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Sensitivity and network topology in chemical reaction systems
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In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by
sharing substrates and products, forming complex networks. In our previous studies, we established a framework
determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called
the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize
these results to reaction networks with conserved concentrations, which allows us to study any reaction system.
We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with
randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of
the random networks.
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I. INTRODUCTION

In living cells, there are many chemical reactions, and
they form complex networks such as metabolic networks and
signal transduction networks. The dynamics of concentration
of chemicals resulting from these networks is considered to be
the origin of physiological functions. Today, a huge amount of
information about reaction networks is available in databases
such as KEGG [1], Reactome [2], and BioCyc [3].

Dynamics and steady state of reaction networks are
determined by various factors in systems; reaction-specific
enzymes, input signals from outside of systems, and initial
conditions in some cases. One of the standard approaches to
elucidate the dynamics is a sensitivity experiment; for exam-
ple, in the research of metabolism, changes in concentrations
of metabolites induced by perturbation in amounts or activities
of enzymes are examined [4] (see Fig. 1).

In previous theoretical studies [5,6], under an implicit
assumption that the system has no conserved concentrations,
one of the authors and his collaborator showed that the
sensitivity of steady state to reaction rate parameters, which
correspond to enzyme activities or amounts, is determined only
from the structure of the chemical reaction network (structural
sensitivity analysis). Such a structural approach has a great
advantage because it is almost impossible to measure the
precise kinetics and parameters of chemical reactions in living
cells. We then proved a theorem, called the law of localization
[7]. The law of localization characterizes subnetworks by
nonpositive indices [see λ(�) in (17)] and identifies those
which confine the effect of perturbations inside them. We call
such subnetworks buffering structures.

One of the main purposes of this paper is to extend our
previous method to reaction systems where some of concen-
trations are conserved during the dynamics. For example, in
the MAPK pathway, while the ratio between activated and
inactivated kinase concentrations changes after stimuli, the
total number of them is conserved in time. In the presence
of such conserved quantities, steady state concentrations and
fluxes are influenced not only by reaction rate parameters but
also by the initial values of conserved quantities. We take into
account constraints coming from conserved quantities in the
sensitivity analysis.

Another purpose of this paper is to explore biological
meanings of buffering structures. Buffering structures provide
the system with robustness to enzymatic fluctuations since they
confine the effects inside them. Thus we expect that possessing
buffering structures are advantageous for living systems and
networks with more buffering structures are selected during
the evolutionary process. In order to refine these expectations,
we quantify robustness of reaction networks and compare
robustness of Escherichia coli metabolism with artificial
random networks.

The rest of the paper is organized as follows. In Sec. II,
we generalize the method of structural sensitivity analysis.
In Sec. III, we illustrate the method in a simple reaction
network. In Sec. IV, we extend the law of localization to any
reaction networks. In Sec. V, as applications, we study two
signal transduction networks. The first network has conserved
quantities and also includes regulations from nonsubstrate
chemicals. The second network also has conserved quantities.
In Sec. VI, we propose network characteristics for robustness,
and compare the E. coli network and random networks. The
detailed explanation of the formulation and the proof of the
law of localization are written in the Appendixes.

II. STRUCTURAL SENSITIVITY ANALYSIS

The structural sensitivity analysis is a systematic method
of determining sensitivity of steady states to rate parameter
perturbations from reaction network information alone [5,6].
We generalize the structural sensitivity analysis to networks
with conserved concentrations. In the generalized formulation,
not only the sensitivity to rate parameter perturbations but
also that to initial conditions on conserved concentrations are
determined from network information.

We label chemical species by m (m = 1, . . . ,M) and
reactions by j (j = 1, . . . ,R). In general, a macroscopic state
of a spatially homogeneous chemical reaction system is
specified by the concentrations xm(t) and obeys the following
differential equations [5–9]:

dxm

dt
=

R∑
j=1

νmj rj (kj ; x). (1)
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FIG. 1. Sensitivity analysis. The concentration changes of
metabolites under the decrease of the amount or activity of an enzyme
protein are measured.

Here, the M × R matrix ν is called the stoichiometric matrix:
if the stoichiometry of the reaction j among molecules Xm is

j :
M∑

m=1

yj
mXm →

M∑
m=1

ȳj
mXm (2)

(Xm: types of molecules),

then the component νmj is defined as

νmj ≡ ȳj
m − yj

m. (3)

The reaction rate function rj is called a flux, which depends
on the chemical concentrations x and also on a reaction rate
parameter kj . We do not assume specific forms for the flux
functions except that each flux is an increasing function of its
substrate concentration,

∂rj

∂xm

> 0 if yj
m > 0, otherwise

∂rj

∂xm

= 0. (4)

Below, we abbreviate ∂rj

∂xm
evaluated at steady state as rjm.

Usual kinetics, such as the mass-action and the Michaelis-
Menten kinetics, satisfies this condition.

In the context of metabolic reaction systems, xm is the
concentration of the mth metabolite, and the j th reaction
rate parameter kj corresponds the enzyme activity or amount
catalyzing the j th reaction.

We introduce notations about the kernel (right-null) and
cokernel (left-null) spaces of ν. We choose bases of the kernel
and cokernel spaces, ker ν and coker ν, as {cα}(α=1,...,N ) and
{da}(a=1,...,Nc), where N and Nc denote their dimensions. The
kernel space of ν corresponds to steady state fluxes [10–13].
Namely, steady state fluxes satisfy

rj =
N∑

α=1

μαcα
j , (5)

where cα
j is the j th component of the vector cα , and μα are

coefficients. On the other hand, the cokernel space is related
with conserved quantities. For every a ∈ {1,2, . . . ,Nc},

la ≡ da · x (6)

is constant in time, where x is the vector (x1, . . . ,xM ). la is a
constant associated with da .

In the previous papers [5–7], the condition Nc = 0 is
assumed, and so steady state concentrations and fluxes are
functions of rate parameters ki . However, when Nc > 0,
steady state also depends on initial conditions on conserved
concentrations, i.e., {la}. Therefore, in this case, there are two
types of perturbations; the perturbation of the rate parameter,
kj∗ → kj∗ + δkj∗ , and that of the a∗th conserved quantity,

la∗ → la∗ + δla∗ , where j = j ∗ and a = a∗ refer to the
perturbed rate parameter and conserved quantity, respectively.

To treat two types of perturbations in a unified way, we
introduce generalized parameters KJ (J = 1, . . . ,R + Nc) as

{K1, . . . ,KR,KR+1, . . . ,KR+Nc
}

≡ {k1, . . . ,kR,l1, . . . ,lNc
}. (7)

We determine the concentration changes δJ ∗xm and the flux
changes δJ ∗rj at steady state under the J ∗th perturbation,
KJ ∗ → KJ ∗ + δKJ ∗ (J ∗ = 1, . . . ,R + Nc).

As shown in the Appendixes, responses to all perturbations
are obtained simultaneously from the following matrix equa-
tion:

A
(

δ1x . . . δR+Nc
x

δ1μ . . . δR+Nc
μ

)
= −

(
ER 0
0 E′

Nc

)
, (8)

where the vertical and horizontal lines indicate the structure
of block matrices. The quantities above are defined as follows.
First, ER , E′

Nc
are R × R and Nc × Nc diagonal matrices,

respectively, where the j ∗th component of ER is given by
∂rj∗
∂kj∗ δkj∗ , and the a∗th component of ENc

is given by δla∗ . For
a fixed J ∗, δJ ∗ x and δJ ∗μ in (8) are column vectors,

δJ ∗ x = (δJ ∗x1, . . . ,δJ ∗xM )t ,
(9)

δJ ∗μ = (δJ ∗μ1, . . . ,δJ ∗μN )t ,

where δJ ∗μα is the change of the coefficients in Eq. (5)
under perturbation KJ ∗ → KJ ∗ + δKJ ∗ . Finally, the matrix
A is defined as

A ≡
R

Nc

rjm −c 1 . . . − cN

−(d 1)T

... 0
−(dNc)T

M N

,
(10)

Note that the matrix A is proved to be square.
By assuming that the matrix A is regular, Eq. (8) uniquely

determines the sensitivity of chemicals, δJ ∗xm, and of the flux
coefficients, δJ ∗μα , as

(
δ1x . . . δR+Nc

x
δ1μ . . . δR+Nc

μ

)
= −A−1

(
ER 0
0 E′

Nc

)
. (11)

By using Eq. (5) and noting cα is constant, δJ ∗μα determines
the flux responses as

δJ ∗rj =
N∑

α=1

δJ ∗μαcα
j , (12)

or, in matrix notation,
(
δ1r . . . δR+Nc

r
) = (

c1 . . . cN
)

× (
δ1μ . . . δR+Nc

μ
)
. (13)
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FIG. 2. Network with Nc = 1. 1 : (input) → A, 2 : A → B, 3 :
A + B → C + D, 4 : C + D → A + B, 5 : B → (output). The
responses of concentrations and fluxes are shown under the per-
turbations indicated by the red triangles. The left-hand side figure
shows that increasing k2 makes xA, xB, xC and r3, r4 decreased.
The right-hand side figure shows that increasing the initial value
of xC − xD makes xC increased and that of xD decreased. The
other concentrations and all fluxes are not changed under the
perturbation.

Note that δJ ∗ r and cα are R-dimensional column vectors, and
δJ ∗μ are N -dimensional column vectors.

Comments are in order. First, practically, we are often
interested in qualitative responses (increased or decreased or
invariant). For such discussions, assuming “overexpressions”
δKJ > 0, we can replace ER and E′

Nc
by identity matrices.

Therefore, we call S ≡ −A−1 sensitivity matrix. Secondly, as
a slight generalization, we can include nontrivial regulations
such as allosteric effects by relaxing Eq. (4) as

∂ri

∂xm

�= 0 if xm influences reaction i,

(2′)
∂ri

∂xm

= 0 otherwise.

Such regulations add additional nonzero rim in the A matrix,
but the response is still determined through Eq. (11). Finally,
although we are using the terminology “perturbation,” the
change of parameters δKJ ∗ is not necessarily small for
qualitative discussion of the sensitivity as long as the steady
state persists for finite perturbations.

III. EXAMPLE NETWORK

We illustrate our method in a simple example shown in
Fig. 2, which has Nc = 1. See the Appendixes and [7] for
examples with Nc = 0.

The stoichiometric matrix is given by

ν =

⎛
⎜⎝

1 −1 −1 1 0
0 1 −1 1 −1
0 0 1 −1 0
0 0 1 −1 0

⎞
⎟⎠. (14)

ν has a cokernel vector d1 = (0,0,1, − 1) because the differ-
ence l1 ≡ d1 · x = xC − xD is conserved in any reactions. A

is given by

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
r2A 0 0 0 1 0
r3A r3B 0 0 0 1
0 0 r4C r4D 0 1
0 r5B 0 0 1 0
0 0 1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (15)

From (8), the sensitivity is then calculated as

δJ ∗xm =

⎛
⎜⎜⎜⎜⎝

1
r2A

−1
r2A

0 0 0 0
1

r5B
0 0 0 − 1

r5B
0

R2
R1r2Ar5B

−r3A

R1r2A

1
R1

−1
R1

−r3B

R1r5B

r4D

R1
R2

R1r2Ar5B

−r3A

R1r2A

1
R1

−1
R1

−r3B

R1r5B

−r4C

R1

⎞
⎟⎟⎟⎟⎠

mJ ∗

,

δJ ∗rj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

1 0 0 0 0 0
R2

r2Ar5B
− r3A

r2A
1 0 − r3B

r5B
0

R2
r2Ar5B

− r3A

r2A
1 0 − r3B

r5B
0

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

jJ ∗

, (16)

where R1 ≡ r4C + r4D and R2 ≡ r2Ar3B + r3Ar5B . The J ∗th
column is the response to perturbations of J ∗th parameter and
the vertical lines separate between perturbations of the rate
parameters and the conserved quantity. For example, from the
fifth column, we can see that the increase of the initial value
of l1 changes only C and D, but does not affect either A, B or
all fluxes.

IV. LAW OF LOCALIZATION

As proved in [7], for networks without conserved quantities,
i.e., Nc = 0, patterns of nonzero responses can be understood
from network topology by using a theorem called the law of
localization. The theorem is also useful for elucidating relevant
pathways by combining with experimental measurements. In
this section, we generalize the theorem into networks with
conserved quantities, i.e., Nc > 0.

First, we review the theorem for networks with Nc = 0. For
a given network, we consider a pair � = (m,r) of a chemical
subset m and a reaction subset r satisfying the condition that r

includes all reactions influenced by metabolites in m [see the
condition Eq. (2′)].

We call � = (m,r) satisfying this condition output com-
plete. For a subnetwork � = (m,r), we define an index,

λ(�) ≡ −|m| + |r| − N (r). (17)

Here, |m| is the number of elements in m, |r| the number
of elements in r, and N (r) the number of independent
stoichiometric cycles in r. By a stoichiometric cycle in r

we mean any flux vector c which satisfies the flux balance
ν c = 0 and nonzero components only within r. We call an
output-complete subnetwork � with λ(�) = 0 a buffering
structure.
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The law of localization states that the chemical concen-
trations and reaction fluxes outside of a buffering structure �

does not change under any rate parameter perturbations in r. In
other words, all effects of perturbations of kj∗ in r are indeed
localized within �. See the Appendixes for an illustration of
the theorem for an example network with Nc = 0.

Now, we state the theorem in the case of Nc � 0 (see
Appendixes for the proof). We replace the definition (17) of
the index λ by

λ(�) ≡ −|m| + |r| − N (r) + Nc(m). (18)

The additional contribution, Nc(m), is the number of inde-
pendent conserved quantities including at least one element
in m. Note that the independencies of cycles and conserved
quantities are defined in the vector spaces associated with r

and m, respectively (see Appendix B for a precise formal
definition).

The generalized law of localization then states that the
chemical concentrations and reaction fluxes outside of a
buffering structure � do not change under either perturbations
of rate parameters or of conserved quantities in �.

We illustrate the generalized law of localization in the
previous example network, shown in Fig. 2, in which there is a
conserved quantity l1 ≡ xC − xD . Nc(m) = 1 if we choose m

including C or D, such as m = {C},{D}, {C,D}, or {A,C,D}.
For the output-complete subgraph �1 = ({C,D},{4}), the in-
dex is λ(�1) = −2 + 1 − 0 + 1 = 0. For �2 = ({C,D},{3,4}),
which has one cycle consisting of reactions 3, 4, the in-
dex again vanishes; λ(�2) = −2 + 2 − 1 + 1 = 0. Therefore,
these subnetworks are buffering structures. This is consistent
for the result that the perturbation of the initial value of
xC − xD neither influences the concentrations of A nor B.
�3 = ({A,C,D},{2,3,4}) is another buffering structure with
λ(�3) = −3 + 3 − 1 + 1, which explains why xB is insensi-
tive to the perturbations of k2, k3, k4, and l1.

V. APPLICATIONS TO BIOLOGICAL NETWORKS

We apply the structural sensitivity analysis and the law of
localization to two signal transduction pathways which have
Nc > 0.

FIG. 3. Signal transduction network of MAPK. The four boxes
are four buffering structures. The solid lines represent state transitions
of phosphorylations, and the dashed lines are active regulations.

A. Signal transduction 1: MAPK

We first consider the signal transduction network shown
in Fig. 3. The stoichiometric matrix ν of this system has a
four-dimensional cokernel space corresponding to the total
amounts of Ras, Raf, Mek, and Erk. Phosphorylated chemicals
in the upper layer positively regulate phosphorylations in the
lower one. Mathematically, this means that, for example, the
argument of the flux function r7 is not the form r7(k7,MekP),
but r7(k7,MekP,RafP), which additionally adds the component
r7,RafP in the A matrix [see Eq. (2′)].

To construct the matrix A, we order the chemicals as

{RasD,RasT,Raf,RafP,Mek,MekP,
(19)

MekPP,Erk,ErkP,ErkPP},
where RasD/RasT denotes the bound state of Ras and
ADP/ATP, and choose the following basis for cokernel vectors:

d1 = (0,0,0,0,0,0,0,1,1,1)T ,

d2 = (0,0,0,0,1,1,1,0,0,0)T ,
(20)

d3 = (0,0,1,1,0,0,0,0,0,0)T ,

d4 = (1,1,0,0,0,0,0,0,0,0)T .

The matrix A is given by

(21)
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Here, the gradations of color in A show block matrices corresponding to four buffering structures [see (23) and (24) below]. The
signs of the components of the sensitivity matrix S = −A−1 are determined as

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 l1 l2 l3 l4
RasD − + 0 0 0 0 0 0 0 0 0 0 0 0 0 +
RasT + − 0 0 0 0 0 0 0 0 0 0 0 0 0 +
Raf − + − + 0 0 0 0 0 0 0 0 0 0 + −

RafP + − + − 0 0 0 0 0 0 0 0 0 0 + +
Mek − + − + − + − + 0 0 0 0 0 + − −

MekP ± ± ± ± + − − + 0 0 0 0 0 + ± ±
MekPP + − + − + − + − 0 0 0 0 0 + + +

Erk − + − + − + − + − + − + + − − −
ErkP ± ± ± ± ± ± ± ± + − − + + ± ± ±

ErkPP + − + − + − + − + − + − + + + +

r1 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 +
r2 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 +
r3 + − + + 0 0 0 0 0 0 0 0 0 0 + +
r4 + − + + 0 0 0 0 0 0 0 0 0 0 + +
r5 ± ± ± ± + + − + 0 0 0 0 0 + ± ±
r6 ± ± ± ± + + − + 0 0 0 0 0 + ± ±
r7 + − + − + − + + 0 0 0 0 0 + + +
r8 + − + − + − + + 0 0 0 0 0 + + +
r9 ± ± ± ± ± ± ± ± + + − + + ± ± ±
r10 ± ± ± ± ± ± ± ± + + − + + ± ± ±
r11 + − + − + − + − + − + + + + + +
r12 + − + − + − + − + − + + + + + +

, (22)

where +, − represent qualitative responses under perturbations
associated with column indices, k1, . . . ,l4. The symbol ±
means that the sign depends on quantitative values of rim.

The zero entries in (22) can be easily understood from the
law of localization. The four square boxes in Fig. 3 indicate
four buffering structures, forming a nested structure. The
smallest buffering structure is

�1 = ({Erk,ErkP,ErkPP},{9,10,11,12}). (23)

This subnetwork has one conserved quantity, l4 = xErk +
xErkP + xErkPP, and so Nc(m) = 1. Therefore, λ(�1) = −3 +
4 − 2 + 1 = 0. The law of localization then states that the
perturbations of k8,k9,k10,k11 and l1 do not change the other
part of the system, which explains the zeros appearing in the
columns associated with k9,10,11,12 and l1 in Eq. (22).

The remaining buffering structures are

�2 = �1 ∪ ({Mek,MekP,MekPP},{5,6,7,8}),
�3 = �2 ∪ ({Raf,RafP},{3,4}), (24)

�4 = �3 ∪ ({RasD,RasT},{1,2}).

These buffering structures explain the zero entries, and, in
particular, the nest of them explains the stairlike nonzero
pattern in Eq. (22).

The nest of buffering structures implies that perturbations
to an upper layer influence the lower layers of the signal
transduction pathway.

B. Signal transduction 2: MAPK

We next study the signal transduction network shown in
Fig. 4. This network was studied in [14], where the regulation
between the bottom two layers in Fig. 3 was modeled in
detail as bound state formation in Fig. 4. They studied
the sensitivity by using a clever manipulation of equations
under the assumption of the mass-action kinetics. Here, by
using structural sensitivity analysis, we derive the same result
without assuming specific kinetics, which illustrates generality
and usefulness of our method. We remark that, although
this example is superficially similar to the one in Fig. 3,

FIG. 4. Signal transduction of MAPK/ERK pathway [14]. 1: Mek
→ MekPP; 2: MekPP → Mek; 3: MekPP + Erk → MekPP:Erk; 4:
MekPP:Erk → MekPP + Erk; 5: MekPP → MekPP + ErkP; 6: ErkP
+ PTP → ErkP:PTP; 7: ErkP:PTP → ErkP + PTP; 8: ErkP:PTP →
Erk + PTP. x and y denote xMekPP + xMekPP:Erk and xErkP + xErkP:PTP,
respectively.
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surprisingly, the result turns out to be more complex than
the previous example.

This system has three conserved quantities associated
with the total amounts of Erk, PTP, and Mek. We order the
chemicals as
{Mek,MekPP,Erk,MekPP : Erk,ErkP,PTP,ErkP : PTP},

(25)

and choose the basis of the cokernel space as

d1 = (0,0,1,1,1,0,1)T ,

d2 = (0,0,0,0,0,1,1)T , (26)

d3 = (1,1,0,1,0,0,0)T .

The A matrix is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1,Mek 0 0 0 0 0 0 0 0 0 −1
0 r2,MekPP 0 0 0 0 0 0 0 0 −1
0 r3,MekPP r3,Erk 0 0 0 0 −1 0 −1 0
0 0 0 r4,MekPP:Erk 0 0 0 0 0 −1 0
0 0 0 r5,MekPP:Erk 0 0 0 −1 0 0 0
0 0 0 0 r6,Erkp r6,PTP 0 −1 −1 0 0
0 0 0 0 0 0 r7,Erkp:PTP 0 −1 0 0
0 0 0 0 0 0 r8,Erkp:PTP −1 0 0 0
0 0 −1 −1 −1 0 −1 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0

−1 −1 0 −1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

The signs of responses are

k1 k2 k3 k4 k5 k6 k7 k8 l1 l2 l3
Mek − + − + + − + − − − +

MekPP + − − + + − + − − − +
Erk − + − + ± + − + + + −

MekPP : Erk + − + − − + − + + + +
Erkp + − + − + − + ± + − +
PTP − + − + − − + + − + −

Erkp : PTP + − + − + + − − + + +

r1 + + − + + − + − − − +
r2 + + − + + − + − − − +
r3 + − + + ± + − + + + +
r4 + − + + − + − + + + +
r5 + − + − + + − + + + +
r6 + − + − + + + ± + + +
r7 + − + − + + + − + + +
r8 + − + − + + − + + + +

. (28)

Note that this network has only one trivial buffering structure, i.e., the whole network. Accordingly, there are no vanishing entries
in (28).

Following [14], we focus on total active Mek and Erk concentrations,

x ≡ xMekPP + xMekPP:Erk, y ≡ xErkP + xErkP:PTP, (29)

and examine their responses to the perturbations of l1,l2, which correspond to the total amounts of Erk and PTP with any form.
In our method, these responses can be obtained by summing the associated rows in Eq. (28), which leads to

δl1x ∝ r3,Erkr6,ErkPr8,ErkP:PTPr2,MekPP,

δl1y ∝ r3,Erkr5,MekPP:Erk(r1,Mek + r2,MekPP)(r6,ErkP + r7,ErkP:PTP + r8,ErkP:PTP + r6,PTP),

δl2x ∝ r3,Erkr8,ErkP:PTPr2,MekPPr6,PTP,

δl2y ∝ −r6,PTPr8,ERkP:PTP(r2,MekPP(r3,Erk + r4,MekPP:Erk + r5,MekPP:Erk) + r1,Mek(r3,Erk + r3,MekPP + r4,MekPP:Erk + r5,MekPP:Erk)).

(30)
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FIG. 5. Central metabolism network of E. coli, consisting of
M = 28 metabolites and R = 48 reactions. (Adopted from [4]). See
Appendixes for the list of reactions.

Here we omit the common positive proportional constant,
(Det A)−1 > 0. We thus obtain the following qualitative
responses:

δl1x > 0, δl1y > 0, (31a)

δl2x > 0, δl2y < 0, (31b)

which agrees with the result obtained in [14]. The authors
of [14] called the result (31) “paradoxical results”: while
Eq. (31a) suggests that x activates y, Eq. (31b) suggests that x

inhibits y.
We emphasize that while the argument of [14] is based on

the mass-action type kinetics, we obtained the same conclusion
valid for general (monotonically increasing) flux functions.
Also, our systematic approach determines all responses si-
multaneously. We summarize the responses of x, y for all

perturbations:

k1 k2 k3 k4 k5 k6 k7 k8 l1 l2 l3
x + − + − − + − + + + +
y + − + − + − + − + − +.

(32)

VI. CHARACTERISTICS FOR ROBUSTNESS BASED
ON NETWORK STRUCTURES

In our previous study, we examined the carbon metabolism
pathway of E. coli [5,7] shown in Fig. 5, which is a major
part of the energy acquisition process. We found that the
network has 17 buffering structures shown in Fig. 6 (see also
the Appendixes for the list), and, in particular, that some of
buffering structures coincide with subnetworks associated with
biological functions such as the TCA cycle and the pentose
phosphate pathway. These observations suggest that biological
networks are selected in evolution and include many buffering
structures, which provide robustness to enzymatic perturba-
tions. In this section, in order to support this expectation, we
compare robustness property between the E. coli network and
artificial random networks.

First, we introduce network characteristics that quantify
robustness for reaction systems. One natural definition is the
number of buffering structures, NBS, which is more precisely
defined as the number of buffering structures consisting of
different sets of chemicals; we distinguish two buffering
structures if they have at least one different metabolite. Note
that we identify two buffering structures that have different
sets of reactions even if they have the same metabolite set.
Another one is the fraction of metabolites that exhibit zero
responses under a randomly chosen enzymatic perturbation
(kj∗ → kj∗ + δkj∗ ),

R ≡ 1

M × R

R,M∑
j∗=1,m=1
s.t.δj∗ xm=0

1. (33)

By definition 0 � R � 1. Networks with larger R and larger
NBS are more robust. We emphasize that R and NBS are purely
structural characteristics determined from network topology
alone.

In order to generate random networks, we randomly choose
p × R = 48p reactions of the E. coli network and reconnect
them to randomly chosen nodes of metabolites (see Fig. 7)
[15]. Here, p (0 < p � 1) is a fraction of rewired reactions.

FIG. 6. Seventeen buffering structures of E. coli network. Each box corresponds to each buffering structure. For any box, a union of
metabolites and reactions in the box and boxes below it gives a buffering structure. For example, {X5P,S7P,E4P,17,18,19,20,21,22} is a
buffering structure, and a union of {G3P,7} and {X5P,S7P,E4P,17,18,19,20,21,22} is another buffering structure.
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FIG. 7. Illustration of rewiring procedure. Here the reaction A →
B + C becomes C → A + B, and the reaction C → B becomes
A → C.

This is implemented by randomly choosing a column of
the M × R stoichiometry matrix ν, randomly reordering the
M components in the column, and repeating this procedure
48p times. Rewired networks are sometimes singular, i.e.,
det A = 0, which cannot admit steady state, and sometimes
unconnected, which is not suitable to compare with the
E. coli network. We discard such networks. In this way,
we constructed an ensemble of 3000 regular and connected
networks for each value of p.

For these ensembles, we examined the robustness, R and
NBS, and the mean distance D, which is one of the most widely
used network characteristics. Here, for a given network, the
distance between two metabolites is defined as the smallest
number of reactions that connects the two, and D is the average
value of the distances. More rigorously, D here is defined
for undirected networks where nodes represent metabolites
and edges between two metabolites are drawn if the two
metabolites are involved with the same reaction; for example,
the distances between substrates and products of a reaction are
defined as one.

The results are as follows. First, Fig. 8(a) is the distribution
of R and NBS for p = 2/48, 9/48, 1. The filled red circle
represents the E. coli network, RE. coli 
 0.57 and NBS|E. coli 

17. We can see a strong correlation between R and NBS. Thus
the robustness based on R and NBS agree with each other
statistically.

Secondly, Fig. 8(b) shows the distribution of R and
D of a network. The blue circle represents the E. coli

network, RE. coli 
 0.57 and DE. coli 
 2.45. We can see that
the distribution of R with fixed D is widely spread for any p.
This means that there are no significant correlations between
R and D.

Finally, Fig. 8(c) is the ensemble average of R and D. As
we randomize the E. coli network by increasing p from 0 to 1,
the robustness 〈R〉 and the mean distance 〈D〉 tend to decrease
monotonically. Here, 〈·〉 denotes the average over the network
ensemble with fixed p. We note that this tendency of 〈R〉
and 〈D〉 does not necessarily mean that there is a correlation
between R and D. In fact, we did not find such a correlation
in Fig. 8(b). We also confirmed these behaviors in a model like
the Watts-Strogatz model [16] (see Appendixes).

One of the most remarkable results in Fig. 8(a) is the peak of
R at p = 0, corresponding to the unrewired E. coli network.
This peak means that even a small fraction of rewiring (for
example, p = 2/48) lowers the robustness R drastically (from
RE. coli 
 0.57 to 〈R〉 
 0.37). The extraordinary robustness
of the E. coli network suggests that the special topology, which
is characterized by buffering structures, might be formed and
selected under evolutionary pressures on the robustness.

While the robustness 〈R〉 has a steep peak at p = 0, 〈D〉
changes smoothly around p = 0, as expected. In fact, other
network quantities such as centrality and degree distributions
also change smoothly around p = 0. The uncorrelated distri-
butions shown in Fig. 8(b) and the sharp peak of R at p = 0
imply that R and NBS are characteristics for robustness, which
cannot be captured by any conventional graph theoretical
quantities.

VII. CONCLUSIONS

In this paper, we generalized our previous formalism of
structural sensitivity analysis and the law of localization into
reaction systems with conserved quantities. Our generalized
method can be applied into any biochemical systems, including
signal transduction networks, metabolic systems, and protein
synthesis, if the systems admit steady states.

We applied our method into two signal transduction
networks with conserved quantities. While the authors in

FIG. 8. (a) Distribution of (R,NBS) of 200 sampled networks with p = 2/48, 9/48, and 1. The filled circle represents the E. coli network.
Pearson correlation coefficient (averaged over ensembles with 0 < p � 1) is 0.86. (b) The distribution of (R,D) of 200 sampled networks.
Pearson correlation coefficient is 0.32. (c) The averages of R and D over network ensemble with fixed p (0 < p � 1) are shown by circles
and triangles, respectively. The plots for p = 0 correspond to the (unrewired) E. coli network.
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[14] studied the second network by assuming mass-action
kinetics, we obtained the same conclusion as theirs without
assuming specific kinetics such as mass-action types and the
Michaelis-Menten kinetics. This illustrates how powerful and
general our method is.

Our structural approach is also practically useful in exper-
imental biology. In spite of the progress in biosciences, it is
difficult to experimentally determine kinetics of biochemical
reactions in living cells. Our method overcomes the difficulty
because we determine qualitative sensitivity (increased or
decreased or invariant) to perturbations only from network
structures. By making use of this advantage, we can testify
database information on networks systematically (see [7] for
more detailed discussions).

Finally, we investigated biological meanings of buffering
structures by comparing E. coli network with random net-
works. We introduced two network characteristics measuring
robustness of networks: the number of buffering structures
NBS and the fraction of zero responses to perturbations R.
Based on them, we measured robustness of the reactions
systems. We found that even a partial rewiring deteriorates the
robustness of the E. coli network drastically. E. coli network
has special features that cannot be captured by other indexes
than ours and realize extraordinarily robust compared with
random networks. Our result suggests that the topology of the
E. coli network might be selected under evolutionary pressures
on robustness.

The proposed quantities for robustness, NBS and R, are
network characteristics that are not correlated with conven-
tional network characteristics, such as mean distance or degree
distributions (see also Appendixes). We will study more
analytical aspects about the relation between robustness (NBS

and R) and network topology and hope to report on them in
the near future.
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APPENDIX A: DERIVATION OF EQ. (11)

As in many mathematical studies in metabolism like flux
balance analysis [11–13], we are focusing on steady state,
which is characterized by

0 =
R∑

j=1

νmj rj (kj ,x̄). (A1)

Here, x̄m represents the concentration of metabolite m at steady
state, which generally depends on (a subset of) the parameters
{kj } and initial condition specified by {la}. We determine the
sensitivity of each concentration and flux to the perturbations
kj∗ → kj∗ + δkj∗ and la → la + δla .

First, we determine the responses to perturbations of rate
parameters. We choose one reaction j = j ∗ in the system and
perturb the parameter as kj∗ → kj∗ + δkj∗ . The system goes
to a new steady state, characterized by

0 =
R∑

j=1

νmj rj (kj + δjj∗δkj∗ ,x̄ + δj∗x). (A2)

Here, δjj∗ is the Kronecker delta symbol. Below we determine
the concentration sensitivity δj∗xm and the flux sensitivity
δj∗rj ≡ rj (kj + δjj∗δkj∗ ,x̄ + δj∗x) − rj (kj ,x̄).

The above two equations imply that the flux change also
satisfies

∑
j νmj δj∗rj = 0. Therefore, the vector δj∗r ∈ RR can

be expanded in terms of a basis {cα}α=1,...,N of the kernel of ν,
where cα ∈ RR and N ≡ dim kerν,

δj∗rj =
N∑

α=1

δj∗μα cα
j . (A3)

Here, cα
j is the j th component of the kernel vector cα . Thus

the problem of determining the fluxes is equivalent to that of
determining the coefficients δj∗μα of the kernel vectors.

As we commented in the main text, for the purpose
of determining qualitative responses, we can assume that
the perturbations are small. In the limit of infinitesimal
perturbations δkj∗ , Taylor expansion of δj∗rj yields

δj∗rj = ∂rj

∂kj

∣∣∣∣
x=x̄

δkj∗ δj,j∗ +
M∑

m=1

rjm δj∗xm, (A4)

where we abbreviate rjm ≡ ∂rj

∂xm
|x=x̄ . Comparing Eqs. (A3) and

(A4), we obtain

M∑
m=1

rjm δj∗xm −
N∑

α=1

cα
j δj∗μα = − ∂rj

∂kj

∣∣∣∣
x=x̄

δkj∗ δj,j∗ . (A5)

When the cokernel vectors of ν exist, i.e., dim coker ν ≡ Nc >

0, Eq. (A5) is not enough to determine the sensitivity, and we
need additional constraints on the concentration changes. Let
the constant vectors {d a}a=1,...,Nc

be a basis of the cokernel
space, where da ∈ RR , and Nc is the dimension of the cokernel
space. Then the linear combinations

la ≡
M∑

m=1

(da)mxm(t) (a = 1, . . . ,Nc), (A6)

where (da)m denotes the mth component of da , are conserved
in the dynamics of Eq. (1). This implies that the perturbed
steady state depends on {la}.

In order to make the problem of the sensitivity well defined,
we assume the perturbed system starts with the same initial
condition as the unperturbed system. Then the concentration
changes need to satisfy

M∑
m=1

(da)m δj∗xm = 0 (A7)

for all a = 1, . . . ,Nc.
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Equations (A5) and (A7) determine the response to the
perturbation j ∗. In matrix notation, these can be written as

A
(

δj∗ x
δj∗μ

)M

N
= −

( ej∗

0

)R

Nc

, (A8)

where the matrix A is defined in Eq. (10), and ej∗ ≡
(0, . . . ,

∂rj∗

∂kj∗

∣∣∣∣
x=x̄

δkj∗

︸ ︷︷ ︸
j∗th

, . . . ,0)T ∈ RR .

We note that the matrix A is square; namely the identity
M + N = R + Nc holds. This follows from the well-known
identity for the Fredholm index, dim ker ν − dim coker ν =
R − M for any M × R matrix ν : RR → RM .

Next, we discuss responses to perturbation of conserved
quantities, or initial concentrations. We choose a particular
conserved quantity, a = a∗, and consider the perturbation
la∗ → la∗ + δla∗ . Equations (A3), (A4), (A5), and (A7) are
replaced by

δa∗rj =
N∑

α=1

δa∗μα cα
j , (A9)

δa∗rj =
M∑

m=1

rjm δa∗xm, (A10)

M∑
m=1

rjm δa∗xm −
N∑

α=1

cα
j δa∗μα = 0, (A11)

and
M∑

m=1

(da)m δa∗xm = δla∗δa,a∗. (A12)

From Eqs. (A11) and (A12), we obtain the matrix equation,

A
(

δa∗ x
δa∗μ

) M

 N
= −

(
0

ea∗

)R

Nc

, (A13)

where A is the same as that in Eq. (10), and the column vector
ea∗ is defined as ea∗ ≡ (0, . . . , δla∗︸︷︷︸

a∗th

, . . . ,0)T ∈ RNc .

If we write the results of the perturbations for j ∗ = 1, . . . ,R

and a∗ = 1, . . . ,Nc, given by Eqs. (A8) and (A13), we obtain
Eq. (11) in the main text.

APPENDIX B: PROOF OF THE LAW OF LOCALIZATION

First, we write the precise definitions of N (r) and Nc(m)
appearing in Eq. (18). For a chemical subset m and a reaction
subset r, we can respectively associate the following vector
spaces V (r) and Vc(m):

V (r) ≡ span {v| v ∈ ker ν,P rv = v},
(B1)

Vc(m) ≡ span {P mu| u ∈ coker ν}.
Here, P r is an R × R projection matrix onto the space
associated with r defined as

P r
j,j ′ = δj,j ′ if j,j ′ ∈ r, otherwise P r

j,j ′ = 0.

In other words, V (r) are vectors v ∈ RR with component
support in r. Similarly, P m is an M × M projection matrix

on the space associated with m. Then, we define N (r) and
Nc(m) as the dimensions of these vector spaces:

N (r) ≡ dim V (r), Nc(m) ≡ dim Vc(m). (B2)

The intuitive meaning for this definition is explained in
the main text. Note that N (r) = dim ker(νP r) − R + |r| and
Nc(m) = dim coker ν − dim coker(P m̄ν) + |m|, where P m̄ ≡
1̂M×M − P m is a projection matrix on the space associated
with the complementary chemicals m̄ of m.

Now we prove the theorem. Suppose that � = (m,r) is a
buffering structure, namely an output-complete subnetwork
satisfying λ(�) = 0. As discussed below, by choosing appro-
priate bases of the kernel and the cokernel of ν and arranging
the orders of the column and row indices of the matrix A, we
can always rewrite A into the form

A =
|r|+Nc(m)

|m|+N(r)

∗
square

∗

0 ∗
. (B3)

Since we are assuming Det A �= 0, the upper-left block in
Eq. (B3) is generally vertically long or square; i.e., λ(�) � 0.
The condition λ(�) = 0 means that it is square.

The structure of block matrices in Eq. (B3) can be obtained
by collecting the indices associated with � = (m,r) into
the upper-left corner: the column indices at the upper left
block consist of the chemicals in m followed by the basis
vectors of the kernel space V (r) associated with r. The
row indices consist of the reactions in r followed by the
basis vectors of the cokernel space Vc(m) associated with
m. Thus, from this construction, the upper-left block has
the size (|r| + Nc(m)) × (|m| + N (r)). We need to prove that
the lower-left block vanishes completely. First, all rjm with
j /∈ r and m ∈ m, which would appear in the lower-left block,
vanish by the assumption that the subnetwork � is output
complete; reaction rates rj (kj ,x) with j /∈ r do not depend
on the concentration of chemicals in m. It remains to show
that cα ∈ V (r) and da ∈ Vc(m) do not have nonzero entries
in the lower-left block. But this directly follows from their
definitions, Eq. (B1). This completes the proof of the structure
given in Eq. (B3).

After arranging the matrix A as in Eq. (B3), it is easy to
prove the law of localization. We first prove the theorem for
the reaction rate perturbations, i.e., δj∗xm = 0 and δj∗rj ′ = 0
for j ∗ ∈ r �� j ′, and m /∈ m. As explained in the body of
the paper, the concentration change δj∗xm is proportional
to (A−1)mj∗ ∝ Det Âj∗,m, where Âj∗,m is the minor matrix
obtained by removing reaction row j ∗ and chemical column
m from the matrix A. Noting that j ∗ ∈ r belongs to the
raw indices of the upper part of A, and m /∈ m belongs to
the column indices of the right part of A, Det Âj∗,m = 0
holds for j ∗ ∈ r and m /∈ m because the nonzero block at
the upper left of the minor Âj∗,m, which was originally
square in Eq. (B3), now becomes horizontally long. This
proves δj∗xm = 0 for j ∗ ∈ r and m /∈ m. It remains to show
δj∗rj ′ = 0 for all j ∗ ∈ r �� j ′. Noting rj ′ depends on the outside

022322-10



SENSITIVITY AND NETWORK TOPOLOGY IN CHEMICAL . . . PHYSICAL REVIEW E 96, 022322 (2017)

FIG. 9. Reaction networks and sensitivities in Examples 1 and 2.
Red triangle indicates overexpressed reactions. The signs (increase
or decrease) of responses are represented by + or − for chemicals
and solid or dashed red lines for fluxes.

chemicals xm with m /∈ m because of the output completeness
of � = (m,r), Eq. (A4) becomes δj∗rj ′ = ∑

m/∈m

∂rj ′
∂xm

δj∗xm.
Then, the chemical insensitivity δj∗xm = 0 for m �∈ m also
means the flux insensitivity δj∗rj ′ = 0.

Similarly, for the perturbations of conserved quantities,
we can prove the chemical insensitivity, δa∗xm = 0 for all
m /∈ � and the flux insensitivity δa∗rj ′ = 0 for all j ′ /∈ r,
under any perturbation of conserved quantities in �, that
is, any perturbation of la∗ = da∗ · x for da∗ ∈ Vc(m). From
(A13), δa∗xm is proportional to (A−1)ma∗ ∝ Det Âa∗,m, the
determinant of the minor matrix obtained by removing the row
of the a∗th conserved quantity. Noting that m /∈ � belongs to
the column indices of the right part of A and the conserved
quantity la∗ associated with da∗ ∈ Vc(m) belongs to the row
indices of the upper part of A, we can show Det Âa∗,m = 0 and
δa∗xm = 0, which leads to the flux insensitivity δa∗rj ′ = 0, as
in the above argument for the reaction rate perturbations. This
proves the law of localization. �

APPENDIX C: EXAMPLE NETWORK

We illustrate the computation of the sensitivity analysis
for the network consisting of R = 6 reactions and M = 4
chemicals, shown in Fig. 9.

The stoichiometric matrix ν is

ν =

⎛
⎜⎝

1 −1 0 0 1 0
0 1 −1 0 0 0
0 0 1 −1 0 −1
0 0 0 1 −1 0

⎞
⎟⎠. (C1)

Noting that Nc = 0, the matrices A and S are

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0
r2A 0 0 0 −1 −1
0 r3B 0 0 −1 −1
0 0 r4C 0 0 −1
0 0 0 r5D 0 −1
0 0 r6C 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠, (C2)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r4C−r6C

r2Ar6C
r−1

2A 0 −r−1
2A 0 r4C

r2Ar6C

−r4C−r6C

r3Br6C
0 r−1

3B −r−1
3B 0 r4C

r3Br6C

− 1
r6C

0 0 0 0 r−1
6C

− r4C

r5Dr6C
0 0 −r−1

5D r−1
5D

r4C

r5Dr6C

−1 0 0 0 0 0

− r4C

r6C
0 0 −1 0 r4C

r6C
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C3)

Then, from Eqs. (11) and (13), the responses of chemical
concentrations and fluxes are

δj∗xm =

⎛
⎜⎜⎜⎜⎝

r4C+r6C

r2Ar6C

−1
r2A

0 1
r2A

0 −r4C

r2Ar6C

r4C+r6C

r3Br6C
0 −1

r3B

1
r3B

0 −r4C

r3Br6C

1
r6C

0 0 0 0 1
−r6C

r4C

r5Dr6C
0 0 1

r5D
− 1

r5D

−r4C

r5Dr6C

⎞
⎟⎟⎟⎟⎠

mj∗

(C4)

and

δj∗rj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
r4C+r6C

r6C
0 0 1 0 − r4C

r6C

r4C+r6C

r6C
0 0 1 0 − r4C

r6C

r4C

r6C
0 0 1 0 − r4C

r6C

r4C

r6C
0 0 1 0 − r4C

r6C

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

jj∗

. (C5)

We can see that only the perturbation to the input rate, corre-
sponding to the first column in Eq. (C3), affects all chemicals
and fluxes. The perturbations to reactions 2,3,5 only decrease
the concentrations of the substrates A,B,D, respectively. The
perturbation of reaction 4 decreases the concentrations D,A,B

along the cycle downward of the perturbation (see Fig. 9, and
the fourth column of S). The perturbation of reaction 6 does
not change the further downstream but changes A,B,C,D in
the cycle.

The law of localization can be applied as follows.
Some of the buffering structures are shown in Fig. 10.
The smallest buffering structures are �1 = ({A},{2}), �2 =
({B},{3}), �3 = ({D},{5}), which all sassily λ(�i) = −1 +
1 − 0 = 0. In addition, the network has two larger ones,
�4 = ({A,B,D},{2,3,4,5}) [with λ(�4) = −3 + 4 − 1 = 0],
�5 = ({A,B,C,D},{2,3,4,5,6}) [with λ(�5) = −4 + 5 − 1 =
0]. �4 is the minimum buffering structure including reaction 4.

FIG. 10. Boxes represent the buffering structures, �2, �4, and �5.
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Then, the law of localization predicts that the nonzero response
to perturbation of reaction 4 should be limited within �4, which
is observed in the fourth column in Eq. (C3). Similarly, the
response to perturbation of reaction 6 is explained by �5.

We illustrate the law of localization by the example network
shown in FIG. 9. Indeed, this system satisfies coker ν = {0}.
For m = {B}, r = {4}, the subnetwork � = (m,r) is output-
complete and the index (17) is λ = 1 − 1 − 0 = 0. Thus, the
perturbation of reaction 4 cannot influence the outside of �,
namely, any chemicals and reactions except B and 4. For m =
{B,C}, we can construct a output-complete subnetwork by
choosing r = {4,5} or r = {3,4,5}.

For the former choice, the index becomes λ = 2 − 2 −
0 = 0. For the latter choice, we have one cycle, alias a
stoichiometric cycle, consisting of the edges 3,4,5, and there-
fore the index again vanishes; λ = 3 − 2 − 1 = 0. For � =
({A,B,C},{2,3,4,5}), the index becomes λ = 4 − 3 − 1 = 0.
Finally, the whole network (m,r) = ({A,B,C},{1,2,3,4,5}) is
necessarily response localized because the matrix A is square.
These buffering structures � are all consistent with the explicit
responses (C4). The ranges of flux influences shown in FIG. 2
are understood by the above series of possible localized �.
Note that the sensitivity behavior may change if the whole
network in FIG. 2 is embedded in a larger network, because
the stoichiometric cycles of ν and output-completeness may
depend on the larger network.

An important remark on Eq. (17) is that all three terms of
the right-hand side can be calculated from information on ν

restricted to �. This property is very useful since it allows us
to determine the buffering structures from local information of
the network on � alone.

APPENDIX D: E COLI CENTRAL METABOLISM

1. List of reactions

1: Glucose + PEP → G6P + PYR.
2: G6P ← F6P.
3: F6P → G6P.
4: F6P → F1,6P.
5: F1,6P → G3P + DHAP.
6: DHAP → G3P.
7: G3P → 3PG.
8: 3PG → PEP.
9: PEP → 3PG.
10: PEP → PYR.
11: PYR → PEP.
12: PYR → AcCoA + CO2.
13: G6P → 6PG.
14: 6PG → Ru5P + CO2.
15: Ru5P → X5P.
16: Ru5P → R5P.
17: X5P + R5P → G3P + S7P.
18: G3P + S7P → X5P + R5P.
19: G3P + S7P → F6P + E4P.
20: F6P + E4P → G3P + S7P.
21: X5P + E4P → F6P + G3P.
22: F6P + G3P → X5P + E4P.
23: AcCoA + → CIT.
24: CIT → ICT.

FIG. 11. Distribution of the rewired networks when p = 4.

25: ICT → 2-KG + CO2.
26: 2-KG → SUC + CO2.
27: SUC → FUM.
28: FUM → MAL.
29: MAL → OAA.
30: OAA → MAL.
31: PEP + CO2 → OAA.
32: OAA → PEP + CO2.
33: MAL → PYR + CO2.
34: ICT → SUC + Glyoxylate.
35: Glyoxylate + AcCoA → MAL.
36: 6PG → G3P + PYR.
37: AcCoA → Acetate.
38: PYR → Lactate.
39: AcCoA → Ethanol.
40: R5P → (output).
41: OAA → (output).
42: CO2 → (output).
43: (input) → Glucose.
44: Acetate → (output).
45: Lactate → (output).
46: Ethanol → (output).

2. List of buffering structures

The E. coli network exhibits the following 17 different
buffering structures �i = (mi ,ri) (i = 1, . . . ,17):

�1 = ({Glucose},{1}),
�2 = ({Glucose,PEP,G6P,F6P,F1,6P,DHAP,G3P,3PG,

PYR,6PG,Ru5P,X5P,R5P,S7P,E4P,AcCoA,OAA,CIT,

FIG. 12. (a) Watts-Strogatz-like reaction system with M = 12
and p = 0. The directions of the internal reactions are randomly
chosen. (b) An example of randomly rewired networks, where the
internal edges are randomly rewired with probability p. The reactions
along the circle are fixed.
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FIG. 13. (a) Distribution of random networks in R − NBS plane. Pearson correlation coefficient (averaged over network ensembles labeled
by p) is 0.77. (b) The distribution of random networks in R − D plane. Pearson correlation coefficient (averaged over network ensembles
labeled by p) is 0.36.

ICT,2-KG,SUC,FUM,MAL,CO2,Glyoxylate,Acetate,Lac-
tate,Ethanol}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,

17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,

35,36,37,38,39,40,41,42,44,45,46}),
�3 = ({F1,6P},{5}),
�4 = ({DHAP},{6}),
�5 = ({G3P,X5P,S7P,E4P},{7,17,18,19,20,21,22}),
�6 = ({3PG},{8}),
�7 = ({Glucose,PEP,3PG,PYR,AcCoA,OAA,CIT,ICT,

2-KG,SUC,FUM,MAL,CO2,Glyoxylate,Acetate,Lactate,
Ethanol},{1,8,9,10,11,12,23,24,25,26,27,28,29,30,31,32,

33,34,35,37,38,39,41,42,44,45,46}),
�8 = ({X5P,S7P,E4P},{17,18,19,20,21}),
�9 = ({CIT},{24}),
�10 = ({2-KG},{26}),
�11 = ({SUC},{27}),
�12 = ({FUM},{28}),
�13 = ({Glyoxylate},{35}),
�14 = ({X5P,R5P,S7P,E4P},{17,18,19,20,21,40}),
�15 = ({Acetate},{44}),
�16 = ({Lactate},{45}),
�17 = ({Ethanol},{46}).

FIG. 14. Averages of R and D over the network ensemble with
fixed p (0 � p � 1).

APPENDIX E: DEGREES AND THE VALUES
OF ROBUSTNESS IN REWIRED E. COLI NETWORKS

We define the degree of the mth metabolite as the number
of reactions with which the mth metabolite participates is
involved as a substrate or product. Here, we computed the
variance of degrees and R for each rewired network, and
investigated whether there exist any correlation between these
two quantities. We note that the average of degrees in a network
are the same for all rewired networks because the rewiring
procedure preserves the total number of reactions. Figure 11
shows the distributions of the variance of degree and R for
556 rewired networks when p = 4. We did not observe any
strong correlation between them, as we mentioned in the main
text.

APPENDIX F: WATTS-STROGATZ-LIKE MODEL

Here, we consider a model of random reaction networks
similar to the Watts-Strogatz model [16]. (See Fig. 12.) The
model consists of M chemicals and reactions along a circular
clockwise pathway and randomly directed reactions inside
the circle. The end points of internal reactions are randomly
rewired from the next neighbors to other chemicals with
probability p. There is an inflow and an outflow on the circle.
In fact, R and NBS are independent of the positions of the
inflow and the outflow. We note that, unlike the original
Watts-Strogatz model, the reactions along the circle are not
rewired, which guarantees the existence of the inverse of A in
Eq. (11).

We generated 1000 random networks for each ensemble
labeled by p. Two figures in Fig. 13 show the distributions of
R,NBS and of R,D. We can see that while NBS and R are
all positively correlated for any value of p, R and D are not
correlated significantly.

Figure 14 shows the result of 〈R〉 and 〈D〉 for various p. As
we randomize the network by increasing p, the mean distance
〈D〉 and 〈R〉 decrease monotonically. In contrast to the E. coli
network, there is no strong peak of the robustness R around
p = 0 in the Watts-Strogatz-like model.
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