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Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal
groups. However, revealing the underlying interaction rules and decision-making strategies governing highly
coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal
resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging
machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability
has an inflection point at pairwise distance of 3–4 m closer than the average maximum interindividual distance,
after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor
distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is
found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in
metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number
of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction
and decision-making principle during circular flights of pigeon flocks.
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I. INTRODUCTION

Collective motions in natural biological systems range from
microscopic to macroscopic levels, such as bacterial colonies
[1], migrating cells [2], insect swarms [3], fish schools [4], bird
flocks [5], and even mammal herds [6,7]. To understand the
underlying interaction mechanism of social animals, collective
motion analysis has been extensively explored in recent
years, which is continuing to attract increasing attention from
biologists, physicists, life scientists, and computer scientists
[8]. Dating back to several decades ago, simple interaction
rules propelling individual agents have been proposed, which
are sufficiently realistic to reproduce numerous observed
phenomena and hence are beneficial for developing a method-
ology for better understandings of the system complexity
consisting of many collectively self-propelled entities [8].
As a milestone study, Vicsek et al. proposed a well-known
flock model, where each agent’s direction of movement is
determined by the average direction of the neighbors within a
metric space. The so-called Vicsek model (VM) [9] captures
the behavior of highly ordered structures that emerge in
animal grouping motions. Following the research line, Tian
et al. [10] investigated the optimal view angle in collective
dynamics based on the VM, and Gao et al. [11] suggested that
angle restriction enhances synchronization of self-propelled
particles. Both of them [10,11] introduced the anisotropic
interaction rules in numerical studies of coordinated behaviors.
Another well-known study of Couzin et al. [12] proposed
a three-sphere model with the consideration of blind visual
fields that yields three typical patterns of universal collective
motions in fish schools, i.e., swarm, torus, and migration states.
Additionally, from the analytical point of view, a general
theoretical framework describing the dynamics of biological
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group behaviors was presented by Olfati-Saber et al. [13],
which provides some insights into the emergence of highly
coordinated collective behaviors yielded by simple interagent
attractive/alignment/repulsive interactions.

Thanks to the swift development of data acquisition
technology, not only numerical studies but also empirical
investigations have been conducted to understand the varying
underlying interindividual interaction principles and the mat-
ters triggering transition from nonequilibrium to equilibrium
phases [8]. Recently, Ballerini et al. [14] proposed an alterna-
tive possibility for interaction rules in a huge flock comprising
thousands of starlings, where it was observed that each bird
interacted with only a fixed number of topological neighbors,
instead of individuals within a specific metric distance. This
model provided an explanation of the interaction mechanism
among starlings, which was later reinforced by theoretical
analysis [15] and interspecies experiments in mosquitofish
schools [16]. With the assistance of GPS tracking device,
Dell’Ariccia et al. [17] studied homing pigeons (Columba
livia) and found that the homing performance of birds flying
in a flock was significantly more coordinated than that of birds
released individually. In addition, using high-resolution GPS
data obtained from pigeon flocks, a hierarchical leadership
network was revealed by Nagy et al. [18], where each pigeon
acts as a leader or a follower, or plays a dual role when situated
on middle layers. To investigate whether pigeon flocks obey a
hierarchical or egalitarian interaction pattern, Zhang et al. [19]
explored free flights of pigeon flocks and indicated that each
pigeon tends to follow the average of its neighbors while mov-
ing along a smooth trajectory, whereas it switches to follow
the leaders upon sudden turns or zigzags occur. Later, Chen
et al. [20] reanalyzed the same homing flight datasets [18]
and indicated that a pigeon flock has a fixed long-term leader
for smooth moving trajectories in homing flights, whereas
the leadership passes to a temporary one on sudden turns or
zigzags. To investigate the principle governing self-organized
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FIG. 1. Two-dimensional (2D) projection of the circular move-
ment in flock A. To avoid confusion, only trajectories of three pigeons
in the flock are exhibited as an illustration.

patterns, Ferrante et al. [21] developed an active-elastic-sheet
method, which nicely explains the emergence of the ordered
states of both natural and artificial swarms. Based on stereo
imaging techniques, Attanasi et al. [22] obtained a high-
resolution spatial dataset composed of thousands of starlings,
which was afterwards used to formulate a realistic flocking dy-
namics model concerning spontaneous symmetry breaking and
conservation rules. This model suggests that the information
of directional turning propagates across the flock according
to a linear dispersion law with negligible attenuation. Further,
Mora et al. [23] introduced a dynamical inference technique
based on the principle of maximum entropy to infer the strength
and range of alignment forces from the datasets of flying
starling flocks, which overcame the issue of slow experimental
sampling rates. They found that local alignment emerges much
faster than neighbor rearrangement. On the other hand, to
understand the matters triggering phase transitions, Cheng
et al. [24,25] reported that various pattern phase transitions
can be captured in a minimal Hamiltonian model, with which
one may predict the stability and tweak the morphology of
the phases of self-propelled particles. From an engineering
perspective, many of these aforementioned studies have
provided specific insights into industrial applications of a huge
volume of practical multi-agent systems, such as unmanned air
vehicles [26] and multirobot formation control [27,28].

The objective of this study is to explore the underlying
interindividual interaction rules and decision-making strategy
in collective circular motions of small sized pigeon flocks.
To this end, we focus on circular movements as shown in
Fig. 1 and carry out a detailed investigation on high spatial-
temporal resolution GPS datasets consisting of 30 releases of
three pigeon flocks, each of which has ten individuals. We use
the data of three pigeon flocks (labeled as flocks A,B, and C)
with 30 releases from Ref. [29] (sampling period 0.1 s), each
of which lasts from 2 to 7 min. The high-resolution GPS data
were collected from free flights of pigeon flocks flying above
the country area near Oxford. The GPS logger weighed 13 g,
was based on a commercially available embedded Gmsu1LP
device, logged time-stamped longitude, latitude, and altitude

data at 10 Hz. It was affixed to a pigeon’s back with an elastic
harness. Loggers were randomly allocated to pigeons before
every flight. Due to the limitation of the GPS device in z axis
and the average standard deviation of flight altitude in each
release being sufficiently small (5.22 ± 1.27 m), it suffices to
use the x- and y-axes data for investigation as the previous
study [29] did, where they suggested that the accuracy of the x

and y global coordinates was sufficient to carry out correlation
analysis.

II. METHODS

First, a newly emerging machine learning method, namely
Sparse Bayesian Learning (SBL) [30–33], is used to extract
the interagent interaction among individuals. Different from
the general machine learning theory [34], such as decision tree
learning [35], support vector machine [36], and artificial neural
network [37], SBL explores the sparse regression algorithms
to learn from and make predictions on time-series data [30,38].
It employs strictly dynamical program instructions by building
up a model from input data and thereby making data-driven
prediction of the future evolution. Essentially, it relies on
the assumption that captures the complex system dynamics
by designing a finite set of dictionary functions which are
used as a priori knowledge. Meanwhile, it adopts a priori
probabilities to represent system uncertainty via probabilistic
rules and inferential processes [31].

The massive data used in the SBL algorithm [33] is
collected from the three flocks of free-ranging domestic
pigeons flying above the country area near Oxford [29]. Each
individual was equipped with a GPS logger to sample the
longitude, latitude, and altitude data with 10 Hz sampling rate.
Due to the inherent defects in the altitude data collected by
the GPS device, we only focus on the two-dimensional planar
data. Then we propose the following SBL formulation:

Y = �� + ξ, (1)

where Y is the collected time-series data denoted in a state-
space form; � is the dictionary function matrix, which gathers
a priori knowledge of the input data with potential over-
complete formulations; � is the coefficient matrix, including
the objective connection information; and ξ is the addictive
process noise during the circular flights, which is assumed to
be independent and identically distributed Gaussian distributed

with zero mean [33]. More precisely, we pick Y = [
· · ·︸︷︷︸
xi

· · ·︸︷︷︸
yi

]
q×2

,

where xi and yi are column vectors corresponding to the
q-step input positional data in x axis and y axis; e.g., xi =
[xi(t − 1), xi(t − 2), . . . , xi(t − q − 1)]T. Since the VM [9]
is widely accepted in exploring collective motions of animal
groups [8,14,39], we accordingly exhibit the details in the

dictionary matrix � = [
· · ·︸︷︷︸
M(x)

· · ·︸︷︷︸
M(y)

], i.e.,

[M(x)] =

⎡
⎢⎢⎣

fj1 (t − 1) · · · fjN−1 (t − 1)
fj1 (t − 2) · · · fjN−1 (t − 2)

...
. . .

...
fj1 (t − q − 1) · · · fjN−1 (t − q − 1)

⎤
⎥⎥⎦

q×9

,

(2)
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FIG. 2. Fitting errors of individual positions (IP) and filtered
circular centers (FCC) corresponding to distinct recovered durations.
Due to the fact that a flock of pigeons interact dynamically with
switched neighbors, the fixed dictionary matrix cannot capture the
time-varying interindividual interactions for a longer period. Thus,
errors grow larger with increasing recovered durations.

with fjλ
(t)=xjλ

(t)−xi(t), such that jλ �= i,λ=1,2, . . . ,N−1.

Thus, the coefficient matrix has the form � = [
· · ·︸︷︷︸
ωx

· · ·︸︷︷︸
ωy

]. The

sampling time is 0.1 s, and the subscript i only denotes the
time step. M represents the compact form of the temporal
regressive term. In Eq. (2), fjλ

(t) = xjλ
(t) − xi(t) means

the position difference in x axis between individual i with
all the others (j �= i). Here, the element M(x) is a q×9
matrix consisting of positional difference fjλ

between the
nine remaining individuals and the one to be recovered.
Analogously, M(y), a q×9 matrix, means the corresponding
items in y axis. In the coefficient matrix, [ωx,ωy] contains the
connectivity information between individual i and the others.
We then implement the SBL algorithm on every q step segment
among the entire input data of 30 releases of three pigeon
flocks. Obviously, such an interaction rule that individuals
move towards the average position of neighbors with constant
speed will drive them moving in a parallel phase [9,13].
Thus, the alignment of moving angles is indispensable for
circular coordination. Since angular velocities are extremely
small under the sampling rate 10 Hz, we hereby seek an
equivalent transformation to investigate the relationships of
circular centers of each individual by analogously employing
a dictionary function matrix [M(x̃),M(ỹ)], where x̃ and ỹ

denote the Cartesian coordinates of the circular centers in
x axis and y axis, respectively. Quantitatively, we show
the evolution of fitting errors (e =

√
e2
x + e2

y ) of individual
positions corresponding to distinct recovered durations in
Fig. 2. It is observed that errors grow larger with increasing
recovered durations, which is due to the fact that the fixed dic-
tionary matrix cannot capture the time-varying interindividual
interactions for a longer period, since a flock of pigeons interact
dynamically with switched neighbors [18]. To investigate the
underlying dynamical interaction rules of pigeon flocks, we

adopt the case q = 5, in which the errors are sufficiently small
to guarantee the flock to adopt a fixed interaction network.
Here, the fitting errors of circular centers for q = 5 are ex =
2.5340 ± 27.1784(m) and ey = 2.4615 ± 26.3144(m) (mean
± SD). It should be noted that when individuals move straight
in some consecutive instants, the circular centers reach infinity,
which results in the unidentifiable cases and large values of
standard deviation. By introducing an average filter with a
threshold (100 m) on the circle radii, we recalculate the fitting
errors of circular centers in the SBL algorithm for q = 5, which
are ex = 1.0385 ± 0.2503(m) and ey = 1.0101 ± 0.3119(m)
(mean ± SD).

In general, supervised machine learning algorithm can be
seen as minimizing the objective function which consists of
a loss term and a regularization term, where the former can
be square loss (the least-square method), hinge loss (support
vector machine), exp-loss (boosting), log-loss (logistic regres-
sion), etc. By contrast, the latter, the regularization function,
aims at constraining the model as simply as possible. Many
options for selecting the regularization function exist, of which
a monotonically increasing function of the model complexity
is generally used, e.g., the following three types of norms,
�0-norm (the number of nonzero elements), �1-norm (the
sum of moduli of elements), and �2-norm (the sum of the
square roots). In this study, we solve the matrix multiplication
(convex) optimization problem through a procedure relying
on an efficient iterative reweighted �1-minimization algorithm
[40]. Compared with �0 and �2 methods, �1 regularization
is neither easy to lead an NP-hard problem as �0 is, nor to
obtain redundant solutions as �2 does [41]. In other words,
�1 regularization can make the solution sparser and extract
the minimal structures. We hereby adopt the �1-minimization
method as is used in exploring the underlying interaction
mechanism in collective behaviors of fish schools [42], which
can make the solution much sparser, and extract the minimal
yet efficient connections. Afterwards, hyperparameters are
utilized in marginal likelihood maximization, which uses prior
distribution to distinguish themselves from the parameters
of the underlying system model under analysis. Once the
hypermeters are determined, the solution is obtained by the
maximum of a posterior estimation. Thus, we can acquire
the posterior probability based on the Bayesian probability
formula [33], posterior = likelihood×prior

marginal likelihood , which leads the
convergence to the most optimal cases. To implement the
SBL method [33], we use the Matlab CVX package to solve
the convex programming problems [43]. Thereby, we obtain
the coefficient matrices [ωx,ωy] and [ωx̃,ωỹ], and extract the
underlying interaction networks. The coefficient matrix � has
a sparse structure with only dominant elements, while it may
well fit the data. If the individual trajectory to be recovered
is influenced by others, it is defined that these correlated
individuals have directed connections to the one.

III. RESULTS

A. Intermittent alignment network

Based on the aforementioned SBL method [33], we
investigate the network dynamics of the three pigeon flocks
and exhibit the average degree distribution of the directed
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FIG. 3. Degree distribution and connectivity probability of inter-
action networks based on the SBL method for individual positions
(IP), circular centers (CC), and filtered circular centers (Filter).
(a) In and out degree distributions of the pigeon flocks. For each flock,
individuals typically interact with a limited number of neighbors
and never interact with all the other members. (b) Connectivity
probability of the interaction networks. Durations indicate the number
of consecutive instants of interaction networks merging into a union.
Connectivity probability is calculated as the proportion of connected
situations. Clearly, connectivity probability of both directed and
undirected cases grow fast along increasing duration.

networks in Fig. 3(a). It is observed that the mostly encountered
case is that each individual typically interacts with three
neighbors by alignments of positions, whereas five neighbors
by alignments of circular centers. Meanwhile, no pigeon
interacts with all the other members in the flock. Due to
the fact that pigeons interact with switched neighbors in an
extremely short time instant, it suggests that pigeon flocks
employ a local interaction mechanism and also suggests that
the information achieved by one pigeon only propagates to
just a few neighbors at one instant. Accordingly, we can
predict only the local diffusive transmission of information
propagating among pigeon flocks. The SBL algorithm [33]

extracts a directed relationship for a pair of pigeons. Here, a
directed graph is called weakly connected if replacing all the
directed edges with undirected edges produces a connected
undirected graph. The term strongly connected is used if the
network contains both a directed path from node u to node
v and the reverse from v to u. In this study, both the weakly
and strongly connected conditions of interaction networks are
investigated. As shown in Fig. 3(b), a small possibility of
connectivity is associated to the union of interaction networks
within some consecutive instants. Evidently, the possibility
grows larger with increasing interaction durations. It suggests
that pigeon flocks employ a jointly connected interaction
topology in free flights, where the instantaneous interaction
networks do not keep connected, but the topology union of
several continuous instants becomes connected. If we consider
a sufficiently long period of time, a path will always exist in
the union of the sequential instantaneous interaction networks
from one individual to any other in the flock. The average
number of neighbors is larger in the reconstruction of CC
than the case of IP, although we have introduced an average
filter on the circle radii. It is due to the fact that it is easy to
recover IP, since the flock is relatively ordered. Note that the
interlaced trajectories leading to the inconsistent CC results in
the difficulty of identification in the SBL method [33].

B. Anisotropic interaction

For a flock of pigeons, individuals are not likely to establish
connections with fixed neighbors in different releases. Neigh-
bors are more likely to change when angular velocity is larger,
due to the constraints of keeping cohesive with a low possibility
of changing flight speed [44]. Thus, a natural question arises:
how do pigeons choose their neighbors? A paradox has
been existing in previous studies that bird flocks choose
neighbors in terms of pairwise distances [9], and conversely
they interact with a fixed number of neighbors in network
topology [14]. Based on implementing the SBL method [33]
on individual positions and circular centers, we show the
average probability distribution of pairwise metric distances of
neighbors corresponding to the three pigeon flocks in Fig. 4(a).
Apparently, it is observed that there exists an inflection point
on the evolution curves of the interacting distance, after which
the interaction ratio decays strictly with increasing pairwise
metric distances, and the maximum occurs within the range of
3–4 m with average interaction distance locating in the range of
5–6 m. Still, we show the probability distribution of pairwise
metric distances of all the nine remainders (dash lines) in
Fig. 4(a). The shifting of curves in positive x axis indicates
that the focal individual tends to select interacting neighbors
closer to itself. This initial low interaction probability is due
to the fact that, within a short pairwise distance, individuals
are more likely to avoid collision instead of alignment with
its neighbor(s), which results in the lower distribution of
remainders in short distance, and unidentified relationship
extracted by the proposed SBL method. Additionally, the
average anisotropy of interaction based on implementing the
SBL method [33] on both individual positions and circular
centers has been considered in Fig. 4(b). The circle center
or the reference point represents the position of the focal
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FIG. 4. (a) Probability distribution of pairwise metric distances
of interacting neighbors (solid lines) and all the other individuals
(dash lines) corresponding to the three pigeon flocks. The interaction
probability distribution evolution curves have an inflection point, after
which they decay strictly along increasing pairwise metric distances,
whereas for the case of remainders including both interacting and
noninteracting individuals, the curves have a shifting in the positive x

axis, which means that interacting neighbors detected based on SBL
are closer to the focal one. (b) Position distribution of interaction in
flocks A, B, and C. The red arrow indicates the velocity direction,
and colors demonstrate the normalized interaction frequencies. It is
observed that individuals tend to interact with neighbors located right
or left, but not along their velocity directions. (c) Position distribution
of remainders in flocks A, B, and C. Analogously, we show the
360-degree position distribution of the remainders. It is observed that,
on average, all the others locate on sides during circular motions.

individual at each time instant. Compared with the results
in starling flocks [14], it is similarly observed that pigeons
tend to interact with neighbors symmetrically located right
or left, but not along their velocity directions. Inspired by the
finding, we further exhibit the 360-degree position distribution
of remainders including both interacting and noninteracting
ones in Fig. 4(c). As expected, the natural average distri-
bution is similarly anisotropic with higher proportions on
sides. The observed anisotropic distribution of remainder
individuals including both interacting and noninteracting
ones can also be attributed to the physiological structure
characteristics of birds and their anisotropic visual fields
[45,46]. Thus, we suggest that in small-sized pigeon flocks,
due to the anisotropic physiological visual fields, individuals
are more likely to interact with closer neighbors on theirs left
or right.

C. Theoretical model

Among abundant collective motion patterns of pigeon
flocks, circular motion is a common yet fascinating behavior,
where efficient and elaborate interagent interactions are re-
quired for coordination. Another feature is that the rotational
direction undergoes regular periodical spontaneous changes,
when a flock hovers near its home loft. To quantitatively
refine the existing understanding of circular motions with
spontaneous changes in rotational directions, we propose a
self-propelled particle model based on a jointly connected
interaction mechanism as below with the assistance of the
findings endowed by the SBL method. Therein, three types
of forces act on each particle, i.e., centripetal, alignment, and
homing forces. The centripetal force is designed to drive each
individual to rotate. The alignment force is the combination of
neighboring forces to achieve the convergence to the circular
centers. Considering the tendency of pigeons toward the roost-
ing area [47], we use the homing force to yield attraction from
the loft to each pigeon, which is designed as a piecewise convex
function. The motions of individuals are mediated by the posi-
tions, velocities, and directions of their neighbors, as assumed
in the VM [9]. Essentially, we employ a time-varying connec-
tivity topology and apply a restriction on the communication
capacity. In detail, for each individual, we randomly pick two to
five individuals as its neighbors if there are more than four ones
within its vision range. Note that as the intragroup connections
become stronger with ascending neighborhood size, then col-
lective motion is more rapidly achieved [48]. But this implies
greater communication cost. Therefore, the proposed model
with limited communication capacity establishes a balance
between the coordination efficiency and the communication
cost, which enables the verification of the feasibility of the
inferred rules for reproducing coordinated circular motions. To
focus on the crucial mechanism of intermittent interaction, the
non-linear function related to the anisotropic visual apparatus
has not been considered into the alignment force.

Now, based on the empirical results, we introduce the details
of the proposed model. Consider a group of n = 10 units
moving in a planar space, where each has a velocity in two-
dimensional real space, i.e., �vi := [v0 cos θi,v0 sin θi]T, vi =
‖�vi‖, where vi and θi are the linear speed and direction of
individual i. For conciseness, we omit the time variable t

(e.g., vi = vi(t)). Let �pi := [xi,yi]T be the particle’s Cartesian
coordinates. Recall that, the centripetal force will drive particle
i to rotate independently. To generate the independent circular
motion, each individual has the following dynamics:

θi = (ωi + ηω)dt,

dxi = (v0 + ηv) cos θidt,

dyi = (v0 + ηv) sin θidt, (3)

in which the centripetal force is ciphered, v0 =20 and ωi =0.5
are the linear speed and angular speed assumed fixed in the
numerical study, and ηv and ηω denote the random noise
(±10%) of the linear speed and angular speed, respectively.

Subsequently, the three types of forces are given through
the following stochastic differential equation:

dvi = (Fcen + Falign + Fhome)dt + ξ, (4)

022411-5



CHEN, XU, ZHU, ZHOU, AND ZHANG PHYSICAL REVIEW E 96, 022411 (2017)

with ξ denoting a Poisson process, among which based on
the empirical results that individuals interact with others by
aligning their positions and moving angles, the alignment force
Falign is derived from its neighbors in order to achieve the
convergence of the motion centers. Thus, the alignment rule is
defined as follows:

Falign = −
∑
j∈Ni

α(‖ �pij‖)[cos θi sin θi][f (xij )f (yij )]T, (5)

with i,j ∈ {1,2, . . . ,n} and ‖ �pij‖ = ‖ �pi − �pj‖ denoting the
Euclidean distance between individual i and j . It should be
noted that the system dynamics is handled by discretization.
Here, according to Fig. 4(a), we pick

α(x) =
⎧⎨
⎩

ωα(x/ρ1 − ρ1/ρ2), 0 < x � ρ1,

ωα(1 − x/ρ2), ρ1 < x � ρ2,

0, x > ρ2,

(6)

where ωα = 0.2 is the weight of alignment, ρ1 = 8 represents
the pairwise distance corresponding to the largest interaction
possibility, and ρ2 denotes the range of alignment. To verify
our understanding of the jointly connected topology employed
by pigeon flocks, ρ2 is defined as a triangular-wave function
to introduce a time-varying interaction mechanism, which
has a maximum and minimum positive amplitudes ρm = 50,
and ρ1 = 8, respectively, with frequency ρF = 1/14. A larger
value of ωα suggests a high rate of coordination. For circular
motions, the unit alignment forces are calculated as f (xij ) =
axij + bx̃ij and f (yij ) = cyij + dỹij , where xij = xi − xj ,
and x̃ij means the position difference of circular centers
of individuals i and j in x axis, i.e., x̃ij = vi/ωi sin θi −
vj/ωj sin θj , yij and ỹij are similarly defined in y axis. In the

counterclockwise and clockwise cases, we pick [a b

c d] = [1 −1
1 1 ]

and [a b

c d] = [1 1
1 −1], respectively.

The homing force Fhome denotes the attraction from the loft
to each particle [47], i.e.,

Fhome =
{

1
c0

( ‖ �pi− �p0‖
L

)ωβ
, ‖ �pi − �p0‖ � L0,

0, ‖ �pi − �p0‖ < L0,
(7)

where L0 = 40 is a minimum radius of a circular homing area
meaning that within the range ‖ �pi − �p0‖ < L0, individuals
feel no attraction from the loft. Besides, c0 = 2.5e−6 is a
constant, ωβ = 2.2 denotes the attraction strength, �p0 :=
[x0,y0]T is the Cartesian coordinates of the loft, and L = 400
is the side length for the simulation space. Low values
of ωβ imply weak attraction from the loft, whereas an
adsorption phenomenon emerges around the loft with higher
values of ωβ .

As shown in Fig. 5, we exhibit the probability distributions
of the system status, i.e., the directional index of the entire
flock. We use signs “+” and “−” to represent the individ-
ual counterclockwise and clockwise rotations, respectively.
Specifically, “±10” mean that the entire flock consisting
of ten individuals rotates collectively in a counterclockwise
or clockwise direction, respectively. With the reduction and
increase of the index values, the entire flock gradually changes
rotational direction from counterclockwise to clockwise and
the reverse, respectively. The concave probability distribution
of the system status indicates that more individuals change

FIG. 5. Probability distributions of the system status, i.e., the
directional index of the entire flock. Therein, the sign “+” and “−”
represent the individual counterclockwise and clockwise rotations,
respectively. With the reduction and increase of the index values,
the entire flock gradually changes rotational direction from counter-
clockwise to clockwise and the reverse, respectively. Significantly,
it is observed that the spontaneous changes of rotational directions
follow a Gaussian distribution.

their rotational direction in the medium stage, whereas the
number of directional switching pigeons reduces gradually in
the earlier and later stages. Thus, it is reasonable to assume
that spontaneous changes of rotational directions follow a
Gaussian distribution. To explain how a heterogeneous flock
of pigeons with varying stamina can achieve spontaneous
changes of rotational direction in circular motions, we assume
that every individual has a depletion time which follows
Gaussian distribution. When a pigeon feels “tired” or wants
to change the rotational direction but most of the others not,
it must follow them unwillingly but with increasingly greater
intension to change. Thus, when a sufficient number of willing
members have been accumulated to change their rotational
direction, they drive the entire flock to switch. Refer to the
Supplemental Material video for simulation results [49] and
the previous study [18] for realistic circular motions of pigeon
flocks.
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The main characteristic of circular motions by pigeon flocks
is the highly synchronous state with unpredictable changes
in rotational direction. As shown in Figs. 6(a)–6(c), another
unique feature is that pigeons periodically rotate around
their loft during the flight. When a collective decision is
made to change rotational direction, the average positions
corresponding to three continuous instants (which suffices to
calculate a curvature) lie on a relatively straight line. Thus,
the radius of the curvature suddenly increases, and hence the
distance rises between the average circular center and the loft.
To investigate more deeply into the principle underneath these
behaviors, as shown in Figs. 6(a)–6(c), we compare the results
of the present numerical study with the experimental data
based on the trajectory containing both counterclockwise and
clockwise circular motions. The former coincides well with the
latter. In natural situation, pigeons fly in a three-dimensional
space, so it makes sense to see staggered overlaps along
the two-dimensional projected trajectory. Therefore, we do
not consider repulsion forces due to the projecting overlap.
Analogously, when governed by the three forces and the jointly
connected topological mechanism in the proposed model as
well as the decision-making strategy including compromise
and the Gaussian distribution of depletion time, the individuals
move collectively in circles with different radii. In addition, all
of the pigeons change their rotational directions spontaneously,
but never stray far from their loft.

IV. DISCUSSION

This study focuses on circular motions because a turning
command is broadcasted through the flock on almost every
occasion, whereas the alignment of velocity may carry
significant directional information of real interactions [50,51].
Furthermore, based on the SBL method [33], it is observed that
the interaction network of a pigeon flock is even almost always
unconnected at each instant, whereas it becomes connected
when the multiple networks are merged over sufficiently
long consecutive time intervals. Thus, pigeon flocks employ
a weakly connected principle to achieve coordination, and
thereby substantially reducing the communication costs, which
better explains actual intermittent communication phenomena
observed in biological groups [5,7,52], and helps provide a
biological evidence of the existence of jointly connected inter-
active network topology in bird flocks. Moreover, the jointly
connected topology guarantees that each individual can com-
municate with others directly or indirectly during a sufficiently
long time. However, what will happen if an agent escapes the
influence of the others for a long period? In the present numer-
ical study, by using a weaker jointly connected condition with
a faster decay rate of ρ2, an individual far from the others be-
comes an outlier after a change in the movement direction, so it
whirls constantly and spontaneously as observed in nature [18].
Therefore, to achieve collective coordination, the influence of
the others should be sufficiently strong, especially under some
crucial situations, such as the rotational direction switching
time and the occurrence of conflicting decisions. In addition,
it should be noted that we implemented both the empirical and
numerical studies based on the widely used velocity alignment
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FIG. 6. Comparison between experimental data and numerical
study results. 100-s long (1000 time steps) segment of flight
trajectories from flock A. (a)–(c) The distances between the average
circular centers and loft, average curvature radius, and distances
between the average positions and loft, respectively. If the pigeon
flock flies relatively straight for three consecutive instants, the average
curvature radius will grow larger in synchronized manner with peaks
in (a) and (b). The evolution tendency in numerical study is well
consistent with the empirical data.
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among self-propelled entities [9,12,51]. Other possibilities still
exist, e.g., Barberis et al. [53] suggested that position-based
active models with a vision limitation can exhibit various
complex, large-scale and self-organized patterns, including
the millinglike patterns found in fish. Although a centrifugal
force is not needed to induce spontaneous rotation (a scattered
distribution of individuals along the circle) [54], we still
introduce a centripetal force for each individual to achieve the
cohesively circular movements, and the independent rotation.

Group structure is the foremost fascinating result, yielded
by interindividual interactions, or conversely, interactions are
ciphered in the coordinated spatial structure [51]. To extract
the underlying interaction rules, we seek assistance from the
SBL method [30–33]. Based on empirical results, we observed
that during coordinated circular flights, the interaction prob-
ability is strongly correlated with pairwise metric distance.
It monotonously increases until reaches an inflection point
at pairwise distance of 3–4 m, after which it decays strictly
with rising pairwise metric distance. Further, compared with
the natural distribution of remainders including both inter-
acting and noninteracting ones, the larger average maximum
probability (inflection point) 4–5 m indicates that individuals
are more likely to interact with closer neighbors. Thus, we
suggest that individuals in small-sized bird flocks reciprocally
cooperate with a limited and time-varying number of neighbors
in metric space, rather than interacting with a fixed number of
distance-independent neighbors. Meanwhile, the density of
spatial neighbor distribution is strongly anisotropic, with an

evident lack of interactions along individual velocity direction.
It coincides with and may be deemed to the physiological
characteristics and visual field of birds [45,46]. Another im-
pressive scenario is the V-shape flight of ibis flocks [55], which
is strongly anisotropic in spatial structure. With respect to the
way for pigeon flocks to achieve coordination and synchro-
nization, the revealed connectivity probability mechanism and
the normally distributed decision-making strategy provide an
explanation. In addition, we suggest that the SBL method helps
discover the interaction mechanism from the perspective of a
dynamical machine learning analysis in collective behaviors.
In future research, it will be necessary to scale up from the
current small-sized bird flocks to larger ones and to check the
interspecies issue to other kinds of animal groups. How do they
interact in coordinated movements? Will the density of spatial
neighbor distribution still follow anisotropy? What are the
specific anisotropic ranges in other gregarious animal groups?
These fascinating questions merit further investigations.
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