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We use the information present in a bipartite network to detect cores of communities of each set of the bipartite
system. Cores of communities are found by investigating statistically validated projected networks obtained using
information present in the bipartite network. Cores of communities are highly informative and robust with respect
to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores
by investigating an artificial benchmark network, the coauthorship network, and the actor-movie network. The
accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of
the adjusted Rand index and the adjusted Wallace index, respectively. The detection of cores is highly precise,
although the accuracy of the methodology can be limited in some cases.
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I. INTRODUCTION

Community detection in networks [1,2] (also called net-
work clustering) is one of the major research areas in network
science [3,4]. Community detection is performed with a variety
of methods because there are no universal protocols on basic
aspects of the problem [1]. It is therefore important to evaluate
the robustness and reproducibility of the results obtained with
community detection algorithms.

Some studies have considered the statistical reliability of
community detection in networks [5–8]. Other studies have
investigated the multiscale modular organization of complex
networks [9] by introducing a dynamics-based stability mea-
sure [10]. This is a measure able to detect structural scales
that are present in the investigated network. The presence of
network regions whose detection is robust and highly stable
plays a crucial role when network changes are the object of
scientific investigation [11], as is often the case when the time
evolution of a complex network is investigated over many
years.

It is therefore of interest to assess which part of the partitions
obtained with a community detection algorithm is more
robust with respect to the intrinsic limitations of the chosen
methodology and with respect to the potential unknowns and
errors present in real data. In the present paper, we address
as “cores of communities” those nodes of subnetworks that
turn out to be detected with high statistical precision when an
artificial benchmark network is investigated.

Community detection is performed in several types of
networks. In the most common case, all nodes of the network
are of the same type and are connected by binary or weighted
links. Another widely investigated type of network is the
bipartite network. Bipartite networks are networks in which
nodes can be divided into two sets, say A and B, and links
connect nodes of the different sets only. In the investigation of
bipartite networks, as, for example, an actor-movie network or
an author–scientific-paper network, the customary approach
is to project the bipartite network to obtain a network of
nodes of the same type (for example, a network of movies
in the case of the actor-movie network). Community detection
is usually performed in projected networks, although it can

also be performed in bipartite networks directly [12,13].
The information present in a bipartite network is richer
than the information transferred to the two corresponding
projected networks. Therefore, the investigation of properties
of community detection in projected networks originating from
a bipartite network can be informative about the reliability
and robustness of the partitions obtained. We will exploit
this property of bipartite networks to assess the statistical
precision achieved in detecting partitions of nodes of an
artificial benchmark network and of two widely investigated
real networks.

Specifically, we investigate (i) the degree of informativeness
and (ii) the robustness to incompleteness and accuracy of
the links of the bipartite network, of partitions obtained by
performing community detection in projected networks ob-
tained from bipartite networks. We show that the investigation
of statistically validated network [14] is useful to reveal
subsets of nodes that define cores of communities of projected
networks with a high degree of precision. The cores of
communities are statistically well-defined, highly informative,
and robust to incompleteness and errors of the bipartite
system.

In the present paper, we use the so-called Louvain algorithm
[15] as a community detection algorithm. We choose this
algorithm because it is widely popular and it is highly
efficient in clustering large networks. The algorithm is based
on modularity optimization. Modularity is a quality function
introduced in Ref. [16]. Community detection performed
with modularity optimization is relatively simple, practical,
and efficient, but it also presents some limitations. In fact,
it is well known that modularity optimization presents a
resolution limit [17]. Moreover, the approaches of modularity
optimization adopting suitable multiresolution versions of it
[18,19] are in most cases not able to fully solve the problem
[20]. In practical cases, modularity optimization can detect
partitions characterized by very close modularity values, and
these partitions can disagree in the composition of the largest
modules and in the distribution of module size [21]. Several
of these partitions associated with degenerate solutions can be
poorly correlated [8].
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Although the results obtained in this paper are related to
a community detection algorithm characterized by specific
strength and limitations, we believe that they are of general
value. In fact, our main result is that it is possible to detect
cores of communities with a high level of statistical precision
by performing community detection in statistically validated
projected networks obtained starting from a bipartite network.
The specific algorithm of community detection plays a minor
role in the results obtained. In fact, when our approach fails
to detect the cores, this is not due to the specific community
detection algorithm or to a lack of statistical precision, but
rather to a lack of statistical accuracy in the selection of the
statistically validated projected network.

The paper is organized as follows. In Sec. II we briefly
describe the community detection procedure and we describe
the generation of an artificial benchmark network. Section III
discusses the concept of a statistically validated network. In
Sec. IV we present the two main indicators used to compare
partitions. Section V presents the results obtained with an
artificial benchmark network, while Sec. VI presents the results
obtained with two real networks. Section VII concludes the
paper.

II. ARTIFICIAL BENCHMARK NETWORK

In the present study, we focus on the community detection
of a weighted projected network obtained from a bipartite
network. We consider a community detection algorithm
based on the maximization of a modularity quality function.
Modularity [16,22] is defined as

Q = 1

2m

∑
ij

[
Aij − wiwj

2m

]
δ(ci,cj ), (1)

where Aij is the weighted adjacency matrix, wi = ∑
j Aij is

the strength of node i, 2m = ∑
i,j Aij , and ci indicates the

membership of community i. The weights of the projected
networks that we are using in the present study are sometimes
called simple weights. For a pair of nodes i and j of set A of a
bipartite network, they are defined as the number of common
neighbors of set B. The characteristics of the most appropriate
null model to be used in the modularity maximization of the
weighted projected network have been discussed in [23]. We
have verified that the correction proposed in [23] is not crucial
in our investigations, and therefore, for the sake of simplicity,
we are using in the present paper the null model originally
introduced for unipartite networks.

We first illustrate our approach by considering an artificial
benchmark network. Specifically, we generate a bipartite
network with a well-defined community structure as follows.
Let q be an integer defining the number of communities
present in the artificial benchmark, and let {sA

1 , . . . , sA
q } and

{sB
1 , . . . , sB

q } be partitions of sets A and B, respectively. In the
present simulations, the q communities are all with the same
number of nodes A (SA) and B (SB). Sets A and B have qSA

and qSB nodes, respectively [see panel (a) of Fig. 1].
We want to investigate the effect of missing or misclassified

links in community detection. We therefore simulate artificial
benchmark networks affected by missing or misclassified links
to various degrees. Specifically, for each bipartite clique of

(a)

(b)

(c)

FIG. 1. (a) Bipartite artificial benchmark network obtained with
q = 5, SA = 5, SB = 16, and pc = 1. Nodes in the bottom (top) row
belongs to set A (B). (b) Network projection for the nodes of set A of
the artificial benchmark of panel (a). (c) Bipartite artificial benchmark
with q = 5, SA = 5, SB = 16, pc = 1, and pr = 0.2.

the network, our artificial benchmark network is obtained by
connecting nodes of set A to nodes of set B with probability
pc, i.e., with a given probability of coverage of links ranging
from 0 to 1. The parameter pc therefore controls the degree
of completeness of links present in the bipartite network.
With this choice, the parameter pc also controls the density
of the links of the bipartite network. This first procedure of the
benchmark generation leads to q disjoint bipartite components
of the bipartite network [see panels (a) and (b) of Fig. 1,
where we show an example of the artificial benchmark network
generated with q = 5, SA = 5, SB = 16, and pc = 1].

With the aim of modeling possible sources of randomness
or errors present in datasets describing a real system, a second
step in the generation of the artificial benchmark network is
to randomize the bipartite network by using the following
procedure. Let us call pr the probability that a link is misplaced
due to some randomness or error. For each node i of set
A with ki links, prki links are on average selected and
randomly linked to nodes of set B avoiding multiple links. The
probability pr is therefore quantifying the uncertainty added
to the generated artificial benchmark network. In the limit case
when pr = 0, one gets back a network without errors. In the
opposite limit of pr = 1, one obtains a completely random
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bipartite network that has no relationship with the underlying
community structure. In panel (c) of Fig. 1 we show an artificial
benchmark network characterized by q = 5, SA = 5, SB = 16,
pc = 1, and pr = 0.2.

III. STATISTICALLY VALIDATED NETWORKS

Several studies have recently selected a subset of links
of a network on the basis of a statistical test considering a
well-defined null hypothesis [14,24–27]. These subsets have
been called statistically validated networks (SVNs) [14]. In this
study, we filter the projected networks by using the approach of
statistically validated networks introduced in [14], and we use
the filtered networks to select cores of communities present in
the investigated network. Specifically, we perform a statistical
test for each link of a projected network. A link between
node i and node j is included in the projected statistically
validated network when we reject a statistical test assuming a
null hypothesis of random linking between node i and node
j having a degree ki and kj in the original bipartite network,
respectively. Specifically, the null hypothesis is rejected if the
weight of the link in the projected network, i.e., the number
of common neighbors of nodes i and j of set A in set B, is
higher and not statistically compatible with the expected value
kikj /NB , where ki and kj are the degree of nodes i and j in
the bipartite network and NB is the number of nodes of set B.

By mapping this problem into an urn problem, it is
possible to write down the probability of observing x common
neighbors of nodes i and j in set B under the null hypothesis
of random connection, preserving the heterogeneity of the
degree of nodes of set A. The probability of observing x

common neighbors between nodes i and j is given by the
hypergeometric distribution

H (x|NB,ki,kj ) =
(
ki

x

)(
NB−ki

kj −x

)
(
NB

kj

) . (2)

Starting from this probability, it is possible to perform a one-
sided statistical test and assign a p-value that determines the
presence of a statistically validated link between a pair of nodes
i,j having kij neighbors or more as

pi,j = 1 −
kij −1∑
x=0

H (x|NB,ki,kj ). (3)

By performing the statistical test on all pairs of nodes of
the projected network, we are doing a multiple hypothesis
test comparison. Multiple hypothesis test comparisons need
a multiple hypothesis test correction to control the level
of false positives. The most restrictive multiple hypothesis
test correction is the Bonferroni correction [28], performed
by setting the statistical threshold as αB = α/Nt = 0.01/Nt ,
where α is the chosen univariate threshold (in our case 0.01),
and Nt = NA(NA − 1)/2, where NA is the number of nodes
of set A.

The Bonferroni correction minimizes the number of false
positives, but often it does not guarantee sufficient accuracy
(usually it provides a large number of false negative). The
procedure controlling the false discovery rate (FDR) [29] re-
duces the number of false negatives by controlling the expected

proportion of rejected null hypotheses without significantly
expanding the number of false positives. The control of the
FDR is realized as follows: p values from all the Nt tests
are first arranged in increasing order (p1 < p2 < · · · < pk <

· · · < pNt
). Starting from the highest p value, one controls

the inequality pi � iαB . If this inequality is first verified for a
value k∗, all tests characterized by k � k∗ are rejected. In the
present study, we use both the Bonferroni correction and the
FDR correction.

IV. COMPARING DIFFERENT PARTITIONS

In the following sections, we compare pairs of partitions
of linked nodes of a projected network. We use for our
comparison two widely used indicators. The first is the adjusted
Rand index, and the second is an adjusted version of a
Wallace index. In other words, the comparison is done by
considering adjusted versions of the accuracy and precision of
the detection of pairs of nodes in a given partition compared
with a reference partition. In our comparison, the number of
true positive pairs S11 is the number of pairs of nodes being in
the same community both in the reference partition and in the
considered partition. The number of false positive pairs S01 is
the number of pairs of nodes being in different communities
in the reference partition and in the same community in the
considered partition. The number of true negative pairs is S00.
True negative pairs are those pairs of nodes in which neither
node belongs to the same community both in the reference
partition and in the considered partition. Lastly, the number of
false negative pairs S10 is the number of pairs of nodes being in
the same community in the reference partition and in different
communities in the considered partition.

The Rand index [30] is essentially the accuracy of the pair
classification, and it is defined as

R = S11 + S00

S00 + S01 + S10 + S11
. (4)

The Rand index varies between 0 (absence of any accuracy in
the considered partition) and 1 (total accuracy in the partition-
ing). However, also in the presence of random partitioning, a
certain degree of accuracy can be obtained by chance. To take
into account this possibility, an adjusted version of the Rand
index has been introduced [31]. The adjusted Rand index is
defined as

Radj = S11 + S00 − E[S11 + S00]

S00 + S01 + S10 + S11 − E[S11 + S00]
, (5)

where E[S11 + S00] is the expected value of the true pair
classifications estimated between a random partition and the
reference partition. For a random partition compared with
another partition, the value of Radj is on average close to 0.
Negative values of the index describe cases in which the
membership of the two partitions is more different than in
a random case.

By considering a set of N elements and two par-
titions of these elements X = {X1,X2, . . . ,Xr} and Y =
{Y1,Y2, . . . ,Ys}, and by defining nij as the number of elements
in common between partitions Xi and Yj , Radj can also be
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written as

Radj =
∑

i,j

(
nij

2

) − [ ∑
i

(
ai

2

) ∑
j

(
bj

2

)]/(
N

2

)
1
2

[ ∑
i

(
ai

2

) + ∑
j

(
bj

2

)] − [∑
i

(
ai

2

)∑
j

(
bj

2

)]/(
N

2

) ,

(6)

where ai = ∑s
j nij and bj = ∑r

i nij .
When two memberships are compared pairwise, the pre-

cision of the classification is usually addressed as one of the
Wallace indices [32,33]. The Wallace index quantifying the
precision of the pairwise classification is defined as

W = S11

S11 + S01
. (7)

Also for the case of the Wallace index, one can consider an
adjusted version of it. Hereafter, we provide the definition of an
adjusted version of the Wallace index that we call the adjusted
Wallace index,

Wadj = S11 − E[S11]

S11 + S01 − E[S11]
, (8)

where

E[S11] = (S11 + S01)(S11 + S10)

S00 + S01 + S10 + S11
. (9)

It is worth noting that Wadj varies between −∞ and 1. A
high value of Wadj indicates high precision in selecting pairs
of nodes that belong to the same community as defined in the
reference partition. In Fig. 2 we provide an illustrative example
of the estimation of the index. The reference partition is shown
by grouping the nodes in different boxes. Specifically, a system
of 116 nodes has four communities of different size (64, 24, 16,
and 12 in the example). In the figure, the colors and shapes of
nodes indicate the membership of the considered partition to be
compared with the reference one. The considered partition has
eight communities, indicated by different symbols of different
colors. In the top panel of Fig. 2, communities of the considered
partition (labeled with symbols of different colors) have pairs
of nodes that are always contained in communities of the
reference partition (labeled with boxes), and therefore Wadj

is equal to 1. In the middle panel, the membership of pairs of
nodes of communities (symbols and colors) of the considered
partition is only partially contained in communities of the
reference partition (boxes). For example, the red circle nodes
are primarily in the bottom left box, but two of them are with
the largest and the second largest community in the reference
partition, respectively. In this second example, Wadj is equal
to 0.88, indicating a high but not perfect precision of the
membership of pairs of nodes in the considered partition. In the
bottom panel, the considered partition (symbols and colors) is
quite different from the reference partition (boxes), and almost
all boxes contain nodes of all colors. In this last case, Wadj is
close to 0 (Wadj = 0.03), i.e., the value of the adjusted Wallace
index is close to the one expected under a random distribution
of nodes in the considered partition (symbols and colors).

V. RESULTS ON AN ARTIFICIAL BENCHMARK

We investigate the artificial network benchmark described
in Sec. II by performing community detection on a projected

FIG. 2. Three examples of a comparison of a reference partition
(membership of nodes indicated by their position in different boxes)
with a considered partition (membership of nodes indicated by
different colors and shape). In the example, a system of 116 nodes
has four communities of different size in the reference partition (see
four boxes with 64, 24, 16, and 12 nodes) and eight communities
of different size in the considered partition. This second partition is
indicated by the colors and shape of nodes. We have groups of light
gray stars (32 nodes), maroon up-triangles (18), orange squares (16),
purple down-triangles (16), red circles (16), yellow diamonds (9),
green left-triangles (6), and blue crosses (3). In the three examples,
Wadj assumes the following values: (top panel) Wadj = 1.0, (middle
panel) Wadj = 0.88, and (bottom panel) Wadj = 0.03.

network of it. Specifically, the community detection is per-
formed on three different networks, all of them obtained
starting from the same bipartite network. The first is the
weighted projected network (we address this network as the
Full network, connoting with this name the fact that for
this network we are considering all links obtained from the
projection). The second network is a statistically validated
network obtained with the procedure described in Sec. III
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when the multiple hypothesis test correction is the Bonferroni
correction. We address this network as the Bonferroni network.
The third one is the statistically validated network obtained
with the control of the FDR correction. We address this third
type of network as the FDR network. The Bonferroni network
is a subgraph of the FDR network, which is a subgraph of the
Full network.

For all three networks, we perform community detection
by using modularity optimization. Specifically, we use the
Louvain algorithm [15] and we analyze the partition associated
with the highest value of modularity. It is worth noting that
the role of the community detection algorithm is different for
the Full network and for the SVNs. This is due to the fact
that SVNs take the form of a large number of disconnected
components, and therefore for these networks the community
detection algorithm is effective only on the largest of them.

To take into account the stochastic nature of the algorithm
and to verify the reproducibility of the obtained results,
we apply the algorithm several times by using a different
initializing node sequence. With this approach, the output of
the Louvain algorithm is stochastic and different partitions
can be obtained for different runs of the algorithm. In Fig. 3
we show Radj and Wadj measured between the partition
obtained by performing community detection of the three types
of projected networks and the reference partition. Different
versions of the benchmark were obtained by setting SA = 50,
SB = 50, pc = 0.8, q = 50, and several values of pr ranging
from 0.3 to 0.9 in steps of 0.025. In the top panel of Fig. 3 we
show Radj as a function of the probability of misplacement pr

of a link in the bipartite network. For the full network (green
circles), Radj is close to 1 for low values of pr and starts to
decreases for values of pr greater than 0.4. Radj reaches values
close to 0 when pr is greater than 0.9. The misclassification
of the community detection procedure is due to the fact that
the algorithm is not able to detect all communities of the
reference partition due to the random rearrangement of links.
Specifically, for high values of pr the errors made by the
community detection algorithm concern the merging of some
communities of the reference partition.

A similar pattern of success is observed for the partitions
obtained with SVNs. In fact, for the FDR network (red
symbols) we observe a value ofRadj close to 1 for low values of
pr and close to 0 for high values of it. It is worth noting that for
the specific parameters of the benchmark there is an interval of
pr (0.5 � p � 0.7) where Radj of the FDR network is higher
than the corresponding Radj value of the Full network. The
Bonferroni network has an analogous pattern, but a decrease of
Radj is observed for smaller values of pr (pr ≈ 0.5). It is worth
noting that the reason for the decrease of Radj for the FDR and
the Bonferroni network is completely different from that of
the Full network. In fact, for the partitions of these SVNs,
Radj decreases because the statistical test loses power, the
number of links decreases, and the number of isolated nodes
increases as a function of pr . This implies that the number of
disconnected subgraphs (present in the SVNs and/or detected
by the Louvain algorithm) increases while the number of nodes
connected decreases.

The bottom panel of Fig. 3 showsWadj for the three types of
networks. For the Full network, the pattern of Wadj is similar
to the pattern of Radj. It starts very close to 1 and decreases to

(a)

(b)

FIG. 3. Radj and Wadj measured between the partition obtained
by performing community detection for the three types of projected
networks: (i) Full (green circles), (ii) FDR (red diamonds), and
(iii) Bonferroni (blue crosses), and the reference partition of the
artificial benchmark. The benchmark has the parameters SA =
50, SB = 50, pc = 0.8, and q = 50. Simulations and community
detection are performed for several values of pr ranging from 0.3
to 0.9 in steps of 0.025. Average value and one standard deviation
error bar are obtained by performing the analysis on 10 different
realizations.

0 starting from pr ≈ 0.4. The behavior of Wadj of the SVNs
is quite different, supporting our previous conclusion that the
reasons underlying Radj behavior observed for the SVNs are
different from those of the Full network. In fact, Wadj remains
very close to 1 for high values of pr until it abruptly reaches
0 when the SVNs become empty networks, i.e., all the nodes
are isolated. In other words, the precision of classification of
pairs of nodes is always high for SVNs, and the problem they
have in providing informative partitions for high values of pr

is not precision but rather accuracy. All the partitions provided
by applying community detection to SVNs are statistically
precise, but the level of accuracy progressively decreases in
the presence of high levels of link misplacement.

So far we have investigated the role of link misplacement
in the detection of communities of the artificial benchmark.
Another cause of difficulty in community detection in real
systems can originate by insufficient coverage of the data. For
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(a)

(b)

FIG. 4. Radj and Wadj measured between the partition obtained
by performing community detection for the three types of projected
networks: (i) Full (green circles), (ii) FDR (red diamonds), and
(iii) Bonferroni (blue crosses), and the reference partition of
the artificial benchmark. The benchmark has the parameters
SA = 50, SB = 50, pr = 0.6, and q = 50. Simulations and commu-
nity detection are performed for several values of pc ranging from 0
to 1.0 in steps of 0.025. The average value and one standard deviation
error bar are obtained by performing the analysis on 10 different
realizations.

this reason, we have evaluated the performance of our approach
for artificial benchmarks characterized by a different level of
link coverage. In Fig. 4 we show Radj and Wadj for simulations
obtained by setting SA = 50, SB = 50, q = 50, pr = 0.6, and
for different values of pc ranging from 0 to 1 in steps of 0.05.

Panel (a) of Fig. 4 shows that the ability of the community
detection algorithm to correctly detect reference communities
of the benchmark decreases by decreasing pc both for the Full
network and also for the SVNs. However, also in this case the
reason for this failure is different for the two approaches. In the
case of the Full network, the algorithm fails to detect the correct
partition because it progressively merges several communities
when pc decreases. On the other hand, the major problem
observed for the partitions obtained from SVNs is due to the
fact that the accuracy of the statistical validation decreases for
values of pc lower than 0.7. In fact, panel (b) of Fig. 4 shows

that for SVNs, Wadj is always very close to 1 and therefore
the failure is not due to a problem of precision but rather of
accuracy, as previously observed in the investigations of the
artificial benchmark network performed as a function of pr .

In summary, both as a function of pr and as a function
of pc the partitions observed with the approach of SVNs are
very precise in classifying the membership of pairs of nodes,
although they might present poor accuracy in the presence
of high values of pr or low values of pc. The membership
obtained by investigating the SVNs can therefore be seen as
statistically validated cores of the communities present in a
given network.

We wish to stress that our approach is not aimed at detecting
communities of the investigated bipartite system. The main
goal of our approach is to detect cores, i.e., subgraphs, whose
membership is highly robust with respect to the presence of
missing information and/or errors about a node’s links.

It is worth noting that the role of the specific community
detection algorithm used in the partition of nodes of the SVNs
is not crucial for the results obtained, especially for high values
of pr or low values of pc. In fact, in these regions due to
the limited statistical accuracy of the SVNs these networks
are primarily composed of many disconnected subnetworks
where different community detection algorithms provide the
same partition. In the investigations presented in this section,
we have verified that the results obtained are identical when we
use the Infomap algorithm [34] in the search of communities
of SVNs.

A software-generating artificial benchmark network, cal-
culating statistically validated projected networks in bipartite
systems, and estimating Wadj, is accessible at the web
page [35].

VI. REAL NETWORKS

We also investigate two widely studied real bipartite
networks. The first is the bipartite network of authors and
papers obtained analyzing the cond-mat archive [36]. The
second is the classic bipartite network of actors and movies
obtained by using information present in the International
Movie Database.

A. Coauthorship network

We first investigate the coauthorship bipartite network.
This bipartite network was constructed by Mark Newman by
considering preprints posted in the condensed-matter section
of the arXiv eprint archive between 1995 and 1999. The
dataset [37] consists of 16 726 authors and 22 015 papers.
Our analysis is limited to the largest connected component
of 13 861 authors and 19 466 papers. We project the bipartite
network to obtain the projected network of authors. We also
estimate the FDR SVN of authors. The Full network has 44 619
links and the FDR network has 7768 links. We perform on
them community detection with the Louvain algorithm. For
each network, community detection is performed by applying
the algorithm 1000 times with different initial conditions.

The 1000 partitions obtained for the Full network have
modularity ranging from 0.864 to 0.867. To investigate the
degree of similarity among partitions of top values of mod-
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ularity, we select partitions with modularity higher than that
of the 99th percentile of the 1000 best outputs of the Louvain
algorithm. Specifically, we select 10 out 1000 partitions of
highest modularity. We then estimate Radj between all distinct
pairs of these 10 partitions. These 45 pairs have an average
mutual Radj of 0.65 with values ranging between 0.59 and
0.71. As already noted in different investigations [8,21], there
are significant differences between these partitions in spite of
the fact that the modularity of the partitions is almost identical
(bounded within the interval 0.8666, 0.8670). We obtain a quite
different result when we consider the top 10 partitions obtained
by performing community detection in the FDR SVN. In fact,
these 10 partitions are the same, and Radj among all of them
is just 1. It is worth noting that the FDR partition is not fully
contained in any partition obtained from the Full network. In
fact, the interval of the Wadj index of the FDR with respect
to the Full partition is quite far from 1, and it is covering a
relatively limited interval of values (0.57, 0.66).

By investigating the SVNs, we are therefore able to extract
cores of the communities that are statistically robust. These
cores are also quite stable with respect to errors that might
be present in the database. To illustrate this point, we add
some noise in the database by modifying it in a similar way to
what we do with our artificial benchmark when we use values
of pr different from zero. In panel (a) of Fig. 5, we show
Radj between the best partition of the Full network, which
we label as G0, and 100 best partitions, which we label as
Gn and that are obtained for each value of pr ranging from
0.05 to 0.3. In the same panel, we also show the results of
an analog investigation performed for the FDR SVN. The
partitions obtained from FDR SVNs are always significantly
more robust to noise than those obtained by performing
community detection in the Full network. In panel (b) of Fig. 5,
we showWadj for the same numerical investigations. It is worth
noting that the cores of communities detected by investigating
the FDR SVN show a decrease in similarity (i.e., Radj values)
with the uncorrupted partition G0 not due to a decrease in
precision but rather a decrease in accuracy. In fact, Wadj of
FDR does not go below 0.85 for all values of pr , whereas we
observe values of Wadj as low as 0.1 of the partitions obtained
from the Full network when pr = 0.3. In other words, the
informativeness of the detected cores of communities is robust
with respect to noise added to the database. This behavior is
similar to what we have observed for the artificial benchmark.

B. IMDB

The second dataset we investigate is the classic bipartite
system of actors and movies [38]. We have downloaded data
about this system from the International Movie Database
(IMDB) [39]. From the information recorded in the database,
we obtain several bipartite networks. A link between an actor
and a movie is considered if the actor played in that movie
during a selected period of time. For our study, we select all
movies present in the database during the time period from
1950 to 2015, with the exception of TV series, talk shows,
animation, short films, and adult movies.

We perform our analyses for different periods of time
defined by a time window of 5 years starting from 1950
to 1954. Within each selected time interval, we construct a

(a)

(b)

FIG. 5. Coauthorship database. (a) Average Radj value between
100 partitions of the Full network (green circles), the Bonferroni SVN
(blue crosses), and FDR SVN (red diamonds) obtained as different
stochastic realizations for each investigated value of pr and the best
partition G0 obtained in the absence of additional noise. The error
bar indicates one standard deviation. (b) Average Wadj of the same
partitions.

bipartite network considering movies released in that period
and all actors that played in those movies. As for the previous
system, our analysis is performed on the largest connected
component observed in the considered period. The bipartite
networks are projected into the movie side. The results of our
investigations are summarized in Table I. Each row of the table
refers to a different time period of investigation (see the first
column of the table). The size of the investigated projected
networks changes over time from the lowest values of 9143
nodes and 686 398 links to the highest values of 127 911 nodes
and 1 487 598 links for the periods 1950–1954 and 2010–
2014, respectively. The link density for the Full projected
network of movies ranges from 1.82 × 10−4 (for 2010–2014)
to 1.64 × 10−2 (for 1950–1954), i.e., in all cases the projected
networks are quite sparse. The Bonferroni and FDR SVNs are
significantly more sparse than the Full network. In fact, the
percentage of SVN links observed in the Full network never
exceeds 13.5% for FDR and 2.6% for Bonferroni (see the third
and fourth columns of Table I).
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TABLE I. Summary of IMDB investigations.

Time Bonf % FDR % Avg (Radj) Avg (Radj) Avg (Radj) Wadj Wadj

period Nodes Links of links of links Full Bonf FDR (Bonf,Full) (FDR,Full)

1950–54 9143 686398 1.4 8.2 0.996 (0.993, 1.0) 0.993 (0.984, 0.999) 0.980 (0.959, 0.994) 1.00 0.98
1955–59 11253 519240 1.8 9.1 0.992 (0.984, 0.999) 1.0 (1.0,1.0) 1.0 (1.0,1.0) 1.00 0.98
1960–64 12392 506639 1.9 10.7 0.998 (0.995, 1.0) 1.0 (1.0,1.0) 0.990 (0.978, 1.0) 1.00 0.97
1965–69 14782 633135 2.1 10.7 0.978 (0.961, 0.995) 1.0 (1.0,1.0) 0.995 (0.987, 0.998) 1.00 0.98
1970–74 15958 620634 2.2 11.1 0.983 (0.964, 0.997) 0.989 (0.979, 1.0) 0.998 (0.995, 1.0) 1.00 0.97
1975–79 14996 522389 2.6 13.3 0.970 (0.920, 0.993) 0.999 (0.997, 1.0) 0.996 (0.989, 1.0) 0.99 0.95
1980–84 15401 485082 2.5 13.5 0.995 (0.992, 0.998) 1.0 (1.0,1.0) 0.995 (0.990, 1.0) 1.00 0.95
1985–89 16846 569253 2.1 13.2 0.990 (0.984, 0.997) 1.0 (1.0,1.0) 0.984 (0.968, 0.999) 1.00 0.93
1990–94 17001 458604 1.9 10.2 0.985 (0.975, 0.993) 0.998 (0.997, 1.0) 0.999 (0.997, 1.0) 0.99 0.98
1995–99 20311 402736 1.4 7.1 0.982 (0.973, 0.991) 1.0 (1.0,1.0) 1.0 (1.0,1.0) 1.00 0.97
2000–04 31231 470828 1.4 7.2 0.966 (0.952, 0.979) 1.0 (1.0,1.0) 0.997 (0.993, 1.0) 0.98 0.93
2005–09 62496 788713 1.5 5.7 0.952 (0.937, 0.967) 1.0 (1.0,1.0) 0.941 (0.905, 0.977) 0.93 0.73
2010–14 127911 1487598 1.1 4.4 0.940 (0.912, 0.957) 0.992 (0.984, 1.0) 0.949 (0.919, 0.987) 0.88 0.71

For each period of time and for the Full, the Bonferroni, and
the FDR SVNs, we have obtained 1000 output partitions by us-
ing the Louvain algorithm with different initial conditions. To
evaluate the differences observed between pairs of partitions
obtained, we compute Radj among the 10 partitions of the 99th
percentile of the 1000 best outputs. The average value of Radj

is reported in the sixth, seventh, and eight columns of Table I
for the Full, Bonferroni, and FDR networks, respectively. The
values of Radj are always above 0.9 for all types of networks,
suggesting that for this database the modularity optimization
of the Full network provides quite reliable results in most
cases. In fact, values of Radj lower than 0.97 are observed
only for the last three time periods. The partitions obtained
with the SVN networks are more stable than the partitions
obtained from the Full network in most cases. Also, in this case
SVNs are detecting cores of communities. This conclusion is
also supported by the observed values of Wadj between the
Bonferroni and the Full network (ninth column of Table I),
and between the FDR and the Full network (tenth column
of Table I). In both cases, Wadj is very close to 1 for all time
periods except the last three, when the modularity optimization
of the Full network becomes a bit less reliable.

Also for the IMDB bipartite networks of the period 1990–
1994, we put additional noise in the bipartite network as we
did with our artificial benchmark and with the coauthorship
database. In panel (a) of Fig. 6, we show the average value of
Radj between 100 partitions of the Full network obtained for
values of pr ranging from 0.05 to 0.3 and the best partition
G0 observed in the absence of noise. In the same panel, we
also show the results of an analog investigation performed
for the Bonferroni and FDR SVNs. The partitions obtained
from FDR SVNs are for a large interval of pr significantly
more similar and therefore more robust to noise than those
obtained by performing community detection in the Full
network. In panel (b) of Fig. 6, we show Wadj for the same
investigations. Again, Wadj is close to 1 for the partitions of
the SVNs, supporting once again the conclusion about the
high degree of precision of the method in the detection of
cores of communities. As for previous cases, by combining
the two examples we conclude that the decreasing values of
Radj with the uncorrupted partition G0 for the Bonferroni and

(a)

(b)

FIG. 6. IMDB database. Time period 1990–1994. (a) Average
Radj value between 100 partitions of the Full network (green circles),
the Bonferroni SVN (blue crosses), and FDR SVN (red diamonds)
obtained as different stochastic realizations for each investigated
value of pr and the best partition G0 obtained in the absence of
additional noise. The error bar indicates one standard deviation.
(b) Average Wadj of the same partitions.
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the FDR SVNs are not due to a decrease in precision but rather
a decrease in the accuracy of the SVN method.

VII. CONCLUSIONS

We have shown that information present in a bipartite
network can be used to detect cores of communities (i.e.,
clusters) of each set of the bipartite system. The detected
cores are highly stable and their detection is highly precise,
although the methodology can, in same cases, be of low
accuracy. The cores of communities are found by considering
statistically validated networks obtained starting from the
bipartite network. The information carried by these statistically
validated networks is therefore highly informative and could
be used to detect membership of the investigated set that is
robust with respect to the presence of errors or missing entries
in the database. The usefulness of the statistical validation
approach is assessed by using a measure of similarity between
pairs of partitions that are obtained by a stochastic community
detection algorithm and that differ between them only for a
tiny value of the quality function of the algorithm. Here we use
Radj. In the presence of partitions characterized by very similar
values of the quality function and presenting low values ofRadj

between them, one should consider informative only those
subsets of partitions that are statistically stable. We propose

that in these cases investigators focus on cores of the partitions
obtained by performing community detection on SVNs.

It is worth noting that our detection method of cores of
communities is not a new method of community detection
but rather it is a method able to highlight groups of nodes
(the subsets that we address as “cores”) that are characterized
by a high level of robustness in the classification of their
relationship. In fact, we have shown that the membership
of these groups of nodes is highly robust with respect to
errors, i.e., noise, and/or incomplete coverage of the records
characterizing the investigated bipartite system.

The detection of cores of communities can be highly
informative when the time evolution of complex networks is
investigated [11]. In fact, in these cases it is very important to
be able to discriminate between classifications obtained with
high statistical precision and classification that might be af-
fected by noise, errors, or stochastic aspects and limitations of
the community detection algorithm. The information obtained
about the cores can also be useful to select appropriate scales of
the quality function used in the community detection algorithm
when a multiscale analysis is performed [9,10].

In the present study, we have considered an algorithm based
on modularity optimization, but we believe that our results are
general and not strictly related to the chosen algorithm. They
should be valid for any algorithm based on the maximization
of a quality function.
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