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Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at
single-cell resolution across large regions of the nervous system. Models of this neural network activity will
necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the
challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a
general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The
method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations
of coupled stochastic differential equations. We implement the method with several examples of coupled neural
networks and show that the results are quantitatively accurate even with moderate coupling strengths and an
appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how
various neural attributes qualitatively affect the spiking statistics of coupled neural networks.
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I. INTRODUCTION

With advances in neural recording technologies, experi-
mentalists can now record simultaneous activity across mul-
tiple brain regions at single cell resolution [1–4]. However, it
is still a technical challenge to measure the interactions within
and across brain regions that govern this multi-region activity.
This challenge is heightened by the fact that cortical neurons
are heterogeneous and show substantial trial-to-trial variability
[5]. Numerous theoretical studies have examined how neural
networks can lead to cortex-like dynamics [6–14]; however,
most have been limited to a single region, leaving open the
question of how interregion connection strengths contribute to
network processing.

One challenge presented by analyzing multiregion neural
networks is the increased number of parameters which must
be specified. To survey a high-dimensional parameter space,
one must have a way to efficiently simulate (as in Ref. [15])
or approximate network statistics (as in Ref. [16]). Here we
present a novel approximation method for calculating the
statistics of a general coupled firing rate model (based on
Ref. [17]) of neural networks where we (1) assume the activity
(not the firing statistics) are pairwise normally distributed and
(2) take the entire probability distribution of the presynaptic
neurons or populations (providing input) into account. Our
method is fast because it requires solving nonlinear equations
self-consistently rather than simulating stochastic differential
equations. Several example neural networks are considered
and compared with Monte Carlo simulations. A specific
version of this method was presented in Ref. [18] to model
the olfactory sensory pathway; here we derive formulas in a
general way which is easy to evaluate and can accommodate
heterogeneous networks. We also demonstrate the method’s
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efficacy on several example networks with much larger
dimension than the specific networks examined in our previous
work.

MATLAB code implementing the method is freely available
at GitHub [19].

II. NEURAL NETWORK MODEL

Each cell (or homogeneous population) has a prescribed
activity xj that is modeled by the following equation [17] for
j = 1,2, . . . ,Nc:

τj

dxj

dt
= −xj + μj + σjηj (t) +

Nc∑
k=1

gjkFk[xk(t)], (1)

where Fk(·) is a transfer function mapping activity to firing
rate (in some units), related to the so-called F-I curve, for the
kth cell or population. Thus, the instantaneous firing rate of
the j th neuron is

Fj [xj (t)]. (2)

Depending on the context, the activity variable xj may
represent membrane voltage, calcium concentration, or some
other quantity associated with a neuron’s internal state [20].
This type of equation has historically been used to capture
the average activity of a population of neurons, but here-
after we will use the term “cell” for exposition purposes.
All cells receive background noise ηj , the increment of a
Weiner process, uncorrelated in time but potentially correlated
at each instant: 〈ηj (t)〉 = 0, 〈ηj (t)ηj (t ′)〉 = δ(t − t ′), and
〈ηj (t)ηk(t ′)〉 = cjkδ(t − t ′) for j �= k with cjk ∈ (−1,1). The
parameters μj and σj are constants that give the background
input mean and input standard deviation, respectively. The pa-
rameter gjk represents coupling strength from the presynaptic
kth cell and is a signed quantity; gjk < 0 represents inhibitory
coupling.
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We would like to compute the following statistics:

μ(j ) := 〈xj 〉,mean activity, (3)

σ 2(j ) := 〈
x2

j

〉 − μ2(j ),variance of activity, (4)

Cov(j,k) := 〈xjxk〉 − μ(j )μ(k),

covariance of activity, (5)

νj := 〈Fj (xj )〉,firing rate, (6)

Var(νj ) := 〈
F 2

j (xj ) − ν2
j

〉
,variance of spiking, (7)

Cov(νj ,νk) := 〈Fj (xj )Fk(xk)〉 − νjνk,

covariance of spiking, (8)

ρ(νj ,νk) := Cov(νj ,νk)√
Var(νj )Var(νk)

,

correlation of spiking, (9)

where the angular brackets 〈·〉 denote averaging over time and
realizations [21]. We will use the following definitions for the
following normal or Gaussian probability density functions
(PDF):

�1(y) := 1√
2π

e−y2/2, (10)

the standard normal PDF, and

�j,k(y1,y2) := 1

2π
√

1 − c2
jk

exp
[

− 1

2
�yT

(
1 cjk

cjk 1

)−1

�y
]
,

(11)

a bivariate normal distribution with �0 mean, unit variance, and
covariance cjk .

In the absence of coupling, i.e., gjk = 0, Eq. (1) would de-
scribe a multidimensional Ornstein-Uhlenbeck process. Such
a process is well understood: any pair of activity variables,
(xj ,xk), are bivariate normal random variables [22]. To see
this, consider the following two equations without synaptic
coupling:

τj

dxj

dt
= −xj + μj + σj [

√
1 − cjkξj (t) + √

cjkξc(t)],

(12)

τk

dxk

dt
= −xk + μk + σk[

√
1 − cjkξk(t) + √

cjkξc(t)].

(13)

Note that we have rewritten ηj/k(t) as sums of in-
dependent white noise processes ξ (t). Since xj (t) =
1
τj

∫ t

−∞ e−(t−u)/τj [μj + σjηj (u)] du (where we have taken the
initial time to be in the far past to eliminate any impact from
the initial conditions), we calculate marginal statistics using

Itô isometries:

μ(j ) ≡ 〈xj 〉 = μj ,

σ 2(j ) ≡ 〈[xj − μ(j )]2〉

=
〈

σ 2
j

τ 2
j

∫ t

−∞

∫ t

−∞
e−(t−u)/τj ηj (u)e−(t−v)/τj ηj (v) du dv

〉

= σ 2
j

τ 2
j

∫ t

−∞
e−2(t−u)/τj du = σ 2

j

2τj

. (14)

A similar calculation shows that in general we have

Cov(j,k) = cjk

τj + τk

σjσk. (15)

Thus, (xj ,xk) ∼ N

⎛
⎝(

μj

μk

)
,

⎛
⎝ σ 2

j

2τj
σjσk

cjk

τj +τk

σjσk
cjk

τj +τk

σ 2
k

2τk

⎞
⎠
⎞
⎠.

Statistics for the firing rates, F (xj ), are inherited from this
normal distribution, since the firing rate F (xj ) is simply a
nonlinear function of the activity xj .

When coupling is included, i.e., gjk �= 0 for some indices
j and k, it may no longer be true that the activity variables
xj remain normally distributed. However, it is reasonable to
suppose that, for sufficiently weak coupling, the deviations
from a normal distribution will be small. Furthermore, if the
firing rate function F has thresholding and saturating behavior
(as does a sigmoidal function), then higher moments of xj have
limited impact on statistics of F (xj ). Thus, our first assumption
will be that each pair of activity variables (xj ,xk), can be
approximated by a bivariate normal, even when coupling is
present. We can think of this as a weak coupling assumption,
as it holds exactly only with no coupling.

III. REDUCTION METHOD

In our method, we assume that time is dimensionless so
that the subsequent assumptions have the proper units. Note
that our method can in principle be applied to systems where
time has a dimension, as long they are of the form in Eq. (1)
(with appropriate units for the parameters).

To compute statistics, we start by writing Eq. (1) as a low-
pass filter of the right-hand side:

xj (t) = xj (t0)e−(t−t0)/τj + 1

τj

∫ t

t0

e−(t−u)/τj

×
{
μj + σjηj (u) +

∑
k

gjkFk[xk(u)]

}
du, (16)

used as the basis for calculating the desired moments of xj .
For example, when 〈xjxk〉 is desired, we use the previous
equation for j and k, multiply, then take the expected value 〈·〉.
By letting the initial time t0 → −∞, we eliminate transients;
the resulting statistics will be stationary. The resulting exact
formulas are complicated by the network coupling, so we
simplify the calculation(s) as follows.

We only account for direct connections in the formulas for
the first and second-order statistics, assuming the terms from
the indirect connections are either small or already accounted
for in the direct connections. For example: although Fk(xk(u))
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TABLE I. For readability, we define the following quantities. Whenever j = k in the double integrals
(e.g., in NF ,S), the bivariate normal distribution �j,k is replaced with the standard normal distribution �1.
Note that order of the arguments matters in NF : NF (j,k) �= NF (k,j ) in general; all of these quantities
depend on the statistics of the activity μ(·), σ (·).

Abbreviation Definition

E1(k)
∫

Fk[σ (k)y + μ(k)]�1(y) dy

E2(k)
∫

F 2
k [σ (k)y + μ(k)]�1(y) dy

V(k)
∫

F 2
k [σ (k)y + μ(k)] �1(y) dy − {∫ Fk[σ (k)y + μ(k)]�1(y) dy}2 = E2(k) − [E1(k)]2

NF (j,k)
∫∫

Fk[σ (k)y1 + μ(k)] y2√
2
�j,k(y1,y2) dy1 dy2,if j �= k∫

Fj [σ (j )y + μ(j )] y√
2
�1(y) dy,if j = k

S(j,k)
∫∫

Fj [σ (j )y1 + μ(j )]Fk[σ (k)y2 + μ(k)]�j,k(y1,y2) dy1 dy2

CV (j,k) S(j,k) − E1(j )E1(k)

on the right-hand side of Eq. (16) itself depends on coupling terms of the form gklFl(xl), etc., we will neglect such terms. We
further make the following assumptions:〈∫ t

−∞
Fk[xk(u)]e−(t−u)/τl du

∫ t

−∞
Fk[xk(v)]e−(t−v)/τm dv

〉
≈ τlτm

τl + τm

Vk + τlτm[E1(k)]2, (17)〈∫ t

−∞
σjηj (u)e−(t−u)/τl du

∫ t

−∞
Fk[xk(v)]e−(t−v)/τm dv

〉
≈ τlτm

τl + τm

σjNF (j,k), (18)〈∫ t

−∞
Fj [xj (u)]e−(t−u)/τl du

∫ t

−∞
Fk[xk(v)]e−(t−v)/τm dv

〉
≈ τlτm

τl + τm

CV (j,k) + τlτmE1(j )E1(k). (19)

See Table I for the definition of the symbols: E1, NF , Vk, and CV .
Each assumption is equivalent to the assumption that two of the random variables of interest are δ-correlated in time;

thus avoiding the need to compute autocorrelation functions explicitly. The first assumption [Eq. (17)] states that Fk(xk(t)) is
δ-correlated with itself; the second [Eq. (18)] addresses ηj (t) and Fk[xk(t)]. The final assumption [Eq. (19)] states that Fj [xj (t)]
and Fk[xk(t)] are δ-correlated. We provide a detailed derivation of Eqs. (17)–(19) in Appendix A. After testing our method on
several examples in Sec. IV, we will revisit the accuracy of these assumptions in Sec. V.

We arrive at the following (approximation) formulas for the statistics of the activity:

μ(j ) = μj + ∑
k gjkE1(k), (20)

σ 2(j )τj = σ 2
j

2
+ σj

∑
k

gjkNF (j,k) + 1

2

∑
k

g2
jkV(k) +

∑
k �=l

gjkgjlCV (k,l), (21)

Cov(j,k)
τj + τk

2
= 1

2
cjkσjσk + 1

2
σj

∑
l

gklNF (j,l), + 1

2
σk

∑
l

gjlNF (k,l) + 1

2

∑
l1,l2

gj,l1gk,l2CV (l1,l2). (22)

See Table I for the definition of the symbols E1,NF ,V, and CV ,
which all depend on the statistical quantities μ(·) and σ (·) of
the activity xj . Our approximation formulas form a system
of 1

2 (N2
c + 3Nc) equations in μ(j ), σ (j ), Cov(j,k) [i.e.,

for the activity only, as defined by Eqs. (3)–(5), not the
firing] when considering all possible (j,k) ∈ {1,2, . . . ,Nc}.
This large system of equations, although nonlinear, is sim-
ple to solve because it requires a sequence of function
evaluations and matrix multiplications, rather than random
sampling.

Note that the normal distribution assumptions allow us to
conveniently write the average quantities as integrals with
respect to standard normal distributions but with shifted
integrands, which leads to faster calculations because one does

not have to calculate new probability density functions at each
step of the iteration when solving the system self-consistently.

The resulting formulas can be written compactly with
matrices; Eq. (20) for the mean activity μ(j ) can easily be
written as a matrix-vector equation and is thus omitted. Let
Cov denote the Nc × Nc covariance matrix of the activity
with Cov(j,k) = Cov(j,k), G represent the coupling strengths
G(j,k) = gjk , and Cr denote the correlation matrix of the
background noise [i.e., Cr(j,k) = δjk + cjk(1 − δjk)]. Then
we have

Cov = IT ◦ (Cov0 + GMNF + MNF
T GT + GMFSqGT ),

(23)
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FIG. 1. Illustration of the method on a network with two neurons. In all panels, the Monte Carlo simulation results are the thin black solid
lines, and the result of the analytic method [Eqs. (20)–(22) solved self-consistently, and Eqs. (28)–(30)] are the dashed colored lines representing
different background correlation levels. All parameters are fixed except g12 and c12 = c21 =: c; see the main text (Network I) for values. (a)
The average activity x1 (top), x2 (bottom) as a function of g12 match very well; here the analytic method is in one color (brown) because the
result is independent of background correlation. (b) The variance of x1, σ 2(1), varies with both background correlation and input strength. The
match is very good around g12 = 0 and starts to deviate as |g12| → 2 because with stronger coupling the normal distribution assumption is
severely violated. (c) The covariance of the activity Cov(1,2). (d) Mean firing rate: F (ν1) slightly depends on c; inset is a zoomed-in picture to
show that the method captures the relationship of the curves. (e) Variance of F (ν1). (f) The covariance of the firing rate Cov(F (ν1),F (ν2)). The
corresponding plots for x2 [i.e., panels (b), (d), (e)] are not shown because they do not vary as much; however, the analytic method accurately
captures the results from Monte Carlo simulations.

where ◦ represents element-wise multiplication, (·)T denotes
matrix transposition, and

IT(j,k) = 1

τj + τk

, (24)

Cov0(j,k) = σjσk[δjk + (1 − δjk)cjk], (25)

MNF(j,k) = σkNF (k,j ), (26)

MFSq(j,k) = CV (j,k). (27)

Note that the matrices MNF and MFSq have the same nonzero
entries as Cr. Denoting ��σ as the diagonal matrix with
diagonal �σ , the unperturbed covariance [Eq. (25)] can also
be expressed in matrix form as

Cov0 = (��σ )Cr(��σ ).

Once the statistics of the activity [μ(j ), σ 2(j ), and
Cov(j,k)] are solved for self-consistently, the firing statistics
are solved as follows:

νj =
∫

Fj [σ (j )y + μ(j )]�1(y) dy, (28)

Var(νj ) =
∫

F 2
j [σ (j )y + μ(j )]�1(y) dy − ν2

j , (29)

Cov(νj ,νk) =
∫∫

Fj [σ (j )y1 + μ(j )]Fk[σ (k)y2 + μ(k)]

×Pj,k(y1,y2) dy1dy2 − νjνk (30)

where Pj,k is a bivariate normal PDF with zero mean

and covariance:
(

1 Cov(j,k)
σ (j )σ (k)

Cov(j,k)
σ (j )σ (k) 1

)
. The off-diagonal terms are

obtained from the second-order statistics of the activity
[Eq. (21)–(22)].

IV. EXAMPLE NETWORKS AND RESULTS

A. Network I

We first consider a network that allows us to systemati-
cally explore algorithm performance as two key parameters
vary. Specifically, we consider two cells (Nc = 2) that are
reciprocally coupled without autaptic (i.e., self) coupling.
For simplicity, we set the intrinsic parameters for the two
cells to be identical, with τj = 1, Fj (x) = 0.5[1 + tanh((x −
0.5)/0.1)] ∈ [0,1] (arbitrary units), but the mean and variance
of the background input differ: μ1 = 0.15, μ2 = 4/15 ≈
0.2667, σ1 = 2, σ2 = 3. We vary two parameters: g12 ∈ [−2,2]
(input strength from x2 to x1), and c12 = c21 ∈ [0,0.8], with
g21 = 0.4 fixed.

In Fig. 1 we see that all of the activity and firing statistics
are accurate compared to Monte Carlo simulations. Figure 1(a)
shows the mean of x1 as the input strength g12 varies from
negative (inhibitory) to positive (excitatory); this statistic is
independent of background correlation. Figure 1(b) shows the
variance of x1; deviations are apparent when the magnitude
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FIG. 2. A network of Nc = 50 neurons with heterogeneity in all parameters and all-to-all coupling (Network II). See Eqs. (31)–(37) for the
distributions of the randomly selected parameters. In each panel, four different values of the variance of the distribution of the coupling matrix
entries are shown, while the other parameters are held fixed. (a) Comparison of the mean activity μ(j ) calculated via Monte Carlo simulations
(horizontal axis) and our reduction method (vertical axis), showing all 50 values for each color (coupling matrix distribution). (b) Similar to
(a) but for mean firing rate νj . (c) Variance of activity σ 2(j ). (d) Variance of firing rate Var(νj ). (e) Covariance of activity Cov(j,k), showing
all 50 × 49/2 = 1225 values for each coupling matrix. (f) Covariance of the firing rate Cov(νj ,νk). The method is accurate but starts to deviate
as the overall coupling strength ‖G‖ increases (from blue to red, more deviations from diagonal line).

of the coupling g12 is large. The covariance of the activity
[Fig. 1(c)] is also accurate. Even the statistics of the firing rate
are relatively accurate; the mean firing rate F (x1) [Fig. 1(d)]
is only weakly dependent on background correlation, whereas
the variance of F (x1) [Fig. 1(e)] appears to vary more with
background correlation. In Fig. 1(f), the strong dependence of
the covariance of the firing rate on background correlation is
captured by our method. For brevity, we omit the correspond-
ing statistics for x2; the method performs equally well there.

B. Network II

We next consider an all-to-all coupled network of Nc = 50
neurons with heterogeneity in all parameters. The parameter
values were selected from specific distributions and gave
rise to quenched variability. The transfer function was set
to Fj (•) = 0.5{1 + tanh[(• − xrev,j )/xsp,j ]} ∈ [0,1], where
xrev,j and xsp,j are fixed parameters that depend on the the j th
neuron. The distributions of the parameters for this network are

τj ∼ N(1,0.052), (31)

μj ∼ 2U − 1, (32)

σj ∼ U + 1, (33)

xrev,j ∼ N(0,0.12), (34)

xsp,j ∼ 0.35U + 0.05, (35)

where U ∈ [0,1] is a uniform random variable, and N is
normally distributed with the mean and variance as the
arguments. The covariance matrix Cr of the background noise
was randomly selected as follows:

Cr = (� �ds
)AT A(� �ds

), (36)

where the entries of the Nc × Nc matrix A are independently
chosen from a normal distribution: ajk ∼ N(0,0.82) and �ds

is the inverse square root of the diagonal of AT A; i.e., if
we set B := AT A with entries bjk , then ds(j ) = 1/

√
bjj . By

construction, Cr is symmetric positive semidefinite with 1’s
on the diagonal.

Finally, the entries of the coupling matrix G are randomly
chosen, but the parameters of the distribution were varied:

G(j,k) ∼ N(0,vl), (37)

where vl = (l/10)2 for l = 1,2,3,4. There are no zero entries
in G (i.e., coupling is all-to-all), with inhibition, excitation,
and autaptic (self) coupling.

For each of the four values for the variance of the normal
distribution, we chose a single realization of a coupling matrix
G and computed first- and second-order statistics of xk and
F (xk). In Fig. 2 we compared our analytic versus Monte Carlo
results for each cell or cell pair. Each realization is identified
by a different color; in Fig. 2(a) for example, there are Nc

red data points, corresponding to each μ(j ) for j = 1, . . . ,Nc.
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Points that are on the black diagonal line represent a perfect
match between Monte Carlo simulations and our method.

First-order statistics μ(j ) and νj are well captured by
the analytic method, even for the largest coupling strength
[Figs. 2(a) and 2(b)]. This excellent agreement is present
despite the substantial amount of heterogeneity in these
networks: note that xj = O(1) and that Fj ∈ [0,1], and thus
that single-cell firing rates in Fig. 2(b) have a relatively large
range. Second-order statistics [variances and covariances;
Figs. 2(c)–2(f)] are captured well for smaller coupling values
(blue and cyan) but become less accurate for the largest
coupling value (red). In particular, the analytic method appears
to overestimate variance for the largest coupling strength
[Fig. 2(c)].

C. Network III

Finally we consider a moderately sized network of Nc =
100 neurons with quenched heterogeneity in all of the intrinsic
parameters, but with more physiological connectivity structure
than Network II. The first 50 neurons are excitatory (E)
(gjk � 0 for k = 1,2, . . . ,50), and the last 50 are inhibitory
(I) (gjk � 0 for k = 51,52, . . . ,100). We choose a sparse
(random) background correlation matrix via

cjk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if j = k

N(0.1,0.12), if k = j + 1 and j = 1, . . . ,49
N(0.12,0.12), if k = j + 1 and j = 51, . . . ,99
N(0.3,0.12), if k = 101 − j and j = 1, . . . ,100
0 otherwise

,

(38)

where as before N is a Gaussian random variable. That is,
each cell shares correlated input with its nearest neighbors
of the same type (excitatory versus inhibitory), and a single
cell of the opposite type, where cell location varies along
a one-dimensional line. This results in a correlation matrix
which is tridiagonal, with an antidiagonal band for the E and I
correlation; this sparsity structure is shown in Fig. 3(a).

In a variety of cortical areas, there is evidence that
the correlation of neural activity within a population is on
average positive with a wide distribution [23–25]; thus we
set the distributions of excitatory and inhibitory correlation
coefficients to N(0.1,0.12) and N(0.1,0.122), respectively
[second and third lines of Eq. (38)]. Also, there is evidence
that E and I neurons are positively correlated (i.e., the synaptic
currents are negatively correlated) [26–28], so we set the
average background E-I correlation [N(0.3,0.12), fourth line
of Eq. (38)] to a higher value than correlations within E or I
(second and third lines respectively).

In order to capture some realistic features of cortical neural
networks, we impose sparse but clustered connectivity. Specif-
ically, we have five clusters of E cells of size 10 with all-to-all
connectivity and no autaptic (self-coupling) connections, and
sparse random coupling within the I population (no autaptic
connections) and between E and I cells (35% connection
probability). See Fig. 3(b) for the sparsity structure of G.
This is motivated by experimental evidence that E cells show
clustered connectivity [29–31], and that cells tuned for specific
stimulus features can be more connected, while inhibitory
connections have less structure [32].

0 0.2 0.4 0.6
0

0.2

0.4

0.6

Monte Carlo

A
na

ly
tic

 T
he

or
y

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

Monte Carlo

A
na

ly
tic

 T
he

or
y

(a)

(b)

(c)

(d)

B
ac

kg
ro

un
d 

co
rr

el
at

io
n 

m
at

rix
I-c

el
ls

   
   

   
   

  E
-c

el
ls

E-cells              I-cells
000000000

2

4

6

Mean, Net A
Var, Net A
Cov, Net A
Mean, Net B
Var, Net B
Cov, Net B

FIG. 3. A network of Nc = 100 neurons with heterogeneity in
all parameters, but sparse background correlation and clustered and
random connectivity (Network III). See Eqs. (38)–(44) for the distri-
butions of the randomly selected parameters. Sparsity structure of the
background correlation matrix Cr (a) and coupling matrix G (b).
(c) Comparing all of the statistics of the activity for two
realizations of the network: coupling parameters for network
A are: (gEE,gEI,gIE,gII) = (0.079, − 0.24,0.17, − 0.31) and cou-
pling parameters for network B are (gEE,gEI,gIE,gII) = (0.049, −
0.38,0.16, − 0.17). As in Fig. 2, all 100 mean and variance values
are plotted, as well as all 4950 covariance values. (d) Similar to (c)
but for the firing rates.

Synaptic connection strengths were chosen randomly for
each realization with the following distributions:

gEE = U/10,

gEI = −12

35
U − 4

35
,

(39)

gIE = 12

35
U + 4

35
,

gII = −12

35
U − 4

35
,

where againU ∈ [0,1] is a uniform random variable. The value
gEE is used for all nonzero E to E connections: i.e., gjk with
j,k ∈ {1, . . . ,50}; gEI is used for all nonzero I to E connections:
i.e., gjk with j ∈ {1, . . . ,50} and k ∈ {51, . . . ,100}; gIE for
all nonzero E to I: i.e., gjk with j ∈ {51, . . . ,100} and k ∈
{1, . . . ,50}; similarly for gII.

The distributions for the rest of the parameters were similar
to Network II, with only inconsequential differences:

τj ∼ N(1,0.0752), (40)

μj ∼ 2U − 1, (41)

σj ∼ U + 1, (42)

xrev,j ∼ N(0,0.12), (43)

xsp,j ∼ 0.4U + 0.05. (44)

The choices for gXY and intrinsic parameters are not physio-
logically motivated, but rather chosen so that we can examine

022413-6



PRACTICAL APPROXIMATION METHOD FOR FIRING- . . . PHYSICAL REVIEW E 96, 022413 (2017)

how the algorithm performs on cells with a wide range of
intrinsic and network parameters.

In Figs. 3(c) and 3(d) we show the results of the analytic
approximation compared to Monte Carlo simulations for the
activity and firing rates, respectively. In each panel, we have
combined the mean, variance and covariance, and, as in
Fig. 2, a data point is plotted for each cell (for means and
variances) or cell pair (for covariances). Also, we show data
from two instances of the network, labeled A and B; for
each instance a new realization of the coupling matrix G
and the coupling parameters [Eq. (39)] are generated (see
Fig. 3 caption for values), but each of the other randomly
selected parameters was kept fixed. Points that are on the black
diagonal line represent a perfect match between Monte Carlo
simulations and our method. As with Network II, the analytic
method accurately captures the statistics cell-by-cell, despite
an appreciable degree of heterogeneity.

Finally, we test how well our method approximates firing
rate correlation, which is an important normalized measure of
trial-to-trial variability (or noise correlations). The Pearson’s
correlation coefficient is the predominant measure in neu-
roscience: ρ(νj ,νk) = Cov(νj ,νk)/

√
Var(νj ,νk), i.e., the ratio

of two quantities which we must estimate using the analytic
method. Since this is the ratio of estimated quantities, we might
expect larger errors. In Fig. 4 we show comparisons between
the analytic method and Monte Carlo simulations for Network
II and Network III. The method is accurate for a wide range of
correlations: Fig. 4(a) shows correlations as low as −0.3 and as
high as 0.3. Thus, the viability of our approximation is not lim-
ited to small correlation values, but can robustly capture the full
range of correlation values observed in cortical neurons [5,33].

V. THE δ-CORRELATION ASSUMPTION

The assumptions made in deriving Eqs. (17)–(19)—each
equivalent to an assumption that two random variables are δ-
correlated in time—might suggest that the error of our method
compared to Monte Carlo simulations would increase as τj

increases, or perhaps that the method breaks down when the
distribution of �τ has larger variance. Thus far, we have only
considered relatively narrow distributions of �τ . We now test
this possibility in a setting where we can examine how the
method performs as τj is increased without other confounding
effects on the error.

Specifically, we simulate a network of Nc = 50 cells with
the majority of the network parameters set to be homogenous
values:

μj = 0.7; σj = 1.3; xrev,j = 0.1; xsp,j = 0.35,∀j.

The correlation matrix for background noise is a tridiagonal
matrix with 0.3 in the upper and lower diagonal bands, and
the coupling matrix is the same as in Network II: G(j,k) ∼
N(0,vl) with vl = (0.1)2 and vl = (0.25)2. Finally, we set

τj = (j − 1)
4.5

Nc − 1
+ 0.5 (45)

so that τj varies uniformly over an order of magnitude: τ1 =
0.5 and τNc

= 5.
Figure 5(a) shows that the method is accurate for all possible

first and second order statistics despite this large variation in
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FIG. 4. Comparisons of the spike count correlation computed by
our method and Monte Carlo simulations. (a) Comparing the four
regimes in Network II. The results are accurate because the points
predominately lie on the diagonal line. As we saw in Fig. 2, as the
relative coupling strength increases, the estimation of the spike count
correlation is not as accurate. (b) Comparing the two networks in
Network III. In both cases, the method performs well even though
both the numerator and denominator are estimated via the method.
All Nc(Nc − 1)/2 firing rate correlation values are plotted for each
network.

�τ . Figures 5(b) and 5(c) show that the L1-error between the
Monte Carlo simulations and our method does not depend in
any apparent way on the value of the time constant τj . Even
when analyzed by a particular statistic, there is no trend with
time constant. We conclude that our method is robust to large
and disparate values of τj .

VI. ACCURACY OF THE REDUCTION METHOD

As with most calculations that assume small or large values
in the parameters, an exact analytic determination of when
the approximation fails is difficult, if not impossible. To
capture how our method deviates as the coupling strength
is increased, we performed further computations varying the
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FIG. 5. A network of Nc = 50 neurons with heterogeneity pre-
dominately in τj (see main text for details). (a) Comparing our method
to Monte Carlo simulations, plotting all first- and second-order
statistics of the coupled network for two coupling matrices [red
shade is with connection strengths G ∼ N(0,0.12); black shade is with
G ∼ N(0,0.252) and is not as accurate]. Despite the large variation in
τ , ranging in order of magnitude from 0.5 to 5, the method is accurate.
(b) Plotting the L1-error of firing rates and variances computed with
our method as a function of the j th cell’s τj value (see legend).
Note that there is no trend in error as τj increases. (c) As in (b), but
for all possible covariances of firing rate and activity; the horizontal
axis is the geometric average of the two associated time constants:√

τj τk . The conclusion is the same as in (b), that the τj values are not
indicative of the error.

coupling strengths gjk , system size Nc, and setting the other
parameters to a variety of values.

The coupling matrix G was randomly chosen with half of
the entries set to zero, 25% of the entries set to g

√
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FIG. 6. Accuracy of the method as coupling strength increases.
The L1-error (averaged over the entire set of six spiking and activity
statistics) of our method compared to Monte Carlo simulations
increases nonlinearly as coupling strength increases (see main text for
definition of g and description of networks), for a variety of network
sizes. As network size Nc increases, the coupling strengths are scaled
by 1/

√
Nc.

and 25% set to −g
√

10/
√

Nc, where g is a scale parameter
representing the magnitude of the coupling (note that G was
chosen only once for each given network size Nc, i.e., it was
held fixed while other random parameters were varied). The
correlation matrix of background noise is a banded matrix with
between one and four bands above and below the diagonal set
to c = 0.3; that is, each cell shared noise with its k-nearest
neighbors, for k = 1,2,3 or 4. The rest of the parameters were
chosen randomly as for Network III [Eq. (41)–(44)].

Figure 6 shows these results; for each network size Nc and
shared common noise footprint k, the error of our method
compared to Monte Carlo simulations is plotted as a function
of the magnitude of the coupling strength g. Each point
represents the L1 error between a Monte Carlo and our method,
averaged over the entire set of six spiking and activity statistics
(mean, variances, and covariances of both activity xj and firing
rate νj ). For each system size Nc (except Nc = 1000; see
explanation below), four curves show results for k = 1,2,3
and 4, respectively. We see that as the magnitude of coupling
values increase, any given error curve tends to increase.

In performing computations for Fig. 6, we made the
following modifications for computational tractability: for
larger Nc values (Nc = 500,1000), we augmented our method
to use a subset of correlation and covariance values; we chose
the main diagonal and the super- or subdiagonal Cov(j,j + 1);
we further computed only one instance for Nc = 1000 (i.e.,
there is only one curve). We further note that some entries
are not plotted because our method did not converge to
a solution and/or the resulting covariance matrices are not
positive definite, which is not unexpected with randomly
chosen parameters.

In summary, Fig. 6 provides a representative snapshot
of the range of possible error values. While the average
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error increases nonlinearly as coupling strength increases,
overall the error appears to be relatively insensitive to system
size. We note that the scaling of coupling strengths by the
square root of system size 1/

√
N is considered to be “strong

scaling” popularized by the theory of balanced networks
[8,34], compared to the relatively weak scaling 1/N .

VII. DISCUSSION

There has been a long history of analytic reduction
methods for neural network models, both to enhance efficiency
in simulation and to aid mathematical analyses. Here we
summarize some of this literature and its relationship to the
work presented here.

The simplest approach is a mean-field analysis, which
would self-consistently estimate the mean values, assuming
the variances σ 2(j ) to be 0 [35]. However, this neglects the
fluctuations which we know to be important in neural systems;
therefore many authors have augmented these theories with
corrections to capture second-order statistics, higher-order
statistics, or time-dependent correlations. Several authors have
proposed to derive these corrections by starting with the
microscopic dynamics of single neurons in the network. The
microscopic dynamics in question may be given by a master
equation [12,14,36–38], a generalized linear model [39,40], or
the theta model [41,42]. The result is a principled theory for the
second-order statistics of the network; however, the resulting
calculations are often complicated and hard to execute.

Here we aimed to take a middle road between simple
(but inaccurate) mean-field calculations, and principled (but
complicated) theories to compute network fluctuations from
microscopic dynamics. Specifically, we start with a system of
coupled stochastic differential equations, each of which may
represent either a single neuron or a homogeneous population,
and sought to quickly and accurately estimate statistics of
the coupled system. Importantly, the unperturbed state in our
system is not one in which all neurons are independent; instead
we perturb from a state with background noise correlations.
Thus, we anticipate this approximation can be used to probe
a range of neural networks, in which correlations can be
significant and activity-modulated.

While the coupled firing rate models we study here were
not derived directly from the microscopic dynamics of a

spiking network, our results can still yield insight into spiking
networks [43–45]. Our previous work [18] used the qualitative
principles and intuitions gained from a simple firing rate
model to characterize relationships between the analogous
parameters in a full spiking model of a multi-region olfactory
network. In that paper, a small system with simple coupling and
background correlations was studied, whereas this paper treats
networks of arbitrary size, and arbitrary coupling and input
correlation structures. The work here is thus a generalization
of the calculations in Ref. [18].

In other models, F (·) represents the function that maps
firing rate to synaptic input. Here we assume that the effective
synaptic input gjkFk is a fixed scaling of the firing rate Fk . In
other biophysical models the effective synaptic input may be a
more complex transformation of the firing rate (e.g., an alpha
function convolved with firing rate): the methods presented
here can easily be altered to account for this. To do this, the
only change would be to use Sk(Fk) in Eq. (1) instead of Fk ,
where Sk(·) is some synaptic activation function.

Our method relies on the assumption that statistics are
stationary in time; this assumption allows a set of statistics
to be solved self-consistently. Thus we have not addressed
complex network dynamics, such as oscillations or time-
varying statistics. However, this limitation is not specific to our
method, but also applies to related work. Previously developed
approximation methods may fail when the system undergoes
a bifurcation [36,37], and truncation methods (or moment
closure methods) are known to fail in certain parameter
regimes [46]. When the set of self-consistent equations cannot
be solved, there may be other methods available to characterize
the oscillatory dynamics (see Ref. [47] where this is done for
the adaptive quadratic integrate-and-fire model). Likewise, we
did not consider time-lagged network statistics (i.e., the entire
cross-correlation functions) but rather only the instantaneous
statistics. This perhaps enables the delta-correlation assump-
tion in our method to give accurate approximations even with
disparate time scales (see Sec. V). Such considerations are a
fruitful path of future work.
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APPENDIX A: DERIVATION OF EQUATIONS (17)–(19)

Here, we provide a formal derivation of the assumptions that we make to derive our main result [Eqs. (20)–(22)]. Our
challenge is that while we are principally interested in zero-time-lag statistics, computing second-order statistics (such as
〈Fj [xj (t)]Fk[xk(t)]〉) using Eq. (16) requires us to know the autocorrelation function, i.e., 〈Fj [xj (t)]Fk[xk(t + τ )]〉. Therefore
we need to close the equation by making some kind of assumption about these temporal correlations.

The key assumption to justify Eq. (17) is that Fk[xk(t)] is δ-correlated in time:

〈Fk[xk(u)]Fk[xk(v)]〉 = δ(u − v)
[〈Fk(xk)2〉 − ν2

k

] + ν2
k , (A1)

where νk = 〈Fk(xk)〉 is the mean. Using this in the integral on the left-hand side of Eq. (17), we find that∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm 〈F [xk(u)]F [xk(v)]〉

≈
∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm δ(u − v)

{〈F [xk(u)]2〉 − ν2
k

} +
∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm ν2

k
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=
∫ t

−∞
du e−(t−u)/τl e−(t−u)/τm

(〈F [xk(u)]2〉 − ν2
k

) + τlτmν2
k

= τlτm

τl + τm

{〈F [xk(u)]2〉 − ν2
k

} + τlτmν2
k

= τlτm

τl + τm

{E2(k) − [E1(k)]2} + τlτm[E1(k)]2 = τlτm

τl + τm

Vk + τlτm[E1(k)]2.

The other two approximations [Eqs. (18) and (19)] are arrived at by essentially the same calculation: for completeness, we
provide them here as well.

To derive Eq. (18), assume that

〈σjηj (u)Fk[xk(v)]〉 = δ(u − v){〈σjηj (u)Fk[xk(u)]〉 − 〈σjηj 〉〈Fk(xk)〉} + 〈σjηj 〉〈Fk(xk)〉 (A2)

= δ(u − v)〈σjηj (u)Fk[xk(u)]〉, (A3)

where the last line is because 〈ηj 〉 = 0 and σj is a constant. Then〈∫ t

−∞
σjηj (u)e−(t−u)/τl du

∫ t

−∞
Fk[xk(v)]e−(t−v)/τm dv

〉
=

∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm 〈σjηj (u)Fk(xk(v))〉

≈
∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm δ(u − v)〈σjηj (u)Fk(xk(v))〉

=
∫ t

−∞
du e−(t−u)/τl e−(t−u)/τm 〈σjηj (u)Fk[xk(u)]〉

= τlτm

τl + τm

σjNF (j,k).

To derive Eq. (19), assume that

〈Fj [xj (u)]Fk[xk(v)]〉 = δ(u − v){〈Fj [xj (u)]Fk[xk(u)]〉 − νjνk} + νjνk, (A4)

where (as before) νk = 〈Fk(xk)〉. Using this in the integral on the left-hand side of Eq. (19), we find that〈∫ t

−∞
Fj [xj (u)]e−(t−u)/τl du

∫ t

−∞
Fk[xk(v)]e−(t−v)/τm dv

〉

=
∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm 〈Fj [xj (u)]Fk[xk(v)]〉

≈
∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm δ(u − v){〈Fj [xj (u)]Fk[xk(u)]〉 − νjνk} +

∫ t

−∞
du

∫ t

−∞
dv e−(t−u)/τl e−(t−v)/τm νj νk

=
∫ t

−∞
du e−(t−u)/τl e−(t−u)/τm {〈Fj [xj (u)]Fk[xk(u)]〉 − νjνk} + νjνkτlτm

= τlτm

τl + τm

{〈Fj [xj (u)]Fk[xk(u)]〉 − νjνk} + τlτmνjνk

= τlτm

τl + τm

[S(j,k) − E1(j )E1(k)] + τlτmE1(j )E1(k)

= τlτm

τl + τm

CV (j,k) + τlτmE1(j )E1(k).

APPENDIX B: ALTERNATIVE REDUCTION APPROACHES

A common method to approximate high-dimensional sys-
tems is “moment closure” methods where state variables are
integrated or averaged out, and assumptions are made on
various moments of the random or heterogeneous entities.
Such approaches have a long history in the physical sciences
[48,49] and recently in the life sciences [37,46,50]. Here
we provide an alternative approach based on the probability
density (or Fokker-Planck) equation of the stochastic neural
network, rather than the stochastic integrals we considered

in the main text. These methods are partially related to the
stochastic integral method presented earlier, but we will show
that they are different. In a similar vein, we previously showed
that the analysis of the stochastic integral is more insightful
than the Fokker-Planck equation for a system of coupled
noisy oscillators (compare main results and the Appendix of
Ref. [51]).

The corresponding probability density function p(�x,t),
defined by p(�x,t) d �x = P ( �X(t) ∈ (�x,�x + dx)), of the net-
work models considered in Eq. (1) satisfies the following
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Fokker-Planck equation [22,52]:

∂p(�x,t)

∂t
= −

Nc∑
l=1

∂

∂xl

{
1

τl

[
−xl + μl +

Nc∑
k=1

glkFk(xk)

]
p(�x,t)

}

+1

2

∑
j,k

Dj,k

∂2p(�x,t)

∂xj∂xk

. (B1)

where Dj,k = cjk
σj σk

τj τk
and the second sum is taken over

all Nc × Nc pairs of (j,k). This high-dimensional partial
differential equation contains all of the statistics about �X
and any desired transformations. We are interested in the
steady-state equation ∂p(�x,t)

∂t
= 0, assuming the statistics are

in equilibrium. It is convenient to write the function in the
curly brackets as a probability flux or current, as follows:

Jl(�x,t) := 1

τl

[
−xl + μl +

Nc∑
k=1

glkFk(xk)

]
p(�x,t). (B2)

The steady-state equation is

0 = −
Nc∑
l=1

∂

∂xl

{
1

τl

[
−xl + μl +

Nc∑
k=1

glkFk(xk)

]
p(�x)

}

+1

2

∑
j,k

Dj,k

∂2p(�x)

∂xj ∂xk

, (B3)

0 = −
Nc∑
l=1

∂

∂xl

Jl(�x) + 1

2

∑
j,k

Dj,k

∂2p(�x)

∂xj ∂xk

. (B4)

1. Moment closure methods

We want to reduce this high-dimensional system into one
that is solvable. Without coupling gjk = 0, the solution is
simply a multivariate Gaussian distribution with mean �μ and
covariance matrix Cov(j,k) = cjk

τj +τk
σjσk . This motivates a

closure of the system where we assume �X is determined by
its first two moments and is approximated by a Gaussian:
Xj = σ (j ) + Yμ(j ), where Y is a standard normal random
variable. We also assume the joint marginal distributions are
bivariate Gaussians:

P(xj ,xk) :=
∫

p(�x) d �x\j,k ∼ N2, (B5)

where N2 is the following bivariate Gaussian distribution:

N
((

μ(j )

μ(k)

)
,
( σ (j )2

2τj
σ (j )σ (k)

cjk

τj +τk

σ (j )σ (k)
cjk

τj +τk

σ (k)2

2τk

))
, and d �x\j,k denotes in-

tegrating over all Nc variables except xj and xk . Note that these
assumptions are also made in the main text.

We multiply Eq. (B4) by xj and integrate the equa-
tion over all Nc variables, d �x = dxj dx̃ (where dx̃ =
dx1 . . . dxj−1dxj+1 . . . dxNc

:= d �x\j ):

0 = −
∫ Nc∑

l=1

∂

∂xl

Jl(�x)xj dxj dx̃

+1

2

∫ ∑
l1,l2

Dl1,l2

∂2p(�x)

∂xl1∂xl2

xj dxj dx̃. (B6)

Consider the first term: when l �= j , we have∫
∂

∂xl

Jl(�x)xj dxj dx̃ =
∫

∂

∂xl

Jl(�x)dxl xj dxj d �x\l,j

=
∫

Jl|xl=∞
xl=−∞xj dxj d �x\j

=
∫

0 xj dxj d �x\j = 0. (B7)

The last equality comes from no flux at ±∞: Jl|xl=∞
xl=−∞ =

0. A similar calculation applies to the second term, for all
Nc × Nc values of (l1,l2), it is 0. When l1 �= j and l2 �= j ,
integrate in xl1 and xl2 first and use the fact that there is no

density at ±∞: p(�x)|xl1/2 =∞
xl1/2 =−∞ = 0; when l1/2 = j , integrate in

xj first then integrate by parts, using ∂jp(�x)xj |
xl1/2 =∞
xl1/2 =−∞ = 0

and ∂jp(�x)|xl1/2 =∞
xl1/2 =−∞ = 0. Therefore, Eq. (B6) is

0 = −
∫

∂

∂xj

Jj (�x)xj dxj dx̃,

0 = −
∫

Jj (�x)xj |xj =∞
xj =−∞ dx̃ +

∫
Jj (�x) d �x,

0 = −0 + 1

τj

[
−μ(j ) + μj +

Nc∑
k=1

gjkE1(k)

]
, (B8)

where μ(j ) := ∫
xjp(�x) d �x, and we have used the approx-

imation
∫

Fk(xk)p(�x) d �x ≈ E1(k) [see Table I for definition
of E1(k)] by assuming the marginal xk PDF is a normal
distribution with mean μ(k) and variance σ 2(k). Rearranging
Eq. (B8) gives the exact same nonlinear equation for the mean
μ(j ), but coupled with the variance via E1(k):

μ(j ) = μj +
Nc∑
k=1

gjkE1(k). (B9)

To derive a similar equation for the variance σ 2(j ), we
multiply Eq. (B4) by x2

j and again integrate over all variables:

0 = −
∫ Nc∑

l=1

∂

∂xl

Jl(�x)x2
j dxj dx̃

+1

2

∫ ∑
l1,l2

Dl1,l2

∂2p(�x)

∂xl1∂xl2

x2
j dxj dx̃. (B10)

First, consider the diffusion (second) term: similar to before,
if either l1 �= j or l2 �= j , the term will vanish [integrate in xl1

and xl2 first and use the fact that there is no density at ±∞:

p(�x)|xl1/2 =∞
xl1/2 =−∞ = 0]. However, when l1 = l2 = j , integrate xj

first and use integration by parts twice to get

Dj,j

2

∫
∂2p(�x)

∂x2
j

x2
j dxj = Dj,j

∫
p(�x) dxj ;

taking into account the other Nc − 1 integration variables and
that

∫
p(�x) d �x = 1 simply gives Dj,j for the second term.

Now for the first term in Eq. (B10): if l �= j , then we can
see that that term in the sum vanishes by integrating xl first and
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using Jl|xl=∞
xl=−∞ = 0. Using integration by parts for the l = j

term, we get

−
∫

∂

∂xj

Jj (�x)x2
j dxj dx̃ = 0 + 2

∫
xjJj (�x) dxj dx̃

= 2

τj

∫ [
−x2

j + μjxj +
Nc∑
k=1

gjkxjFk(xk)

]
p(�x) dxj dx̃.

Using the fact that
∫

x2
j p(�x) d �x = σ 2(j ) + μ(j )2, the entire

Eq. (B10) is

Dj,j = 2

τj

[
σ 2(j ) + μ(j )2 − μjμ(j )

−
Nc∑
k=1

gjk

∫
xjFk(xk)p(�x) d �x

]
. (B11)

This equation is exact thus far. We now employ our approx-
imation: Xj = μ(j ) + Y1σ (j ) where Y1 is a standard normal
random variable (similarly for Xk). The last term in the
previous equation is

μ(j )
Nc∑
k=1

gjk

∫
Fk(xk)p(�x) d �x

+σ (j )
Nc∑
k=1

gjk

∫
y1Fk[μ(k) + y2σ (k)]p(�x) d �x.

We can approximate the first term above with Eq. (B9) to get
[excluding μ(j )]:

Nc∑
k=1

gjk

∫
Fk(xk)p(�x) d �x ≈

Nc∑
k=1

gjkE1(k) ≈ μ(j ) − μj .

Thus, this leads to a cancellation of the terms μ(j )2 and
μjμ(j ) in Eq. (B11). We approximate the term

∫
y1Fk[μ(k) +

y2σ (k)]p(�x) d �x by assuming the joint marginal distribution of
(Xj,Xk) are bivariate normal, and use the definition of NF in
Table I to get

∫
y1Fk[μ(k) + y2σ (k)]p(�x) d �x ≈

√
2NF (j,k).

Therefore, the equation for the variance is

σ 2(j )τj = σ 2
j

2
+ σ (j )

√
2τj

Nc∑
k=1

gjkNF (j,k). (B12)

This equation is similar to Eq. (21) but lacking higher order
terms in Fk , as well as other differences.

To derive the analogous equation for the Cov(j,k), the
procedure is almost exactly the same except Eq. (B4) is
multiplied by xjxk , and there are two terms from the sum
(over probability fluxes Jl) that contribute, when l = j and
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Our Method
Low Order Fokker−Planck

FIG. 7. Comparing our method with the lowest order approximation of the Fokker-Planck equation [Eqs. (B9), (B12), and (B13)]. The
network configuration is described in Sec. V and is the same realization in Fig. 5. There are Nc = 50 neurons with most parameters fixed except
the time scale �τ and coupling matrix G. (a) Comparison of the mean activity μ(j ) calculated via Monte Carlo simulations (horizontal axis) and
our reduction method (black) and the Fokker-Planck approximation (blue), showing all 50 values for each. (b) Similar to (a) but for mean firing
rate νj . (c) Variance of activity σ 2(j ). (d) Variance of firing rate Var(νj ). (e) Covariance of activity Cov(j,k), showing all 50 × 49/2 = 1225
values for each. (f) Covariance of the firing rate Cov(νj ,νk). Our result is more accurate, especially for the second order statistics (c)–(f).
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l = k. The result is

Cov(j,k)
τj + τk

2
= cjk

σjσk

2
+ σ (j )

2

√
2τj

Nc∑
l=1

gklNF (j,l)

+σ (k)

2

√
2τk

Nc∑
l=1

gjlNF (k,l). (B13)

Again, this equation is similar to parts of Eq. (22). When j = k

in Eq. (B13), we recover Eq. (B12).
Together, Eqs. (B9), (B12), and (B13) form a system of

transcendental equations for the complete set of first- and
second-order statistics. This can be thought of as a lowest order
approximation to the exact statistics of the coupled system. We
implemented this method on the same network described in
Sec. V and found that it is not as accurate as our method (Fig. 7,
black dots are closer to the diagonal line than blue dots). The
mean firing rates and activity perform equally well with both
methods [Figs. 7(a) and 7(b)], but our method outperforms this
method in calculating the variances [Figs. 7(c) and 7(d)] and
even more so with the covariances [Figs. 7(e) and 7(f)].

2. Higher order moment closure methods

To derive a higher order moment closure method, one can
continue the procedure described in the previous section, by
multiplying xixjxk with Eq. (B4) and devise a method to close
the lower order equations. Equation (B9) remains the same

because of the underlying normal distribution assumption:

μ(j ) = μj +
Nc∑
k=1

gjkE1(k).

The second set of equations (obtained by multiplying by xjxk

and integrating in �x) can possibly be used to better approximate
higher order equations, rather than close it as was done in the
lowest order approximation.

If one were to follow the outline of this method, the
Gaussian assumptions on �x reduce the higher moments∫

d �xxixjxkp(�x) in terms of the mean and (co-)variances of
�x, resulting in an overconstrained or redundant system. A
possible way to proceed is to devise an approximation to∫

xjFk(xk)p(�x) d �x, possibly relating to
∫

x2
j Fk(xk)p(�x) d �x,

where an assumption beyond the Gaussian approximation of
�x could perhaps be used. Whether or not there exists a higher
order moment closure method on the Fokker-Planck equation
(B4) that is more accurate than our new method is beyond the
scope of this study and an interesting area for future research.

What is very clear through all these calculations is that
our method described in the main text is different than
any common moment closure methods on the Fokker-Planck
equation, despite some similarities in the equations. From the
moment closure methods we have outlined here, we see that
the resulting equations will never have second order terms in
the network coupling [i.e., Fk(xk)2 or FjFk], and is thus a
different approach than our method.
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