
3 (1 − κ)
2
3 (1 − κ)

⎞
⎟⎟⎟⎠, x(0,M)

0 =

⎛
⎜⎜⎜⎝

2
3κ
1
3κ

1
3 (1 − κ)
2
3 (1 − κ)

⎞
⎟⎟⎟⎠. (C16)

In Fig. 5, the parameters used for the SLVC are

M = 4, b0 = 2, d0 = 1,

c0 = 0.1, V = 10, ε = 0.02, (C17)

β =

⎛
⎜⎝

1
−1
0
3

⎞
⎟⎠, δ =

⎛
⎜⎝

0
−2
0
1

⎞
⎟⎠, (C18)
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γ =

⎛
⎜⎝

1 0 0 −1
0 −0.5 −1 1

0.5 1 0 1
1 0.5 −1 0

⎞
⎟⎠, (C19)

and the parameters used for the Moran model are

N = 100, s = 0.01, (C20)

g =

⎛
⎜⎜⎜⎝

1 0.75 0 3

0 −0.75 −1 −1

−0.5 −2.25 −2 −1

4 3.25 4 5

⎞
⎟⎟⎟⎠. (C21)

Note that these choices of parameters make the models
mappable to each other (see Table I). The initial conditions
used in the SLVC model and Moran model are, respectively,

x(0,LV)
0 = 10

⎛
⎜⎜⎜⎜⎝

2
3κ

1
3κ

1
3 (1 − κ)
2
3 (1 − κ)

⎞
⎟⎟⎟⎟⎠, x(0,M)

0 =

⎛
⎜⎜⎜⎜⎝

2
3κ

1
3κ

1
3 (1 − κ)
2
3 (1 − κ)

⎞
⎟⎟⎟⎟⎠.

(C22)
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