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A growing body of empirical evidence indicates that social and cooperative behavior can be affected by
cognitive and neurological factors, suggesting the existence of state-based decision-making mechanisms that may
have emerged by evolution. Motivated by these observations, we propose a simple mechanism of anonymous
network interactions identified as a form of generalized reciprocity—a concept organized around the premise
“help anyone if helped by someone’—and study its dynamics on random graphs. In the presence of such a
mechanism, the evolution of cooperation is related to the dynamics of the levels of investments (i.e., probabilities of
cooperation) of the individual nodes engaging in interactions. We demonstrate that the propensity for cooperation
is determined by a network centrality measure here referred to as neighborhood importance index and discuss
relevant implications to natural and artificial systems. To address the robustness of the state-based strategies to an
invasion of defectors, we additionally provide an analysis which redefines the results for the case when a fraction
of the nodes behave as unconditional defectors.
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I. INTRODUCTION

Cooperation has played a fundamental role in many of
the major transitions in biological evolution and is essential
to the functioning of a large number of biological systems
[1]. Cooperative interactions are required for many levels of
network organization ranging from single cells to groups of
animals and, ultimately, humans.

While kin selection [2] and group (multilevel) selection
[3,4] have been able to explain the emergence and stability
of cooperation in related individuals, the occurrence of
cooperation between unrelated individuals is more intriguing
[5,6]. Theoretical models provide evidence that cooperative
behavior can nevertheless evolve and persist if it is based on
reciprocity [7–9]. The network structure plays an important
role in the emergence of cooperation. Since the early work
of Novak and May [10], which demonstrated that a lattice
structure enhances cooperation in a Prisoner’s Dilemma (PD)
game, this issue has attracted a great deal of attention; see,
for example, Refs. [11–18]. In particular, the consequences of
population structure on the evolution of reciprocal cooperation
were studied in Refs. [19–22]. It has also been recognized that
underlying network structures such as network heterogeneity,
scale-freeness, etc., crucially determine the outcome of multi-
ple dynamical phenomena [23].

To what extent reciprocity can explain the behavior of
biological organisms is a subject of active debate (see, e.g.,
Refs. [24,25] for a recent review). According to Ref. [24], a
major concern is that the assumptions of theoretical models
differ in important ways from the observed structure of real
interactions, as supported by experimental evidence [26–28].
As a result, the mechanisms proposed in some of the theoretical
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models are unlikely to be realized by evolution in real
organisms [6]. Particularly, direct and indirect reciprocity
require cognitive abilities to register identity of social partners
and their behavior in previous interactions, which has been
shown to constrain cooperation in animals [29], including
humans [30].

Recent empirical studies have shown that cooperation in
animals (rats [31], monkeys [32], dogs [33]), as well as
humans [34,35], can work between nonrelative conspecifics
by generalized reciprocity—a simple mechanism that does not
require higher cognitive demands. This mechanism, simply
described as “help anyone if helped by someone”, assumes
that an individual who received help in the past is more
likely to help any new individual in subsequent interactions.
Generalized reciprocity, which can be traced back to “upstream
tit-for-tat” [36] and “upstream indirect reciprocity” [37], has
been recently addressed in detail in Refs. [24,25].

A growing body of recent empirical research indicates that
social and cooperative behavior can be affected by cognitive
and neurological factors, such as experience and hormone titres
[38]. In this context, it has been suggested that the proximate
mechanism of generalized reciprocity is based on changes
of the individual’s physiological and/or neurological state
[31,34,39]. The first steps in the direction of understanding
the evolutionary processes underlying generalized reciprocity
have been made in Refs. [36,37]. In Ref. [40] the formation of
a decision-making mechanism based on an internal state has
been investigated by evolutionary simulation. There it has been
demonstrated that a mechanism where the individuals base
their decision to cooperate based on a state variable updated
by the outcome of the last interaction with an anonymous
partner, can emerge through small evolutionary steps under a
wide range of conditions.

In the presence of supporting empirical evidence for the
evolutionary development of a state-based decision-making
mechanism, we propose a general framework to address the
dynamics of such mechanisms on complex networks. We adopt
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a simple (stochastic) model for network interactions, where
nodes regularly send cooperation requests to randomly chosen
neighbors. The selected nodes accept the requests (cooperate)
with probability determined by a single variable—an internal
cooperative state which reflects their current “well being”. The
resulting behavioral mechanism relates the nodes’ behavior
in the network interactions to their fitness, i.e., accumulated
payoff in a game-theoretic jargon, with immediate implications
to a large plethora of real-life networks.

From a game-theoretic perspective, the behavioral mech-
anism we address may be framed in the continuous Pris-
oner dilemma context [41] according to which the level of
investment (i.e., the probability of cooperation) is adjusted to
the accumulated experience. While in our stochastic model
interactions happen between two individuals, the fact that the
behavioral mechanism is oblivious to the identity of donors and
receivers effectively provides a framework where the network
nodes engage in a game with their neighborhood. This, in a
sense, is conceptually similar to some versions of the N -player
iterated Prisoners Dilemma [42,43].

We point out that in our model we do not consider
“competition” between strategies in the sense of Ref. [44].
Also, we do not assume evolutionary updates in the sense of,
e.g., Ref. [37], or imitation of the neighbor’s strategy (e.g.,
imitation dynamics) [45]. Instead, we presume that a general
form of state-based generalized reciprocity mechanism is in
place in the complex network of interest (i.e., has evolved
as a result of evolution, as suggested by empirical evidence),
effectively resulting in a continuum of investment strategies
with levels of investment changing according to the nodes
individual states.

With this in mind, the aim of our approach is to evaluate the
implications of this behavioral mechanism on the cooperation
in the network and, importantly, to reveal the role of network
structure. In particular, we show that, in the presence of
the here addressed state-based behavioral mechanism, the
levels of individual investments may evolve from very low
to significant, eventually saturating to a point that is solely
determined by the network topology. To address the robustness
of the state-based strategies to an invasion by defectors, we
restate the results for the case when a fraction of the network
nodes behave as unconditional defectors.

An important aspect of our model is the fact that the
anonymity of the network interactions is not associated with
an increased vulnerability to exploitation (as it is generally the
case with generalized reciprocity [24,25]). In fact, we are able
to show that the behavioral mechanism promotes cooperation
by “driving” the network toward a steady state beyond which
the individual nodes are protected from exploitation by the rest
of the network.

The remainder of the paper is structured as follows. In
Sec. II we define the stochastic model for network interactions
and describe the proposed behavioral mechanism (update
rule). In the same section we present the deterministic counter-
part of the stochastic model, which is analytically tractable and
represents a valid approximation in the steady-state regime.
In Sec. III we analyze the deterministic model and address
the issue of cooperation from the perspective of the network
topology. We further derive important properties of the model
related to the spread and stability of cooperation in the network.

The analytical findings are supported by numerical results.
We conclude the paper by discussing the implications of the
model and drawing parallels with other theoretical models and
real-life networks.

II. MODEL DESCRIPTION

A. Network model

The network is modeled as a random graph A on a finite
set N of N nodes, with binary edge variables Aij ∈ {0,1}
between pairs of nodes i,j ∈ N (Aij = 1,i �= j indicating
neighborhood relation). The interactions between the nodes
are modeled as follows: in each round t , node i sends a
cooperation request to a randomly (on uniform) chosen node
from its neighborhood, for example, j ∈ Ni ; upon selection,
node j accepts the request (i.e., cooperates) with probability
pj (t), which may be considered as its internal cooperative
state at time t ; if node j accepts the request, i.e., cooperates, it
pays a cost c for node i to receive a benefit b (we assume these
quantities to be the constant over the network). The (random)
payoff of node i at round t is

yi(t) = bxj (t) − cxi(t)
∑
k∈Ni

ρk(t). (1)

In Eq. (1): the selected index from the neighborhood of i is
a random variable uniformly distributed on the set Ni , j ∼
U (Ni); xl(t), l = 1, . . . ,N , are Bernoulli random variables,
each with parameter pl(t) (the cooperative state); ρh is a
Bernoulli random variable with parameter 1/dh, where dh is the
degree of node h, dh = ∑

l Ah,l ; the term
∑

h∈Ni
ρh(t) captures

the (random) number of nodes (neighbors of i), which send
a cooperative request to i during round t . We note that the
model Eq. (1) may be easily extended to weighted graphs by
substituting the uniform distribution with categorical.

B. Behavioral mechanism (update rule)

For simplicity, we assume a synchronous behavioral update,
based on the accumulated (i.e., total) payoff of the node i by
time t , Yi(t) = Yi(t − 1) + yi(t), with Yi(0) being the initial
condition and yi(0) = 0. The cooperative state of node i at
time t + 1 is defined as

pi(t + 1) = f [Yi(t)], (2)

where we assume that the function f : R → [0 1] is mono-
tonic (nondecreasing). A plausible choice which reflects real-
world behavior is the sigmoid (logistic) function

f (ω) = [1 + e−κ(ω−ω0)]−1,

where the parameters κ and ω0 define the steepness, respec-
tively, the midpoint of the function.

We note that it is straightforward to extend the model
to account for an asynchronous behavioral update, where in
each step t node i updates its probability of cooperation with
probability u. In that case, the cooperative state of node i at
time instant t + 1 is defined as

pi(t + 1) = p1−λ
i (t)f λ[Yi(t)].

The dynamics of the behavioral update is then dictated by the
payoff accumulated by each node in the (random) time period
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between two updates to and to + Ti ,

�Yi(to,to + Ti)
.= Yi(to + Ti) − Yi(to)

= b

to+Ti∑
τ=to+1

xj (τ ) − cxi(to + 1)
to+Ti∑

τ=to+1

Ri(τ ),

with the comment that the index j ∈ Ni is updated in each
step τ .

In the following we will only address the scenario with
synchronous update, with the remark that the conclusions also
apply to the asynchronous scenario.

C. Random graphs

The starting point for studying games on graphs is the
models used in evolutionary biology, where the evolution of the
population over time can be determined by solving a coupled
set of differential equations (the replicator equations, see, e.g.,
Ref. [46]). Besides being deterministic (no stochasticity in
the decisions), this framework assumes infinite, well-mixed
populations.

To account for stochastic game dynamics and finite pop-
ulations, evolutionary graph theory provides a mathematical
tool for representing population structure: nodes correspond
to individuals and edges indicate interactions [19]. Graphs
can describe spatially structured populations of bacteria,
plants or animals, tissue architecture and differentiation in
multi-cellular organisms, or social networks. In this context,
the well-mixed population, which is a classical scenario for
mathematical studies of evolution, is given by the complete
graph.

In this setting, the structure of the underlying random graph
dictates the final result of many real-world systems, including
cooperation. In general, real-world networks are characterized
with three properties [47]: (i) high clustering—two nodes have
a higher probability to share an edge if they have similar
neighborhoods, (ii) small world—short, on average, distance
(shortest path length) from one node to another, and (iii)
scale freeness—power-law degree probability density function
(pdf).

Many models have been developed for generating random
graphs that have (some of) these properties. We study the
behavior of our model on the four models that are most often
implemented: (i) random d-regular graph, (ii) Erdos-Renyi
(ER) random graph, (iii) Watts-Strogatz (WS) random graph,
and (iv) Barabasi-Albert random scale-free network. In the
following, we describe them.

(1) Random d-regular graph—the simplest random graph
that can be found in the literature. Formally defined as a
random graph A(N,d) in which all nodes have the same degree
d [48]. As such, it has a degree pdf (and hence a z pdf)
described with the Dirac δ function, whereas clustering and
shortest path length generally depend on the parameter d. To
generate a d-regular graph we implement the pairing algorithm
described in Ref. [49].

A special type of a regular graph that has been commonly
studied in evolutionary biology is the two-dimensional (2D)
N × N square lattice [10]. Such a lattice is characterized
with low (zero) clustering and long average path length. The
main difference between a 2D square lattice and other random

regular graphs is that the structure of the former is not random.
Namely, in it the nodes are distributed at the integer coordinate
points of the two-dimensional Euclidean space and each node
is connected to other nodes that are one unit away from it.

(2) Erdos-Renyi (ER) random graph—also known as the
A(N,π ) model [50]. In it, two nodes share an edge with
probability π , independently from the presence of other
edges. A random graph constructed through this algorithm
is characterized with very low clustering, long shortest path
length, and Poisson degree pdf.

(3) Watts-Strogatz (WS) random graph—a model for
generating random graphs introduced in Ref. [51] and defined
as A(N,d,β), where d is the average degree and β ∈ [0,1]
is the probability that an edge will be “rewired.” In short,
the construction of a WS random graph is as follows. First,
a d-regular ring lattice is constructed by putting the nodes on
integer values of a circle with circumference N and connecting
them to their d nearest neighbors. Then, each generated edge
(i,j ) (with i < j ) is rewired to (i,k), where k �= i is a uniformly
chosen node, with probability β. We point out that d-regular
ring lattices and ER random graphs emerge as special types of
the WS graph when β = 0 and β = 1, respectively. When
0 < β < 1, the existence of a local ring lattice structure
produces high clustering, whereas the randomly reallocated
edges lead to short path lengths, i.e., the small-world property.

(4) Barabasi-Albert (BA) random scale-free network—a
model based on the preferential attachment mechanism for
generating random graphs [52]. The construction of a BA
network, written as A(N,m), is represented as a dynamical
process. Concretely, in the beginning a fully connected
network of m0 nodes (Ni = N \ i for all i) is created. Then,
at each time step a new node i is born that makes connections
to m other nodes that are present in the network. The node
connects to a particular node j with probability proportional
to its current degree. Besides having the same properties of
high clustering and small world as the WS graph, the BA graph
has a scale-free degree pdf. Therefore, the BA model has been
extensively applied for studying real-world systems, ranging
from social to biological networks and beyond [52,53].

D. Deterministic approximation

We approximate the stochastic model Eq. (1) by a deter-
ministic model (under the same behavioral update), where
the random variables are substituted with their respective
expectations:

yi(t) = b
∑

j

Aij

di

pj (t) − czipi(t). (3)

In Eq. (3), zi is defined as

zi =
∑

j

Aji/dj .

This quantity acts as a local centrality measure of a node,
with node i being more “important” if it has many neighbors,
and the neighbors themselves have few neighbors. In our
model of interactions, this node would be called upon rather
frequently. The measure, which we refer to as “neighborhood
importance index”, reflects the role of network topology in
the promotion and stability of cooperation. When considering
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FIG. 1. Mean-squared error (MSE) comparison of the stochastic and the deterministic models. For the stochastic model, the results are
averaged across 100 network realizations. (a) Regular graph. (b) ER graph. (c) BA graph. (d) WS graph. (a–d) b/c = 1.8. (e–h) Same as (a–d),
only b/c = 1.5. (i–l) Same as (a–d), only b/c = 1.2. (a–l) A lighter shade indicates lower parameter values. All graphs have 100 nodes and
average degree 8. In each run we set the initial values Yi(0) = −4 and pi(0) = 0.05 for all i. We assume synchronous update.

random walks on complex networks, one can show that zi is
exactly the sum of the jump probabilities toward node i from its
neighbors [54].

When written in vector form, for Eq. (3) we have

y(t) = � · p(t),

where �ii = −czi , and �ij = b
Aij

di
, for i �= j .

In Fig. 1 we present the comparison between the stochastic
and the deterministic model in terms of the mean-squared error
(MSE) between the realizations of the individual cooperation
probabilities and their deterministic counterparts (analytical
solutions of the deterministic model). We observe that in the
time limit the steady-state behavior of both models is almost
identical. In addition, the steady-state solution depends only
on the benefit-to-cost ratio b/c, and the particular values of b

and c only determine the rate of convergence, i.e., the duration
of the transient regime.

III. RESULTS

Here, we address in more detail the issues of cooperation in
relation to the network topology. We thereby highlight the role
of the neighborhood importance index z (more precisely its
distribution over the network nodes). In particular, we describe
the steady-state behavior of the deterministic model and derive

important properties related to the existence and stability of
cooperation.

A. Steady-state behavior

The update rule Eq. (2) yields the following set of iterative
equations for i = 1, . . . ,N :

pi(t + 1) = f [Yi(t − 1) + �i · p(t)],

where �i is the ith row of �. In steady state it has to be
fulfilled,

p∗
i = f [f −1(p∗

i ) + �ip∗],

for i = 1, . . . ,N . By applying the inverse map we get

f −1(p∗
i ) = f −1(p∗

i ) + �ip∗. (4)

The above requires y∗
i

.= �ip∗ = 0, unless either p∗
i = 1 [i.e.,

Y∗
i = f −1(p∗

i ) = ∞], or p∗
i = 0 (i.e., Y∗

i = −∞).
It is easy to verify that if there exists i such that p∗

i = 0,
then the same is true for all i ∈ N . Indeed, when p∗

i = 0, then
from Eq. (3) it must hold that either (1) y∗

i > 0, or (2) p∗
j = 0

for all j in the neighborhood of i, j ∈ Ni . The condition 1
implies p∗

i = 1, which is a contradiction. Condition 2 yields
p∗

i = 0 for all i ∈ N by repeating the same argument to the
nodes in the neighborhood of i, until all nodes are reached. We
note that this case is also covered by the requirement �ip∗ = 0,
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with the solution p∗ = 0. Hence, a steady-state solution fulfills
p∗ ∈ 0 ∪ (0 1]N and is thereby characterized by nonnegative
steady-state payoffs y∗

i � 0. We note that a steady-state p∗ = 0
is also reached whenever the initial conditions are p(1) = 0.
We will, however, exclude this trivial possibility in the analysis
that follows.

In steady state, the nodes may thus be attributed
to two (disjoint) sets, W = {w ∈ N : y∗

w = 0} and S =
{s ∈ N : y∗

s > 0}, depending on the steady-state payoff y∗
i .

As a consequence of Eq. (4), the nodes in S are further
characterized by p∗

i = 1, while the nodes in W may take
both values p∗

i = 1 and p∗
i < 1, depending on the network

parameters. We will refer to the nodes in the sets W and
S as “weak”, respectively, “strong” nodes, with an intention
to emphasize their role in the bifurcation analysis performed
later. Accordingly, there are two sets of relations that have to
be satisfied:

0 = b

di

∑
j

Aijp
∗
j − czip

∗
i , i ∈ W,

y∗
i = b

di

∑
j

Aijp
∗
j − czi, i ∈ S. (5)

Note that in Eqs. (5) the sets W,S, the steady-state values
p∗

i , i ∈ W , and the constants y∗
i , i ∈ S are unknown.

B. Properties of the model

In the following we derive some important properties of
the model. In particular, we investigate the necessary and
sufficient conditions for the spread and stability of cooperation,
in relation to the network topology.

1. Robustness to exploitation. The nonnegativity of the
individual steady-state payoffs y∗

i in Eq. (5) has an important
implication on the promotion of cooperation in networks as it
ultimately protects the individual nodes from exploitation by
the rest of the network. This is, in general, at contrast to other
mechanisms based on general reciprocity where the anonymity
of donors and receivers makes it difficult to single out and
punish defectors, leaving the nodes vulnerable to exploitation.
Figure 2 illustrates the range of the individual steady-state
payoffs and the average network payoff 〈y∗〉 as a function of
the benefit/cost ratio b/c, for the different network models.

2. Necessary condition for the existence of cooperation. It is
easy to show that b/c < 1 implies pi = 0 for all i ∈ N . Indeed,
if there exists i such that p∗

i > 0, then the total steady-state
network payoff,

∑
i

y∗
i = b

∑
i

∑
j

Aij

di

p∗
j − c

∑
i

∑
j

Aji

dj

p∗
i

= (b − c)
∑

i

zip
∗
i , (6)

is strictly negative, implying that there is some i for which
y∗

i < 0 (contradiction). Hence, b/c � 1 is a necessary condi-
tion for the existence of cooperators (nodes with p∗

i > 0).
3. Promotion of cooperation. We observe that when

b/c > 1, the steady-state probabilities are strictly greater than
0, p∗

i > 0 for all i ∈ N . Indeed, if there exists i such that
p∗

i = 0 then, as already discussed, it must hold that p∗
i = 0, for

1 2 3 4 5
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y
∗
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1 2 3 4 5
b/c

0

2

4

y
∗

(b)

1 2 3 4 5
b/c

0

2

4

y
∗

(c)

1 2 3 4 5
b/c

0

2

4

y
∗

(d)

FIG. 2. Average steady-state payoff 〈y∗〉 as a function of b/c

(solid line), averaged over 100 graph realizations. The regions
(in lighter shade) enclose the area between the minimum and the
maximum node payoff observed in the network. (a) Regular graph.
(b) ER graph. (c) BA graph. (d) WS graph. (a–d) All graphs have
1000 nodes and average degree 8.

all i ∈ N . This, however, would yield a total network payoff∑
i y

∗
i = 0, which contradicts Eq. (6).

4. Sufficient condition for the existence of unconditional
cooperators (strong nodes). When b/c > 1, there is always
at least one strong node in the network. This follows directly
from the observation that when b/c > 1 the right-hand side of
Eq. (6) is strictly greater than zero, which implies that there is
at least one i for which y∗

i > 0 and p∗
i = 1. Combined together,

property 3 and property 4 state that, as a consequence of the
update rule 2, the network nodes cooperate with the maximum
possible probability, such as their payoff is nonnegative. In
other words, they are not exploited by their environment.

5. Necessary condition for the existence of unconditional
cooperators (strong nodes). The condition zi > b/c implies
p∗

i < 1, which follows by substituting
∑

j

Aij

di
p∗

j � 1 in
Eq. (5). In other words, a necessary condition for i to be
strong (i.e., unconditional cooperator p∗

i = 1) is zi � b/c.
6. Necessary and sufficient condition for full network

cooperation. We show that

b/c � zmax, (7)

where zmax is the largest neighborhood importance index in the
graph, zmax = maxi(zi), is both necessary and sufficient for all
nodes to be strong (full network cooperation).

We note that the proof that p∗
i = 1, ∀i ∈ N , implies b/c �

zmax, follows directly from property 3. To prove the converse,
we use contradiction. We first define pmin = inf p∗

i , i ∈ N ,
and set b/c to be greater than one (b/c > 1 being the
prerequisite for cooperative behavior).

Now, let us assume that the converse is not true, that is
b/c � zi for all i, and there exists some i such that p∗

i < 1.
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Under this assumption, for all i we would have

y∗
i = b

∑
j

Aij

di

p∗
j − czip

∗
i ,

� b
∑

j

Aij

di

p∗
j − c

b

c
p∗

i ,

which implies

p∗
i + y∗

i

b
�

∑
j

Aij

di

p∗
j .

However, for those i satisfying p∗
i < 1, we know that y∗

i = 0,
implying

p∗
i �

∑
j

Aij

di

p∗
j � pmin. (8)

For all i satisfying b/c > zi , Eq. (8) holds with strict inequality,
whereas those i ′ for which b/c = zi ′ must satisfy p∗

i ′ = pmin.
This, however, can hold if and only if the nodes corresponding
to these indices are only linked to each other, i.e., form a
connected component. In that case, zmax = 1 = b/c, which
contradicts the assumption b/c > 1. Hence, the converse must
also be true, which concludes the proof.

C. Derivation of the steady-state solution

Having addressed the general steady-state behavior of the
model and derived its most important properties, here we
provide bifurcation analysis to determine the steady-state
solution of Eq. (5). To do so, we keep the cost c fixed and
vary the benefit b to determine their influence on the system.
Figure 3 serves as a graphical illustration for the analysis.

We start with the remark that b/c � zmax ensures that all
nodes are unconditional cooperators (i.e., strong), p∗

i = 1, for
all i ∈ N . This follows directly from necessary and sufficient
condition for full network cooperation (property 6). We denote
b1 = czmax and introduce W1 as the set of nodes with indices
w1 ∈ W1, satisfying zw1 = b1/c (note that W1 may have
more than one element). For i ∈ W1 the payoff becomes
y∗

i = 0, while it is still p∗
i = 1. By reducing b beyond b1, for

FIG. 3. (a) A visualization of a small random graph with 10 nodes.
The nodes are colored according to the order of switching from strong
to weak when decreasing the b/c ratio—a darker color indicates
higher switching propensity. The node size is proportional to the index
zi . (b) Fraction of strong nodes σ as a function of the (decreasing)
b/c ratio.

i ∈ W1 the probability of cooperation becomes p∗
i < 1 (i.e.,

the nodes become weak), as p∗
i = 1 would imply a payoff

y∗
i < 0 (contradiction). The value(s) p∗

i are determined from
Eq. (5), by plugging in p∗

i < 1 for i ∈ W1. Thus, b1 is the first
bifurcation point and the nodes in the set W1 are the first to
become weak, i.e., to break up with unconditional cooperation.
The remaining nodes S (1) = N \ W1 are still strong.

We proceed by using induction to determine the set of weak
nodes W (n+1) = ⋃n

i=1 Wi and the (remaining) strong nodes
S (n+1) = N \ W (n+1) for any b in the interval between two
bifurcation points, bn > b � bn+1. After substituting p∗

i = 1
for the nodes in S (n+1), we determine p∗

i for the nodes in
W (n+1) from the remaining equations.

By applying some simple algebra to reorganize the equa-
tions for the nodes in the set W (n), for all b in the interval
between bn and the next bifurcation point bn+1, bn > b � bn+1,
we obtain∑

j∈S (n)

b

czidi

Aij = p∗
i −

∑
j∈W (n)

b

czidi

Aijp
∗
j , i ∈ W (n).

The last equation can be written in matrix form,

a = (I − AW (n) )p∗, (9)

where the vector a is the vector of sums appearing on the
left-hand side of Eq. (9), while AW (n) is a weighted version of
the neighborhood matrix of the subgraph associated withW (n).
The solution is unique provided that the matrix I − AW (n) is
nonsingular; i.e., the inverse (I − AW (n) )−1 exists. In that case
the solution reads

p∗ = (I − AW (n) )−1a.

We note that in reality, and particularly in large networks,
the nonsingularity condition for I − AW (n) is fulfilled almost
certainly.

D. Alternate projection method for the steady-state solution

The bifurcation analysis provides an analytical solution to
the steady-state cooperation probabilities for each b/c > 1.
By the definition of steady state, the same solution would be
obtained by starting from an arbitrary initial condition p(0) ∈
(0 1]N and letting the network evolve according to our payoff
and update rules. Note that the steady-state conditions may be
reformulated as

y∗
i = b

∑
j

Aij

di

p∗
j − czip

∗
i ,

0 = y∗
i (1 − p∗

i ),

resulting in a nonlinear (quadratic) system of 2N equations
with 2N variables in total. Hence, a simplified, iterative
approach based on the alternate projection method can be
used for finding the steady-state solution. This method may
be summarized as follows:

(1) Set y∗
i = 0 for all i satisfying the condition zi � b/c.

Set p∗
i = 1 for the remaining nodes. Solve the N -dimensional

linear system to find the remaining p∗
i and y∗

i (N unknowns in
total).

(2) For all i satisfying y∗
i < 0 in the obtained solution, set

y∗
i = 0 and let their corresponding p∗

i to be unknown. Solve
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TABLE I. Cooperation mechanisms.

Mechanism Rule Note

Kin selection b/c > 1/g g denotes the probability that two agents share a gene [2].
Group selection b/c > 1 + n/m n and m are, respectively, the maximum group size

and number of groups [4].
Direct reciprocity b/c > 1/w w is the probability that a game will last one more round [7].
Network reciprocity b/c > 〈d〉 〈d〉 is the average number of neighbors [19].
Network reciprocity b/c > 〈d2〉 〈d2〉 is the average degree of the nearest neighbors [56].
(revisited)
Indirect reciprocity b/c > 1/q q is the probability to know someone’s reputation [55].
Generalized reciprocity b/c > (v + n2)/(v − n2) v denotes the number of interactions, and n is the group size [40].
Generalized reciprocity b/c � zmax zmax is the maximum neighborhood importance index.
on graphs

again the corresponding linear system of N equations with N

unknowns in total.
(3) Repeat steps 1 and 2 until there are no y∗

i < 0.

E. Implications of the model

While the connection is not imminent, the addressed model
may still be framed in the context of evolutionary game theory,
by associating the accumulated payoff with fitness of the
individual nodes. In this sense, our main contribution can
be related to the results for the known rules for evolution
of cooperation (see Table I). In particular, it can be seen
as a rule for cooperation based on generalized reciprocity
on graphs. One has to be careful, however, when comparing
the different rules, as they usually arise from different setups
and are dependent on the interaction model or game update.
For example, the model in Ref. [40] assumes pairwise node
interactions where each node pair is chosen on random during
each iteration, yielding a uniform distribution on the number
of interaction instances per node. In our model, on the other
hand, some nodes (i.e., those with a large z index) engage
more regularly in the interactions with their neighbors, thus
reflecting the role of network structure. With this in mind, and
after accounting for the differences in the interaction model,

a natural connection may be made between the presented
mechanism based on generalized reciprocity on graphs, and
the mechanisms based on indirect reciprocity [55], network
reciprocity (revisited) [56], and generalized reciprocity [40],
as highlighted in Table I.

We turn our attention to Fig. 4(a), which sheds light on the
effect of network structure on the promotion of cooperation
under the addressed model. As an indicator for the level of
network cooperation we consider the steady-state fraction of
unconditional cooperators σ as a function of the benefit/cost
ratio b/c (b > c is the prerequisite for cooperation). The figure
reveals that the Barabasi-Albert (BA) scale-free graph requires
the largest b/c for full network cooperation to take place
(all nodes unconditional cooperators), followed by the Erdos-
Renyi (ER) graph and the Watts-Strogatz (WS) small-world
graph. In contrast, for a small b/c ratio, the BA graph has the
largest fraction of cooperators among these three graph types.
The Regular graph presents itself as the most supportive to
cooperation, as b > c implies full, unconditional cooperation
on network level.

The reason for this behavior may be directly inferred from
Fig. 4(b), where we depict the probability density function
(pdf) of the index z across the network nodes for the same
random graphs. We recall that that the individual cooperative

1 2 3 4 5
b/c

0

0.2

0.4

0.6

0.8

1

σ

(a)

Regular ER BA WS

1.1 1.2 1.3
b/c

0.2
0.4
0.6

σ

0 1 2 3 4
z

0

0.02

0.04

0.06

0.08

0.1

p
z
( z

)

(b)

FIG. 4. (a) Fraction of unconditional cooperators σ as a function of b/c for Regular, ER, BA, and WS graphs. Dashed lines indicate the
threshold for full network cooperation according to Eq. (7). (b) Probability density function (pdf) of the index z for the same random graphs.
We note that for the Regular graph the pdf is concentrated on a single point (i.e., the index z is the same across all nodes, z = 1). (a, b) The
results are obtained by averaging over 100 different graph realizations. All graphs have 1000 nodes and average degree 8.
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behavior in the network is determined by this index. The nodes
with a higher value of it are in “less favorable” position in
the network, as they will be called upon more often in our
interactions model. For higher values of the benefit-to-cost
ratio b/c, the global cooperative behavior is dominated by
the tail (the right-hand side) of the distribution, i.e., the
fraction of network nodes with high values of the z index.
This explains exactly the lower fraction of unconditional
cooperators in the BA graph in this regime, as compared to
the other random graph configurations. On the other hand, the
behavior in the low b/c regime is determined by the left-hand
side of the distribution, where again a large mass is distributed
in the case of the BA graph. As a result, in this regime we
find higher fraction of unconditional cooperators in the BA
graph compared to the ER and the WS graph, as shown in the
box of Fig. 4(a).

F. Stability of cooperation

So far, we addressed the case when all nodes were subject
to the same behavioral mechanism Eq. (2) to update their
individual probabilities of cooperation. In the following,
we assume that a fraction δ = D/N of the nodes become
unconditional defectors [pi(t) = 0], independent on their
accumulated payoff. The aim is to assess the robustness of
the (in general cooperative) behavioral update to the presence
of defectors.

The bifurcation analysis as well as the alternate projection
method can be easily accommodated to account for this charac-
teristic. Additionally, several properties derived for the original
case can be generalized to this setup. Particularly, in the pres-
ence of unconditional defectors, the necessary condition for
existence of unconditional cooperators (property 5), becomes
di

qi
zi � b/c, where qi is the number of neighbors of i that are

not unconditional defectors. In addition, the necessary and
sufficient condition for full network cooperation (property 6)
now reads b/c � maxi

di

qi
zi . The remaining properties cannot

be easily generalized as they depend on the initial selection of
defecting nodes.

Numerical results are summarized in Fig. 5, where we plot a
heat map for the fraction of “defective instances” as a function
of δ and b/c. By defective instance we understand the absence
of a strong node in the network in steady state. Interestingly,
the BA graph presents itself as the most robust to an invasion
of defectors, as it registers the smallest number of defective
instances δ for the same ratio b/c. The ER graph provides to
be slightly less robust than the BA graph. As least robust to
an invasion of defectors come the WS and the Regular graph,
which present similar behavior in this setup. The reason for this
behavior becomes apparent if we, again, look at the distribution
of the index z in different random graphs. Since in this case we
are interested in the number of defective instances (i.e., graph
realizations without unconditional cooperators in the network),
decisive is the shape of the left-hand side of the pdf of z. As
the existence of unconditional defectors in the neighborhood
of a node i decreases the payoff of node i, its influence on
the cooperative behavior of node i may be understood as
an “effective” increase of the value of the index zi . This,
on the other hand, may drive unconditional cooperators to
extinction (a defective distance is declared for the particular

(a)
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1
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0

δ

(b)

1 3 5 7
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1

0.5

0

δ

(c)

1 3 5 7
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1
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0

δ

(d)

1 3 5 7
b/c

1

0.5

0

δ 0.2

0.4

0.6

0.8

1

FIG. 5. Heat map for the fraction of defective instances as a
function of δ = D/N and b/c. D out of N nodes are randomly
chosen to be unconditional defectors and the results are averaged
over 100 realizations. (a) Regular graph. (b) ER graph. (c) BA graph.
(d) WS graph. (a–d) All graphs have 100 nodes and average degree
8. Results are averaged across 100 graph realizations.

configuration). As depicted in Fig. 4(b), due to the higher
fraction of nodes with small values of the index z, the BA
graph is on average less affected by this condition; i.e., it is
more robust to an invasion of defectors.

G. Accounting for restricted memory

The state-based behavioral rule Eq. (2) implicitly assumes
that each past event is valued equally. However, sometimes the
agents (nodes) have short memory and thus may give higher
importance to recent interactions. We can account for this
effect by adding a weight r , 0 � r � 1, to the accumulated
payoff; i.e.,

Yi(t) = rYi(t − 1) + �ip(t).

We note that the case r = 1 corresponds to the update Eq. (2).
When r < 1, the steady-state probability for cooperation for
node i is

p∗
i = f

(
�ip∗

1 − r

)
= f

(
y∗

i

1 − r

)
. (10)

In this case, the accumulated payoff converges to a finite value
since the steady-state payoffs represent converging geometric
series, implying 0 < p∗

i < 1. We point out that, with the
introduction of the weight r , exploitation cannot be prevented
by employing the update rule Eq. (2) for small enough b/c

ratios, as in some cases it may happen that y∗
i < 0 for some i.

This can be seen by applying the inverse map to Eq. (10), as
we get

y∗
i = (1 − r)f −1(p∗

i ),

which can be negative if f −1(p∗
i ) is negative. This happens,

for example, if f (·) is the standard logistic function, with
steepness k = 1 and midpoint ω0 = 0, and p∗

i < 1/2.
However, there is a threshold β∗ for which if b/c � β∗

exploitation is prevented. As can be seen from Eq. (10)
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the threshold depends on the underlying network type and
the parameter r , and cannot be easily derived. Nevertheless,
we can provide its lower and upper bounds, βLB and βUB

that are independent from r . In particular, we can safely
assume that βLB = 1 because, as previously said, b/c > 1 is a
prerequisite for cooperation. To derive the upper bound βUB,
we again assume the existence of the minimal probability for
cooperation pmin (its presence is a valid assumption since, from
Eq. (10), we know that pi > 0 for all i). Then, from Eq. (5), it
follows that yi � bpmin − czipi . Therefore, in order for yi to
be nonnegative for all i it must be that

bpmin � czipi � czipmin

for all i, or b/c � zmax. Interestingly, this is the same value
as the condition for full network cooperation in the infinite
memory case. When the network is regular, the bounds
coincide, thus leading to β∗ = 1, a result which is independent
of r .

Finally, it is worth mentioning that, when r = 0, f (·) is very
steep (such that pi(t + 1) = 1 if yi(t) > 0, and pi(t + 1) = 0,
otherwise) and setting N = 2, we get the tit-for-tat strategy in
the iterated prisoner’s dilemma.

IV. DISCUSSION

We argue that the (stochastic) Eqs. (1) and (2) provide a
realistic model for the dynamics of network interactions in a
large plethora of real-life networks. Under this model, network
cooperation comes as a result of the inherent feature of the
behavioral mechanism that prevents participating nodes from
being exploited by the environment. In particular, the simple
update rule Eq. (2) requires minimal cognitive abilities and
very little information retention and retrieval as the decisions
of individuals to cooperate or not only depend on their internal

state, which captures the past experience of their interactions
with the network. The internal state may mirror fitness in
biological systems, wealth or well-being in animal and human
societies, or battery level (energy) in artificial systems (e.g.,
wireless ad hoc networks). Due to its simplicity, this behavioral
mechanism is more likely to evolve in real networks than, e.g.,
direct or indirect types of reciprocity, which require much more
specific memory, cognitive ability and effort.

A corollary of our findings is that, under the addressed
model for network interactions [Eq. (1)] and the behavioral
mechanism [Eq. (2)], the BA scale-free graph is the most
inhibitive to cooperation, followed by the ER graph and the
WS small-world graph, while the regular graph presents itself
as the most supportive for cooperation (as displayed in Figs. 4
and 2). The picture is inverted in the presence of pure defectors
in the network, as then, the BA graph provides the highest
degree of robustness, followed by the ER graph (as captured
by Fig. 5).

We point out that while most of our conclusions are along
the same lines as in Refs. [10,56,57], they do not contradict the
findings in Refs. [58,59], which suggest that, under the model
addressed there, scale-free networks enhance cooperation. We
argue that the apparent inconsistencies found in the literature
may be attributed to the differences in the way that network
interactions are modeled. Therefore, it is important that all
findings in this context are, in general, interpreted in light of
the specifics of the addressed model only.
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