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What drives transient behavior in complex systems?
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We study transient behavior in the dynamics of complex systems described by a set of nonlinear ordinary
differential equations. Destabilizing nature of transient trajectories is discussed and its connection with the
eigenvalue-based linearization procedure. The complexity is realized as a random matrix drawn from a modified
May-Wigner model. Based on the initial response of the system, we identify a novel stable-transient regime. We
calculate exact abundances of typical and extreme transient trajectories finding both Gaussian and Tracy-Widom
distributions known in extreme value statistics. We identify degrees of freedom driving transient behavior
as connected to the eigenvectors and encoded in a nonorthogonality matrix T0. We accordingly extend the
May-Wigner model to contain a phase with typical transient trajectories present. An exact norm of the trajectory
is obtained in the vanishing T0 limit where it describes a normal matrix.
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I. INTRODUCTION

One of the key problems in studying complex systems is
answering the question of stability. The standard linearization
approach relies heavily on the large time asymptotics and
can be misleading for intermediate times. This is especially
pronounced when systems develop transient growth behavior
(hereafter shortened to transient behavior); the analysis based
on eigenvalues loses its significance and different approach is
needed. This shortcoming in physics literature can be traced
back to the work of Orr [1] in the hydrodynamical context.
Since then, similar ideas were revived in the context of fluid
dynamics [2,3], plasma physics [4,5], diffusion in porous
media [6], or pattern formation [7,8]. Further motivation for
this work is rooted in the ecological literature on biological
networks [9–11]. Finally, the notion of pseudospectrum [12]
was devised to study these features.

The physical mechanism of transient behavior is both
relatively simple and quite general. It needs the system’s
components to interact asymmetrically and be stabilized by an
effective dissipation mechanism. Asymmetry is indispensable
since only then can inter-eigenmodes fluxes of “energy” be
formed. Such an unbalanced flow renders particular eigen-
modes overpopulated or amplified. Crucially, this mechanism
does not break the overall stability; the dissipation eventually
wins over, and the amplification effect is only temporary or
transient.

In the paper we focus on such transient trajectories for a
system of nonlinear ordinary differential equations (ODEs).
For an elementary example we show how an eigenvalue-
based linearization technique becomes misleading and how
simultaneously the transient property is developed. We utilize
the May-Wigner model to include this mechanism and inspect
its generic features. We find a new transient regime where
transient trajectories are present although uncommon. Based
on these findings, we identify relevant degrees of freedom
driving the transient behavior and propose a natural extension
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of the May-Wigner model. Such a modification leads to a
generic transient behavior arising as a robust transient phase.

A. Linear stability, transient behavior, and its indicators

We focus on a typical complex dynamical system of a set
of N first-order nonlinear ODEs:

dxi

dt
= fi(x1 . . . xN ), i = 1 . . . N, (1)

where xi are the relevant degrees of freedom (neurons,
concentrations of chemical compounds, species, etc.) and
the nonlinear functions fi encode the interactions [e.g.,
the Lotka-Volterra competitive predator-prey model for fi =
xi(1 − ∑

j αij xj )].
If the form of functions fi is known, a question of stability

is answered by a standard argument revised here briefly. In
present analysis we ignore chaotic attractors or limit cycles
and restrict ourselves to a simple binary notion of stability; the
latter was addressed recently in Refs. [13,14]. As a first step,
we find all the points fi(x∗) = 0 at which the solutions remain
constant in time. Next, we expand Eq. (1) around a certain
point x∗ from that set

xi = x∗
i + yi (2)

and find a linearized system of equations

d

dt
yi(t) =

N∑
j=1

Mijyj (t), (3)

where Mij = ∂xj
fi(x)|x=x∗ . According to the Hartman-

Grobman theorem (H-G theorem) [15], the chosen point x∗
is stable if the real parts of the eigenvalues of M are all strictly
negative and unstable otherwise. The main assumption in the
H-G theorem is that of locality; the perturbation y around a
stable point should be small. We address its importance in an
example considered in the following and presented in Fig. 2.

To proceed, we define the norm of the solution yi of Eq. (3)
as |y(t)|2 = ∑

i |yi(t)|2 and group them into into three groups:
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FIG. 1. (a) The sample norms |y(t)|2 = ∑
i |yi(t)|2 of all solu-

tions to Eq. (3) divided into three types: stable transient, stable
nontransient, and unstable marked by solid-black, dotted-gray, and
dashed-gray lines, respectively. Both stable classes reach zero asymp-
totically as t → ∞ but differ at intermediate times. A transient class
develops an amplification beyond the initial value |y(0)|2 whereas
a nontransient trajectory does not posses such a characteristic. The
unstable solutions grow as t → ∞ and are defined by this feature
alone. In the insets (b) and (c), respectively, a sample decomposition
of transient and nontransient trajectories y(t) in two dimensions is
shown. Time evolution is depicted by different shades of gray, and
v1,v2 are the eigenvectors of the matrix M . In (b), the eigen-basis is
nonorthogonal, which enables an extension (or amplification) of the
length |y(t)| beyond the initial condition surface |y(0)| = const. In
(c) an opposite scenario is sketched where no amplification is present.

(1) Stable nontransient (or nontransient) when |y(t)|2 t→∞−→
0 and maxt |y(t)|2 = |y(0)|2,

(2) Stable transient (or transient) when |y(t)|2 t→∞−→ 0 and
maxt |y(t)|2 �= |y(0)|2,

(3) Unstable when |y(t)|2 t→∞−→ ∞.
Instances of these types are shown in Fig. 1(a). In Figs. 1(b)

and 1(c) we provide an intuition on how the amplification is
possible due to nonorthogonality of the eigenvectors of M .

We present an example demonstrating the importance of
locality assumption and simultaneously motivating this study.
We define an N = 2 dimensional nonlinear system:

ẋ1 = −x1 + x3
2

ẋ2 = αx1 − 2x2 − x1x2 − x4
2 , (4)

which has two relevant stable points: x∗ = (x∗
1 ,x∗

2 ) = (0,0)
and x∗∗ (given implicitly). We linearize the system around x∗
and find the matrix

M|x∗ =
(−1 0

α −2

)
, (5)

so that Eq. (3) reads

ẏ1 = −y1

ẏ2 = αy1 − 2y2. (6)

The resulting matrix M|x∗ is in a triangular form; eigenvalues
−1, − 2 are strictly negative, the point x∗ is stable, and so is the
full system given by Eq. (4). We can solve Eq. (6) explicitly and

find the norm of its solution |y(t)|2 = (y(0)
2 − αy

(0)
1 )

2
e−4t +

2y
(0)
1 αe−3t (y(0)

2 − αy
(0)
1 ) + e−2t (y(0)
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2
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FIG. 2. Panels (b), (c), and (d) present a numerical study of
the stability of a system defined by Eq. (4). The solutions for
different values of initial conditions y

(1)
0 ,y

(2)
0 are plotted on the

axes, inspected and sorted into three regimes: an unstable basin
and regions of stability of x∗ = (0,0) and x∗∗. They are colored
by gray, red, and blue points, respectively; a black cross marks the
stable point x∗ around which we conduct the linearization. As we
increase α, the x∗ stability basin shrinks considerably. By the H-G
theorem, the said point is stable for any positive α; however, in
the full nonlinear picture it becomes subdominant in comparison
to the other regions showing how the locality assumption is a
limiting factor, and one needs additional tools. Panel (a) depicts
both linearized and averaged over y0 solutions to Eq. (6) equal
to 〈|y(t)|2〉y0 = e−3t [cosh t + α2(cosh t − 1)] and plotted for three
different values of α. A norm first develops a bump for t > 0 breaking
the monotonicity which afterwards becomes a transient amplification.
The cases for α = 1, α = 3.8, and α = 6 are depicted by dashed gray,
dotted gray, and solid black lines, respectively. This change in the
behavior of the linearized solutions happens on par with the shrinkage
of the x∗ stability basin depicted on the top plots (b), (c), and (d).

the initial value vector y(0) = (y(0)
1 ,y

(0)
2 ). From this formula

one readily computes that for α >
(y(0)

1 )2+2(y(0)
2 )2

2y
(0)
1 y

(0)
2

, the transient

behavior of the norm |y(t)|2 is present and absent otherwise.
In Fig. 2 we inspect the trajectories of both full and

linearized system given by Eqs. (4) and (6) as we vary the
α parameter. We put emphasis on two features emerging
in a correlated fashion: shrinkage of the x∗-related basin of
attraction of the full system (top plots of Fig. 2) and simulta-
neous development of transient dynamics in the linearized
system (bottom plot of Fig. 2). In the spirit of previous
studies on the linearized dynamics [2,3], we state that the
α parameter (representing all of the noneigenvalue degrees
of freedom for N > 2) drives both mechanisms. Therefore,
extracting transient behavior becomes particularly important
when either the nonlinear solution or the structure of the phase
space is not known, and so only the linearized information is
accessible. Then transient dynamics can be seen as a herald
of (nonlinear) instability present already in the linear regime.
This observation is closely related to the study of basins of
attraction by the so-called Lyapunov functions.

Finally, we describe indicators of transient trajectories
y(t) as introduced in Ref. [10]. By inspecting definitions
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of trajectories depicted in Fig. 1 one readily finds a good
description of transient behavior as the maximal possible
amplification of the norm

A = max
t�0

|y(t)|2
|y(0)|2 , (7)

which identifies trajectory as stable nontransient if A = 1,
stable transient if 1 < A < ∞, and unstable if A → ∞. Since
for arbitrary systems it is hard to compute explicitly, instead a
reactivity parameter R was proposed:

R = 1

|y(0)|2 lim
t→0

d|y(t)|2
dt

, (8)

as a measure of the initial response of the system. By restricting
to stable trajectories, we define transient behavior if R > 0
and lack thereof if R < 0. The reactivity is an imperfect
indicator; truly transient trajectories can be misidentified as
a nontransient. Since the opposite cannot occur, it systemati-
cally overcounts nontransient trajectories. However, numerical
results suggest this is a small effect.

We compute reactivity by writing a formal solution to
Eq. (3):

|y(t)〉 = eMt |y0〉, (9)

where we introduce an identification between the vectors yi

and kets (|y〉)i and denote the initial vector as |y0〉 = |y(0)〉.
We plug Eq. (9) into Eq. (8) and find

R = 〈y0|(M† + M)|y0〉
〈y0|y0〉 , (10)

where the braket notation dictates that 〈y0|y0〉 = |y(0)|2. The
two measures are related as the reactivity R is a linear term
in the expansion of the amplification A around t = 0, A =
maxt [1 + Rt + O(t2)]. It therefore takes into account only
the initial amplification.

B. Transient phase in the May-Wigner model

Our aim is to study statistical features of transient phenom-
ena highlighting its average features. To this end we chose
a framework of random matrices as a unique insight into
generic behavior of such systems, and this is often treated as
a first approximation or null-model analogous to a Gaussian
distribution in univariate statistical analysis.

A matrix M of size N × N introduced in Eq. (3) is taken
to be

M = −μ + X, (11)

where μ is understood as a diagonal matrix with entries
equal to μ > 0. It is used since the linearization procedure
is computed at a stable point by assumption. In the following
we consider both real and complex matrices X denoted by an
index β = 1 and β = 2, respectively. The matrix X is random
and drawn from a joint pdf:

Pβ(X)[dX]β = cβ exp

(
−βN

2σ 2
TrX†X

)
[dX]β, (12)

where σ 2 is the variance, and the real matrix is decomposed as
Xkl = xkl whereas the complex matrix reads Xkl = xkl + iykl .

The joint measure for the real case reads [dX]β=1 ≡∏N
i,j=1 dxij , for the complex case is [dX]β=2 ≡ ∏N

i,j=1 dxij yij

and the normalization constant c−1
β = ∫

Pβ(X)[dX]β . A nota-
tion for the average over X is given by

O = 〈O(X)〉X =
∫

[dX]βPβ(X)O(X). (13)

We address the treatment of initial conditions |y0〉. A priori,
we consider two scenarios: an extreme case where we chose
a particular vector y0 to maximize the quantity in question
(e.g., reactivity) or a typical case where we average over all
initial conditions. We introduce a notation to designate both
scenarios:

Oav = 〈O(y0)〉y0 =
∫

[dy0]βp0(y0)O(y0), (14)

Omax = max
y0

O, (15)

with a flat measure [dy0]β over real β = 1 or complex β = 2
initial vectors and p0 denoting a prescribed pdf for the initial
conditions.

The model defined by Eqs. (11) and (12) was introduced
in the seminal work of May [9] to answer a key question in
biological systems about the interplay between stability and
complexity. The main finding is that there is an inherent (linear)
instability of the system as we increase the complexity (matrix
size N ). First, we review briefly this classic result and show
how to extend the model to also include transient dynamics.

To recreate classic stability regimes we inspect the eigen-
value spectrum of M as the matrix size grows to infin-
ity N → ∞. The asymptotic spectral density ρM (x,y) =
lim

N→∞
1
N

〈Trδ(x + iy − M)〉X is given by the circular law [16]:

ρM (x,y) = 1

πσ 2
θ [σ 2 − (x + μ)2 − y2], (16)

where θ is the Heaviside theta function confining the eigen-
values inside a circle of radius σ centered around (−μ,0). In
the large N limit, the result (16) is valid for both values of
β = 1,2. The standard stability criterion based on the H-G
theorem means that all eigenvalues of M have real parts less
than zero. In geometric terms, we keep the circular support of
ρM from crossing the x = 0 line to stay in the stable regime.
The stability-to-instability transition thus occurs along with
the crossing, and there are two equivalent ways of achieving
that: by increasing the radius σ or by moving the center point
μ. In further discussion we focus on the latter formulation
and restrict to modifying the μ parameter. Thus, we identify
two regimes: stable for μ > μS and unstable for μ < μS with
μS = σ, and we depict this transition in Fig. 3.

By inspecting the transient character of trajectories, the
stable regime is additionally split into transient and nontran-
sient parts. A boundary is defined by the maximal reactivity of
Eq. (8) with 〈Rmax〉X > 0 for stable transient and 〈Rmax〉X < 0
for stable nontransient regime. A similar boundary was studied
in Ref. [17], and in our context it is an example of an extreme
scenario in the sense of Eq. (14). As reactivity of Eq. (8) is a
Rayleigh quotient, it can be shown that Rmax is given by the
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FIG. 3. Stable-to-unstable and transient-to-nontransient transi-
tions are depicted as a function of the parameter μ. The stability
boundary is probed by the spectral density ρM given by Eq. (16)
and plotted in the top row. The transient transition is probed with
the density ρM†+M and plotted in the bottom row. Plots of spectral
densities and numerical simulations are drawn in solid lines and
gray points (histograms). The boundaries for either transition are
shown as dashed vertical lines. All three regimes are identified by
the corresponding densities passing through the vertical boundaries.
Simulations were conducted for real β = 1 matrices of size N = 500
and σ = 1.

largest eigenvalue of M† + M:

Rmax = max
y0

〈y0|(M† + M)|y0〉
〈y0|y0〉 = λmax

(
M† + M

)
.

Because the matrix M† + M is symmetric for β = 1
(or Hermitian for β = 2), its spectrum in the large
N limit is a translated Wigner’s semicircle ρM†+M (λ) =

1
4πσ 2

√
8σ 2 − (λ + 2μ)2. Using this result we read out the

rightmost edge, and so the averaged maximal reactivity in
the large N limit reads

lim
N→∞

〈Rmax〉X = −2μ + 2μT , (17)

where μT = √
2σ . We identify the stable transient regime

for μ < μT and stable nontransient regime for μ > μT and
present it in Fig. 3.

Although we understand stable and unstable regimes quite
well, it remains to inspect further the novel transient regime
when μ ∈ (μS,μT ). A natural question to ask is how abundant
transient amplification is in the ensemble of trajectories. It is
relevant since, by using a different criterion based instead on
a reactivity averaged over the initial conditions Rav given by
Eq. (14), we find 〈Rav〉X = −2μ. As μ > 0, 〈Rav〉X is always
negative and does not predict a transient behavior.

1. Density and abundance of transient trajectories

To inspect the question of abundance of transient tra-
jectories, we define a probability density for the reactivity
g(r) = δ[r − R(y0)] and consider both maximal and typical
densities:

gmax(r) =
〈
max

y0

g(r)

〉
X

, gav(r) = 〈g(r)〉X,y0 . (18)

Although the averaging over X and y0 is interchangeable gav =
gav, the max operation and average are not gmax �= gmax. First,

we compute the density g averaged only over X:

g = cβ

∫
[dX]βPβ (X)δ[r − R(y0)], (19)

where an implicit dependence of g on β is assumed. We use
the delta function representation δ(x) = (2π )−1

∫
dpeipx ,

rewrite ip(r − R) = ip(r + 2μ) − iαTrY (X + X†) where
α = p(TrY 2)−1, and set Y = |y0〉〈y0|. We compute the
integral (19) by completing the square: iαTrY (X + X†) +
βN

2σ 2 TrX†X = βN

2σ 2 Tr(X† + 2iσ 2α
βN

Y )(X + 2iσ 2α
βN

Y ) + 2α2σ 2

βN
TrY 2.

The result is a quadratic Fourier integral:

g(r) = 1

2π

∫
dpeip(r+2μ)e− 2σ2p2

N , (20)

which no longer depends on the initial values Y as TrY 2 =
(TrY )2. The remaining integration gives a Gaussian distribu-
tion

g(r) = 1√
2πσ 2

β,R

e
− (r+2μ)2

2σ2
β,R , (21)

with mean −2μ and variance σ 2
β,R = 4σ 2

βN
. Equation (21) is

already the typical reactivity density gav as it does not depend
on the choice of initial conditions y0 and so trivially g = gav.

We turn to the extreme reactivity density, which is related
to the largest eigenvalue of X† + X:

gmax(r) = 〈δ[r + 2μ − λmax(X† + X)]〉X
= d

dr

〈
θ

[
μ + r

2
− λmax

(
XT + X

2

)]〉
X

,

where an implicit dependence of gmax on β is as-
sumed. In the literature on extreme value statistics [18],
one defines a cumulative distribution function FN,β(t) =∫

[dH ]e− β

2 TrH 2
θ [t − λmax(H )] of the largest eigenvalue. By

a simple rescaling, the extreme reactivity density therefore
reads

gmax(r) = d

dr
FN,β

[√
N

σ

(
μ + r

2

)]
. (22)

In this case, the order of operations is crucial; taking first the
average over X and then maximizing will reduce to the average
scheme as gmax = g. This is expected as the extreme scenario
of any observable O can be realized as an average scheme
given by Eq. (14) but over a particular point-source density
ρ0 ∼ δ(y0 − vmax(X)) dependent on the maximal eigenvector
vmax of X itself. If so, the two averages no longer commute.

The abundances of transient trajectories are found as
tail distributions of previously computed densities given in
Eqs. (21) and (22):

Nmax =
∫ ∞

0
gmax(r) dr, Nav =

∫ ∞

0
gav(r) dr. (23)

Although these quantities are of similar nature, their
detailed interpretation differ; for fixed μ, among the total of n

trajectories we expect to find a fraction nNmax of transient ones
when the initial vector y0 maximizes the reactivity (8). This
happens when y0 is the eigenvector of M† + M corresponding
to the maximal eigenvalue, and so for each realization of M ,
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the choice of initial value is highly specific and happens rarely
by chance. On the other hand, we expect the fraction nNav of
trajectories to admit a transient behavior, however, in this case
when the initial value y0 is either randomly chosen or fixed to
an arbitrary value. The value of Nmax accentuates the extremes
existing in a random system, whereas the quantity Nav focuses
on the typical behavior.

We find an implicit formula for the Nmax and an explicit
one for Nav:

Nmax(μ) = 1 − FN,β

(√
Nμ

σ

)
, (24)

Nav(μ) = 1

2
erfc

(√
βN

μ

μT

)
. (25)

We compute the asymptotic forms of both abundances as
N → ∞. The abundance of a typical transient trajectory is
asymptotically Gaussian:

Nav ∼ e
−βN

(
μ

μT

)2

. (26)

Although the abundance of an extreme transient trajectory
is expressed in terms of the FN,β function, which is not known
in an explicit form, instead we cite two results valid in the
N → ∞ limit. To this end, we set μ = μT − � and inspect
deviations around a typical value μT on different scales �. The
asymptotic formula of Nmax for large deviations � ∼ O(1) was
found in Refs. [19,20] as

FN,β

(√
2N −

√
N�

σ

)
∼ e−βN2φ(�/σ−√

2), (27)

with φ(x) = 1
108 {−x4 + 36x2 + √

x2 + 6(x3 + 15x) + 27

[log(18) − 2 log(
√

x2 + 6 − x)]}. We note the same formulas
arose in a discussion of the symmetric May-Wigner model
near its stability transition in Ref. [21], which is, however, not
equivalent to our case. For small perturbations � ∼ O(N−2/3)
we cite another result:

FN,β

(√
2N −

√
N�

σ

)
∼ Fβ

(
−N

2
3

√
2�

σ

)
, (28)

where Fβ is the Tracy-Widom distribution [22,23]. The
abundance of extreme transient trajectories is therefore given
as

Nmax(μT − �) ∼ 1 −
{

e−βN2φ(�/σ−√
2), � ∼ O(1)

Fβ

(−N
2
3

√
2�
σ

)
, � ∼ O(N− 2

3 )
.

(29)

We plot both Nav and Nmax given by Eqs. (26) and (29) in
Fig. 4 along with numerical results. The abundance of extreme
transients Nmax is directly related to the transient-nontransient
boundary at μ = μT as it becomes a sharp theta function
Nmax ∼ θ (μT − μ) in the (global or thermodynamic) N → ∞
limit. For large and intermediate values of N , the maximal
abundance Nmax increases rapidly as we traverse the μT

boundary and reaches unity upon entering the unstable regime
near μS . The nature of the abundance of typical transients Nav

is different; it varies between 1/2 for μ → 0 and 0 if μ → ∞,
however, reaches zero in the transient regime between μS

Nmax

Nav

S T

1

stable
non-transient

stable
transient

unstable

FIG. 4. Numerical and analytical plots of transient trajectories
abundances Nav and Nmax as a function of the stability parameter
μ. Boundaries μS = σ and μT = √

2σ delineate between unstable,
stable transient, and stable nontransient regimes. Numerical results
are shown for Nmax as circles (N = 20) and for Nav as crosses (N =
2). Analytical results of (26) and (29) are plotted as solid gray and
black lines. The extreme abundance Nmax passes between 1 as μ → 0
and 0 as μ → ∞, meaning that the number of transient trajectories for
μ ∈ (μS,μT ) is always a sizable fraction whenever a special choice
of the initial condition y0 is made. In the same μ regime, however,
the average abundance Nav points towards a much smaller fraction of
transients, which signifies that without the proper choice of the initial
condition, the transient trajectories become scarce.

and μT quite rapidly. Moreover, as the size of the matrix N

increases, Nav approaches zero for all values of μ according
to Eq. (26) and does not result in a transition. Additionally, for
any finite N we find the average abundance being considerably
smaller than the extreme one.

We recapitulate these two complementary viewpoints: (1)
a transient regime for intermediate parameters μ ∈ (μS,μT ) is
found as the abundance of extreme trajectories Nmax is close to
unity (almost every probed trajectory is transient). Moreover,
it increases with the system size N and reaches certainty for
formally infinite systems. (2) On the other hand, according
to the abundance of average trajectories Nav, the number of
typical transient trajectories is relatively small when the initial
conditions are not especially tailored. In fact, their number on
average decreases rapidly with the growth of the systems’ size
as shown in Eq. (26).

Main conclusion is that although transient trajectories
are (potentially) present in the whole transient regime μ ∈
(μS,μT ) as shown by the behavior of Nmax, they are otherwise
uncommon as dictated by Nav. This is expected if we notice
that, as shown in Figs. 1(b) and 1(c), to find a transient behavior
we need a special choice of y0 tailored to the eigenvector basis.

2. Generators of transient behavior

Up to now we have considered the May-Wigner model of
Eq. (3) with matrices drawn from Eq. (12) and found that when
μ ∈ (μS,μT ), transient trajectories are present although rare.
Drawn by the interest of the transient behavior itself, we ask
a related question:- although in the May-Wigner model these
trajectories are not found often, which features of a matrix can
we tweak so that it produces generic transient trajectories? To
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put it differently, how can we amplify the abundance Nav and
simultaneously stay in the stable regime? To this end, we recall
the definition of reactivity given in Eq. (8):

R = −2μ + 〈y0|(X† + X)|y0〉
〈y0|y0〉 , (30)

where the presence or absence of transient behavior was
defined by the sign of R. If X is drawn from Eq. (12), we
have shown previously that although 〈Rmax〉X can be positive
(which sets the scale μT ), on average 〈R〉X = −2μ is always
negative and thus no typical transient behavior is present. To
circumvent this we need to modify the matrix measure (12)
accordingly.

Our aim is to render the reactivity (30) positive. For pure
May-Wigner models defined by Eq. (12), it is always negative
since both 〈X〉X and 〈X†〉X are zero. A simplest route of
introducing a pdf with a nonzero mean 〈X〉′X = X0 �= 0 does
not produce satisfactory result, since then also the eigenvalue
density of X is modified resulting in an instability. The way
out is to freeze the eigenvalues and tweak the remaining
degrees of freedom. To achieve that, we introduce a Schur
decomposition [24]:

X = O(Z + T )O†, (31)

where the matrix O is orthogonal (β = 1) or unitary (β = 2),
Z is a diagonal matrix with eigenvalues and T is a strictly
upper-triangular matrix encoding the nonorthogonality of the
eigenbasis; hereafter we will refer to it as the nonorthogonality
matrix.

For β = 1, both Z and T have a block structure determined
by the character of eigenvalues which are either purely real
or form complex conjugate pairs. If we assume there are k

purely real eigenvalues and N−k
2 conjugate pairs of complex

eigenvalues, the blocks of Z and T have dimensions k × k and
N−k

2 × N−k
2 on the diagonal and k × N−k

2 on the off-diagonal.
The individual entries are either numbers or 2 × 2 matrices on
the diagonal and 2 × 1 vectors on the off-diagonal.

For β = 2, both Z and T have a simple structure: Z

is diagonal filled with eigenvalues, and T is strictly upper-
triangular.

In the β = 1 case, this decomposition induces a change of
variables in the measure (12) computed in Refs. [25,26], and
for β = 2 it is trivial. Because both (1) the Jacobian of the
transformation (31) factorizes into Z and T dependent parts
and (2) the Gaussian factor of Eq. (12)

TrX†X = TrZ†Z + TrT †T (32)

factorizes for both β = 1,2, the eigenvalue matrix Z and
the nonorthogonality matrix T fully decouple and can vary
independently. Using Eq. (31), one finds that the averaged
reactivity

〈R〉X = −2μ + 1

〈y0|y0〉 (〈y0|〈Z† + Z〉X|y0〉

+ 〈y0|〈T † + T 〉X|y0〉) (33)

is likewise decoupled. The first term 〈Z† + Z〉X is zero when
X is drawn from Eq. (12) as can be shown by a symmetry
argument: for β = 1 we reflect real eigenvalues λi → −λi

along with the real parts of complex pairs Rezi → −Rezi

and for β = 2 we just set zi → −zi . Although the second part
〈T † + T 〉X is also zero when averaged over Eq. (12), it does not
need to be the case. In particular, we can fix T by a constraint
δ(T − T0) and define a fixed T0 May-Wigner model:

P̃β(X; T0)[dX]β = c′
βδ(T − T0)Pβ(X)[dX]β, (34)

where Pβ(X) was introduced in Eq. (12) and c′
β is the

appropriate constant. When averaged over Eq. (34) denoted
as 〈· · · 〉P̃β

, we find an average reactivity

〈R〉P̃β
= −2μ + 〈y0|T †

0 + T0|y0〉
〈y0|y0〉 . (35)

Due to the independence of Z and T , introducing a pdf in
Eq. (34) does not change the spectrum of X. We define an
external field or nonorthogonality parameter:

τ = 〈y0|T †
0 + T0|y0〉
〈y0|y0〉 , (36)

so that for a fixed T0 model given by Eq. (34), a generic
transient behavior is found when τ > 2μ and absent otherwise.
The resulting phase diagram is shown in Fig. 5.

Now the parameter τ depends on the initial condition y0.
In particular, if the average 〈τ 〉y0 is taken over the initial value
vectors drawn from a symmetric density p0(y0) = p0(−y0), it
will vanish. A nonzero contribution is, however, produced if
any asymmetry is present in p0 or y0 is held fixed. This was
absent previously as the order parameter 〈R〉X was completely
decoupled from the initial condition y0.

/

/

tr
an

si
en

t

un
st

ab
le

st
ab

le

1

1

2

0
normal X

=2

2

3

4

3

|y(t)|2

t

|y(t)|2

t

t(a)

(b)

(c)

(d)|y(t)|2

FIG. 5. Panel (a) shows a phase diagram of the fixed T0 model
defined by Eq. (34) with parameter τ defined in Eq. (36) and μ

given in Eq. (11). Straight lines μ = σ and τ = 2μ mark stability
and transient boundaries, the dashed intersection area is the transient
stable regime, and at τ = 0 we plot a horizontal dotted line denoting
the normal matrix regime. Three insets (b), (c), and (d) were evaluated
at phase points (μ,τ ) = (1.5,3.5), (2,1), and (2.5,0) and correspond
to a transient stable, nontransient stable, and normal trajectory,
respectively. The plots were obtained for N = 40, (T0)ij = σαδi1δj2

for a fixed initial value y0 and α being equal to 125, 29, and 0,
respectively. Panel (d) admits an analytic form of Eq. (39).
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We interpret T0 as a “field” conjugated to the order
parameter 〈R〉X akin to the magnetic field and magnetization.
Since the nonorthogonality matrix T0 drives the transient phase
transition, we consider the unperturbed system of T0 = 0 in
Eq. (34). It describes a normal matrix model, defined also
by the condition [X†,X] = 0 and considered mostly when
the matrix X is complex [27–29]. In this particular case, we
compute an exact formula for the average norm:

〈|y(t)|2〉P̃β
= e−2μt

∫
[dX]βP̃β (X; 0)Tr(YeX†t eXt ),

where we have used the formal solution given by Eq. (9)
and Y = |y0〉〈y0|. Since T0 = 0 we obtain X = OZO† by the
Schur decomposition and find

〈|y(t)|2〉P̃β
= e−2μt

∫
[dZ]βP ′

β(Z)

×
∫

[dO]β
∑
k,l,n

YklOlne
2Reznt (O†)nk, (37)

where P ′
β(Z) is the eigenvalue pdf for both values of

β = 1,2. The unitary or orthogonal integral is computed as∫
OijO

†
kl[dO]β = 1

N
δilδjk , and the result reads

〈|y(t)|2〉P̃β
= |y0|2e−2μt

∫
d2zρ̃X(z)e2tRez, (38)

where ρ̃X(z) = N−1〈∑N
i=1 δ2(z − zi)〉P ′

β (Z) is the spectral den-
sity of the normal matrix model.

In the large N limit, the spectral density of a normal matrix
ρ̃X also forms a circular law given in Eq. (16) with μ = 0. We
plug it into Eq. (38) and find the average norm in the large N

limit as

lim
N→∞

〈|y(t)|2〉P̃β
= |y0|2 I1(2tσ )e−2μt

tσ
. (39)

It is monotonically decreasing (as shown in the bottom inset of
Fig. 5 and in Ref. [30]) and does not present transient behavior
in accordance with previous results.

3. Links between nonorthogonality matrix,
eigenvectors, and pseudospectra

The nonorthogonality matrix T present in the Schur
decomposition given by Eq. (31) is a crucial element in the
development of transient behavior. We will show in what sense
the matrix T is a measure of nonorthogonality and how it is
related to other eigenvector-related phenomena. In this section
we restrict our discussion to the complex β = 2 case. To
this end, we diagonalize the matrix by a similarity transforma-
tion S:

X = SZS−1, (40)

where S−1
ij is composed of left eigenvectors 〈Li |j and Sji of

right eigenvectors |Ri〉j :

〈Li |X = 〈Li |zi, X|Ri〉 = zi |Ri〉. (41)

Left and right eigenvectors are biorthogonal 〈Li |Rj 〉 = δij but
not orthogonal in each space separately, i.e., 〈Li |Lj 〉 �= δij and
〈Ri |Rj 〉 �= δij . In terms of the matrix S, these two relations
are rewritten as 〈Li |Lj 〉 = (S†S)ij and 〈Ri |Rj 〉 = (S†S)−1

ij .

A formal relation between S, T and Z is found by juxtaposing
Eqs. (31) and (40):

O†S(Z + T ) = ZO†S. (42)

If T = 0 and eigenvalues are nondegenerate we find O†S ∼ 1,
S becomes an unitary matrix with left and right eigenvectors
rendered orthogonal. For nonzero T , one finds recurrence
relations between the orthogonality matrices S†S, Z, and
T [31]. These orthogonality matrices are used in the definition
of a one-point eigenvector correlation function

1

N

〈
N∑

i=1

Oiiδ(z − zi)

〉
X

(43)

with weight Oii = (S†S)ii(S†S)−1
ii . This object becomes a

necessary ingredient in a hydrodynamical description of
complex dynamical matrices as established in Refs. [32,33].
The Oii are also related to the eigenvalue condition number
κ(zi) as shown in Ref. [34].

Another facet of the transient phenomena is related to
the notion of the pseudospectrum [12]. It is a generalization
of the spectrum �ε(X) defined as a region of the complex
plane z where the condition ||X − z||−1 � ε−1 is fulfilled.
The pseudospectrum �ε depends on the parameter ε and
reduces to the normal spectrum when ε → 0. We define the
pseudospectral abscissa as αε(X) = max{Rez : z ∈ �ε(X)},
which measures both asymptotic growth or decay or initial
growth or decay depending on the value of the ε parameter
going from 0 to ∞ [35]. In the ε → ∞ limit it is useful
in assessing the transient behavior in the same way as the
reactivity (8), whereas in the ε → 0 limit it measures the
classic stability.

C. Conclusions

In this paper we characterize transient phenomena in
generic complex systems. Motivated by both physics and
interdisciplinary applications, we argue that transient behavior
is complementary to the stability analysis and hints at nonlinear
features already on the linear level.

A seminal May-Wigner model is introduced as an example
where we discuss transient dynamics. Based on the reactivity
defined as an initial response of the system, we identify
seminal unstable and stable regimes and find the latter to be
additionally split into transient and nontransient regions. In
the stable transient area, we compute the abundance (number)
of transient trajectories in both extreme and typical choice of
initial conditions. We conclude that although for certain special
initial conditions trajectories do become transient, typically
they do not show up. To amplify this typical transient behavior,
we introduce a modified May-Wigner model where only the
nonorthogonality matrix T0 is tweaked. This provides a model
where a typical transient behavior arises as a result of a nonzero
value of T0 with close relation to normal matrix models if T0

vanishes. Last, the nonorthogonality matrix is discussed in
relation to the eigenvector correlation function.

Transient dynamics have many faces; they are often
described as a destabilizing mechanism [2]. In particular,
this study points toward identifying crucial characteristics
important especially in the context of early-warning signals
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of transitions in complex systems [36]. In the studies of
neural networks, it is responsible for memory effects [37].
Paradoxically, in describing food webs when the probed time
span is relatively short with respect to the characteristic
attenuation time of the transient, it can be reinterpreted as
an effectively stable solution [38].

This papers sheds light on the relevant characteristics of
transient behavior, enabling the tools needed to assess the
severity of transient behavior in the system at hand and
their ultimate stability. In the spirit of recent work [39], in
this work the phase diagram of May-Wigner models also
gets refined to augment the stability questions. Additionally,
transient features are robust when an additional structure is

introduced into X as presented in Ref. [17], pointing naturally
into questions of universality. It is therefore an interesting point
to study transient dynamics in general noise-plus-structure
models of [40] with special emphasis on the application to
neuronal networks [41,42].
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