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Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks
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This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics
in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a
probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated.
The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random
graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine
measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number
of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine
measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in
containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under
a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected
individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations
also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.
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I. INTRODUCTION

Recently, several studies were devoted to examining the
spread of epidemics on networks in which nodes represent
individuals and edges represent their social or sexual relation-
ships through which an infectious disease spreads (as shown
in review [1] and references therein). Theoretical studies for
epidemiological models demonstrated that infectious diseases
could spread very easily in highly heterogeneous networks
[2,3]. Specifically, two fundamental epidemic models, namely
the susceptible-infected-removed (SIR) model [4] and the
susceptible-infected-susceptible model [5], exhibit outbreaks
of finite relative sizes with an infinitesimal infection rate if the
underlying network is fat-tailed scale-free such that the degree
distribution obeys pk ∝ k−γ , with γ � 3 [6,7].

In order to contain epidemics, several control measures
were proposed that utilize network information. Epidemics
can be suppressed by effective vaccination schemes such as the
target vaccination [8], the acquaintance vaccination [9,10], the
PageRank-based vaccination [11], and the graph partitioning
vaccination [12]. Theoretically, the above vaccination schemes
succeed in containing epidemics in which a network is
highly heterogeneous although these vaccination schemes are
considered as a preventive measure wherein it is necessary to
complete vaccinations prior to the appearance of an infectious
disease in a network.

With respect to postoutbreak strategies, previous studies ex-
amined local control measures in which susceptible individuals
who were in contact with an infected individual are vaccinated
or isolated [13–19]. Dybiec et al. [13,14] considered a spatial
epidemic model in a situation in which individuals can be
infectious prior to exhibiting symptoms (and therefore prior to
detection), and a local control measure is probabilistically ap-
plied in a neighborhood centered around a detected infectious
individual. The results indicated the optimal radius necessary
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for the aforementioned type of a control neighborhood to
contain epidemics in terms of economic costs associated with
disease and treatment. Takeuchi and Yamamoto [15] studied a
ring vaccination in which susceptible individuals who came in
contact with infected ones were probabilistically vaccinated.
The findings revealed that the ring vaccination scheme reduced
the infection rate and the number of vaccinated nodes becomes
considerably small when compared to those in the preventive
strategies. However, the basic reproduction number (and thus
the epidemic threshold) remained equal to those of random
preventive vaccination, and this failed to contain epidemics in
a highly heterogeneous network unless almost all individuals
were vaccinated. There are also studies investigating dynamic
reactions of individuals to the spread of epidemics [20–25],
such as behavioral responses of individuals by reducing their
contact rates [25], based on the number of infected neighbors or
by rewiring connections (i.e., disconnecting their connections
to infected neighbors and reconnecting others) [21].

In order to clarify the extent to which an ideal quarantine
measure suppresses epidemics, the present study considers
a simple case in which an individual is detected with a
probability immediately after it becomes infected and the
detected one and its neighbors are promptly quarantined. The
efficiency of the prompt quarantine measure is numerically
and analytically investigated to suppress SIR epidemics in
typical networks in terms of the mean outbreak size, the
epidemic threshold, and the occurrence probability of global
outbreaks. The prompt quarantine measure is highly effective
in containing epidemics, and it can theoretically eradicate
epidemics in highly heterogeneous networks even when
infected individuals are detected with a very small probability.
The numerical simulations also indicate that the quarantine
measure is effective in real networks.

II. MODEL

A discrete-time SIR model in a network is considered. For
a given network with N nodes, each node corresponds to one
of the following three states: susceptible (S), infected (I), or
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removed (R). Any S node can be infected by contact with
adjacent I nodes. An I node infects each of its S neighbors
independently with probability T and then spontaneously
becomes R. A node that changes to the state R loses its
capability to infect other nodes and does not change its state
any further. The dynamics of the whole system is as follows.

(1) Randomly select a node as a seed. As an initial
configuration, all nodes except the seed are set to S, and the
seed is set to I.

(2) Randomly select an I node i. Compile a new list of the
S neighbors of node i. Randomly select a node from the list
and change its state from S to I with probability T . Repeat this
procedure until the list is empty, and then change the state of
node i to R.

(3) Continue step (2) until I nodes cease to exist. That is,
each node belongs to either S or R state in a final configuration.

The SIR model placed on a network has an epidemic
threshold Tc, in which an epidemic commencing from a seed
terminates at an early stage for T < Tc, and a seed can cause a
global outbreak (an outbreak of a finite relative size) for T >

Tc. The order parameter r defined by the mean fraction of the R
nodes in final configurations is used to obtain r = 0 for T � Tc

and r > 0 for T > Tc in the limit N → ∞. The epidemic
threshold depends on the structure of the underlying network.
With respect to uncorrelated networks with degree distribution
pk , the local tree approximation gives Tc = 〈k〉/〈k(k − 1)〉
[26], where 〈·〉 represents the average of a quantity weighted
by pk . This indicates that it is considerably easier for a
global outbreak to occur on heterogeneous networks when
compared to homogeneous networks: Tc = 0 for fat-tailed
scale-free networks (SFNs) of pk ∝ k−γ with 2 < γ � 3,
although Tc = 1/〈k〉 > 0 for random graphs (RGs) in which
the degree distribution obeys pk ≈ 〈k〉ke−〈k〉/k! with the same
mean degree as that of the SFNs.

This is followed by introducing a prompt quarantine
measure with respect to the SIR model. The proposed
quarantine measure assumes that node i can be detected
(for example, by public health authorities) with a detection
probability f immediately after it becomes infected, and
the detected node i and its neighbors (except nodes already
removed or quarantined) are promptly isolated. The detected
and quarantined nodes lose the capability to infect others and
to be further infected. It is also assumed that nodes already
infected are cured by appropriate treatments when they are
isolated. In order to incorporate this quarantine measure,
an extended SIR model is considered by introducing the
following additional states: detected (D) and quarantined (Q).
The complete dynamics is modified as follows:

(2′) Randomly select an I node i. Compile a new list of the
S neighbors of node i. Randomly select a node j from the list
[Fig. 1(a)]. With probability T , a disease is transmitted from
node i to node j ; i.e., the state of j is changed to I [Fig. 1(b)].
Immediately after that, change the state of j to D with
probability f [Fig. 1(c)]. If node j becomes D, then change the
state of its S and I neighbors to Q [Fig. 1(d)] and go to step (3).
If node j is not D, repeat the procedure until the list is empty
[Fig. 1(e)], and subsequently change the state of node i to R.

It should be noted that an I node attempts to infect each of
its S neighbors, but this type of a process stops immediately
when one of its neighbors becomes D.

FIG. 1. Transition rules of the SIR model with quarantine
measures. (a) A node j is randomly selected among the susceptible
neighbors of infected node i. (b) With probability T , disease is
transmitted from i to j . Immediately after (b), (c) this newly infected
node j is detected with probability f , and (d) node j and its
susceptible and infected neighbors (including node i) are promptly
isolated. (e) If node j is not detected, node i tries to infect the next
susceptible neighbor.

III. RESULTS

A. Order parameter

To test the efficiency of the quarantine measure to suppress
epidemics, Monte Carlo simulations are performed for the
SIR model with the quarantine measure in the two following
typical networks: the uncorrelated SFNs with pk ∝ k−2.7

(k � kmin = 2) that are realized by the configuration model [2],
and the RGs with the same mean degree as the SFNs, i.e.,
〈k〉 ≈ 3.844. The number of nodes is N = 105. The average of
quantities at a given f and T is taken over 103 trials ×102 graph
realizations. The detection probability f is set to f = 0.01
and 0.2.

Similar simulations are also executed without a control
measure, with a random vaccination scheme and with the
acquaintance vaccination scheme. In the random vaccination
scheme, a fraction of nodes to be vaccinated are randomly
selected. In the acquaintance vaccination scheme, a random
neighbor of a random node is repeatedly selected for vaccina-
tion. In both schemes, nodes are vaccinated prior to the start
of an outbreak and the nodes possess perfect immunity such
that they never change their state. The fraction of vaccinated
nodes is parametrized by f to compare the quarantine and
vaccinations. However, it is noted that the actual fraction of D
and Q nodes for the quarantine measure does not correspond
to f .

Figure 2 plots the mean fraction of the R nodes, r , as
a function of T . With respect to the RGs [Fig. 2(a)], the
quarantine measure outperforms the vaccination schemes in
terms of reducing the number of R nodes. This is also
applicable for the SFNs [Fig. 2(b)]. With respect to the SFNs,
there are hubs with numerous neighbors through which many
chances of becoming infected and infecting other nodes exist.
In the quarantine measure, hubs do not appear to leverage their
spreading abilities because they can be easily isolated. That is,
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(a) (b)

FIG. 2. The order parameter r , as a function of T , for (a) the RGs and (b) the SFNs. Here f is set to f = 0.01 (open symbols) and 0.2
(solid symbols). The red circles, green triangles, and blue squares represent the results for the quarantine measure, the random vaccination,
and the acquaintance vaccination, respectively. The black line represents the result of the original SIR model. In (a), the open green triangles
(random vaccination with f = 0.01) fall behind the open blue squares (acquaintance vaccination with f = 0.01).

a hub is quarantined if only one of its numerous neighbors is
detected.

The fraction of nodes infected once may be adopted as
the order parameter for the quarantine measure instead of
the fraction of the R nodes. The difference is that the order
parameter r does not include the D nodes and Q nodes who
were already infected when they were isolated. Nevertheless,
the superiority of the quarantine measure is almost unchanged
even when such an order parameter is adopted (not shown).

Figure 3(a) plots the f dependence of r for the SFNs when
T is large (T = 0.5 and 1.0). The quarantine measure succeeds
in reducing outbreak size when compared with that of other
vaccination schemes. Figure 3(b) plots the mean number of
isolated nodes (nodes in the D or Q state) as a function of
f . When f is not too small, the number of isolated nodes is
fewer than that of vaccinated nodes because epidemics can
be immediately detected at an early stage and eradicated by
isolations. Specifically, the quarantine measure can contain
epidemics even with T = 1.0 if f > fc 	 0.4314, where fc

is given by Eq. (5) as derived below.

B. Epidemic threshold, occurrence probability of global
outbreaks, and phase diagram

The epidemic threshold and the occurrence probability of
global outbreaks are derived by using a generating function

formalism [26]. An infinitely large uncorrelated network with
degree distribution pk is assumed. The generating function
G0(x) for the degree distribution pk is defined as follows:

G0(x) =
∞∑

k=kmin

pkx
k. (1)

A node reached by following a randomly selected edge is
considered. This node has other k − 1 neighbors, whose
number is termed as the excess degree, with probability
qk−1 = kpk/〈k〉. The generating function G1(x) for the excess
degree distribution qk is given as follows:

G1(x) =
∞∑

k=kmin

qk−1x
k−1 =

∞∑
k=kmin

kpk

〈k〉 xk−1. (2)

This is followed by considering an early stage of an
outbreak under the quarantine measure. When an I node is
adjacent to an S neighbor, then the state of the neighbor remains
as S with probability 1 − T , becomes I with probability
(1 − f )T , and becomes D with probability f T . An I node
with k neighbors is changed to Q and subsequent transmissions
are not performed, when one of the neighbors becomes D.
During transmissions between an I node and k S neighbors,
the probability that the k′th neighbor (1 � k′ � k) becomes
D is f T [1 − T + (1 − f )T ]k

′−1 and the probability that no

(a) (b)

FIG. 3. The order parameter r , as a function of f , for the SFNs. Here T is set to T = 0.5 (open symbols) and T = 1.0 (solid symbols). The
red circles, green triangles, and blue squares represent the results for the quarantine measure, the random vaccination, and the acquaintance
vaccination, respectively.
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(a) (b)

FIG. 4. Logarithmic plot of the order parameter, r , for (a) the RGs and (b) the SFNs with N = 104 (red circles), 105 (green triangles), and
106 (blue squares). The open symbols and solid symbols represent the results of f = 0.01 and 0.2, respectively. Two vertical lines represent
the epidemic threshold Tc of f = 0.01 (left) and f = 0.2 (right) as given by Eq. (5).

neighbors become D is [1 − T + (1 − f )T ]k . Therefore, the generating function F0(x) for the probability distribution of the
number of newly infected neighbors from a randomly chosen I node is as follows:

F0(x) =
∞∑

k=kmin

pk

{
k∑

k′=1

f T [1 − T + (1 − f )T x]k
′−1 + [1 − T + (1 − f )T x]k

}

= f T
1 − G0[1 − T + (1 − f )T x]

1 − [1 − T + (1 − f )T x]
+ G0[1 − T + (1 − f )T x]. (3)

Similarly, F1(x) denotes the generating function for the probability distribution of the number of newly infected neighbors from
an I node that is reached by following a randomly chosen edge as follows:

F1(x) =
∞∑

k=kmin

kpk

〈k〉

{
k−1∑
k′=1

f T [1 − T + (1 − f )T x]k
′−1 + [1 − T + (1 − f )T x]k−1

}

= f T
1 − G1[1 − T + (1 − f )T x]

1 − [1 − T + (1 − f )T x]
+ G1[1 − T + (1 − f )T x]. (4)

The infections spread only if the mean offspring number F ′
1(1)

exceeds one, and thus the epidemic threshold Tc(f ) is given
by the following condition:

F ′
1(1) = 1 ⇔ 1 − f

f
[1 − G1(1 − f Tc)] = 1. (5)

In the limit f → 0, Eq. (5) reduces to a known result for the
original SIR model as

Tc(0) = 1

G′
1(1)

= 〈k〉
〈k(k − 1)〉 . (6)

The probability that a seed induces a global outbreak for
T > Tc(f ) is also derived. Let Ps denote the probability that a
seed induces an outbreak in which s nodes were once infected
and Qs the probability that a node infected by another node
causes the infections of s nodes. Then the generating functions
for Ps and Qs are given as H0(x) = ∑

s Psx
s and H1(x) =∑

s Qsx
s , respectively. The recursive relations for H0(x) and

H1(x) are as follows:

H0(x) = xF0[H1(x)] and H1(x) = xF1[H1(x)]. (7)

Furthermore, H0(1) = ∑
s Ps denotes the probability that an

epidemic that begins from a seed terminates with finite

infections, and the occurrence probability of global outbreak
is expressed as

1 − H0(1) = 1 − F0(v), (8)

where v is the solution of

v = F1(v). (9)

To check the aforementioned estimate, the N dependence
of the order parameter r is considered for the RG [Fig. 4(a)]
and the SFN [Fig. 4(b)]. Monte Carlo simulations confirm that
r of N nodes approaches zero for T < Tc with increasing N .
Figure 5 plots the probability of global outbreaks given by
Eq. (8). In the Monte Carlo simulations, a fraction of samples
such that the fraction of R nodes exceeds 1% is regarded as the
occurrence probability of global outbreaks. For both RGs and
SFNs, the analytical results coincide well with the numerical
results.

An evaluation of Eq. (5) plots the phase boundary in the
(f,T ) plane as shown in Fig. 6(a) for the RG and Fig. 6(b)
for the SFN, respectively. The present quarantine measure
is highly effective in increasing the epidemic threshold.
Specifically, the quarantine measure increases Tc(f ) in the
fat-tailed SFNs from zero to a positive value even when the
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(a) (b)

FIG. 5. The probability that a single infected node induces a global outbreak for (a) the RGs and (b) the SFNs with N = 104 (red circles),
105 (green triangles), and 106 (blue squares). The detection probability is set to f = 0.01 (open symbols) and 0.2 (solid symbols), in which
symbols denote the fraction of samples such that the fraction of R nodes exceeds 1%. The solid and dashed lines represent the probability of
global outbreaks (8) for f = 0.01 and 0.2, respectively. Two vertical lines represent the epidemic threshold Tc of f = 0.01 (left) and f = 0.2
(right), as given by Eq. (5).

detection probability is small. Expanding Eq. (5) for f � 1
(as shown in the Appendix) results in Tc(f ) of uncorrelated
SFNs with pk ∝ k−γ (k � kmin) as

Tc(f ) 	

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αγ f
3−γ

γ−2 , 2 < γ < 3,

α3|ln f |−1, γ = 3,

Tc(0) + β ′
γ f γ−3, 3 < γ < 4,

Tc(0) + β4f |ln f |, γ = 4,

Tc(0) + βγ f, 4 < γ,

(10)

where aγ and βγ (β ′
γ ) denote constants that depend on γ , and

Tc(0) is given by Eq. (6). Equation (10) shows that Tc(f ) >

0 if f > 0 even in the fat-tailed SFNs with γ � 3, and the
deviation Tc(f ) − Tc(0) for small f � 1 obeys a power law
of f , in which the exponent depends on degree exponent of
the underlying network, γ .

C. Case of real networks

The above numerical and analytical results on the efficiency
of the present quarantine measure were obtained considering
uncorrelated networks. It should be noted that uncorrelated
networks do not possess certain important properties of
realistic contact networks such as a high clustering coefficient,
assortativity, and community structure. However, prompt

isolations can effectively contain epidemics in more realistic
networks. Figures 7(a) and 7(b) show the Monte Carlo results
for the two real networks: the sexual contact network between
Brazilian prostitutes and sex buyers [27], and the friendship
network of Gowalla users (Gowalla is a location-based social
networking website where users share their locations by
checking in) [28]. Since the data of sexual contact network
collected by Rocha et al. [27] constitute a time-ordered list,
we consider a time-integrated network, where multiple edges
between a node pair are accepted. The mean outbreak size is
effectively reduced by the quarantine measure when compared
with those of the random and acquaintance vaccinations. Thus,
the present quarantine measure is expected to hold effective in
real contact networks.

IV. DISCUSSION

This study involved investigating the manner in which a
prompt quarantine measure suppresses epidemics in networks.
The proposed simple and ideal quarantine measure assumed
that an individual is detected with detection probability f

immediately after it becomes infected, and the detected one
and its neighbors are promptly isolated. The efficiency of the
proposed measure in suppressing the SIR model in the RGs

(a) (b)

FIG. 6. Phase boundary in the (f,T ) plane of the SIR model with the quarantine measure on (a) the RGs and (b) the SFNs. The solid lines
represent epidemic threshold Tc(f ), which is evaluated from Eq. (5). Inset of (b): Tc(f ) for f � 1. The dotted line denotes Tc(f ) ∝ f 3/7.

022311-5



TAKEHISA HASEGAWA AND KOJI NEMOTO PHYSICAL REVIEW E 96, 022311 (2017)

(a) (b)

FIG. 7. The order parameter r , as a function of T , for real networks: (a) the sexual contact network between Brazilian prostitutes and sex
buyers and (b) the friendship network of Gowalla users. Here f is set to f = 0.01 (open symbols) and 0.2 (solid symbols). The red circles,
green triangles, and blue squares represent the results for the quarantine measure, the random vaccination, and the acquaintance vaccination,
respectively. The black line represents the result of the original SIR model. The number of nodes is N = 16 748 for the sexual contact network
and N = 196 591 for Gowalla network. The data at given T and f are averaged over 105 trials.

and the uncorrelated SFNs was numerically tested. Monte
Carlo simulations indicated that the quarantine measure out-
performed the random and acquaintance vaccination schemes
with respect to the reduction of the number of R nodes.
The generating function formalism for uncorrelated networks
was used to obtain the occurrence probability of global
outbreaks and the epidemic threshold Tc. The equation that
derives Tc was expanded to show that the epidemic threshold
increases to a positive value even in fat-tailed SFNs given a
nonzero detection probability. We also show that the proposed
quarantine measure is effective in real contact networks.

The present study assumed an idealized situation, where
quarantines can be executed without delay. In practice, there
are time lags among one’s infection, detection, and quarantine,
due to a number of factors (e.g., the time lag to detections by
authorities and the time lag to isolations of infected individuals
and their neighbors). Realistic epidemiological study must take
into account such delay in quarantine measures. Peak et al. [29]
investigated the relationship between the effectiveness of quar-
antine and symptom monitoring, taking into account delay, in
containing epidemics and disease dynamics parametrized by
seven case-study diseases. They showed that the effectiveness
of symptom monitoring and quarantine depends critically on
the properties of the infectious disease, such as latent period,
infectious period, and transmissibility.

Theoretical studies have been devoted to the effectiveness
of different delayed isolations. Pereira and Young [30] studied
the effectiveness of delayed isolations for infected nodes
(not including their neighbors) in controlling susceptible-
infected-susceptible epidemics to show that the disease is (not)
effectively controlled if the delay in isolating infected nodes
is shorter (longer) than a certain critical value. Very recently,
Strona and Castellano [31] considered the SIR model with
a quarantine measure, having a delay in the early stage of
epidemics, and found the rapid decay in its efficiency; if the
implementation is not prompt enough, then the quarantines
become highly inefficient. For our case, the effectiveness
of quarantines is expected to be weakened when a delay
among infection, detection, and quarantine is incorporated.
For example, the model can be extended to have a delay time
tdelay for the execution of a quarantine after a node becomes

“detected.” In the simplest setting, an infected node i with
degree ki can try to infect further kadd = min(tdelay,ki − kD)
neighbors after its kDth neighbor becomes detected. Monte
Carlo simulations for such cases show that the performance
of quarantine strategy actually becomes worse with increasing
delay time tdelay (not shown). The epidemic threshold also
decreases as tdelay increases and reaches the threshold for
the random vaccination with the same value of f when tdelay

becomes larger than the largest degree kmax [32].
Further investigation of the effect of delayed quarantines

is needed, and in order to incorporate delay time properly
it should be discussed by using continuous-time infectious
disease models. The epidemic model used in the present study
corresponds to the discrete-time SIR model. It is naturally
expected that the results can be qualitatively applied in the
case of a continuous-time SIR model. It will be an interesting
future work to investigate the continuous-time SIR model
with delayed quarantines, although the results for our prompt
quarantine measure highlight the importance of the speed
necessary in detecting and quarantining.
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APPENDIX: DERIVATION OF POWER-LAW
BEHAVIORS FOR Tc

The epidemic threshold Tc of uncorrelated SFN with pk ∝
k−γ (k � kmin) is considered when f � 1. For the purposes
of convenience, it is assumed that kmin = 1. In this case, the
generating function for the excess degree distribution G1(x) is

G1(x) =
∞∑

k=1

kpk

〈k〉 xk−1 = 1

ζ (γ − 1)

∞∑
k=1

xk−1

kγ−1
, (A1)

where ζ (s) denotes the Riemann ζ function, ζ (x) = ∑∞
k=1 k−x .
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To discuss the f dependence of Tc for f � 1, a few
properties of G1(x) are first listed. A function with an integral
representation

φs(x) =
∫ ∞

0

us−1

eu − x
du = �(s)

∞∑
k=1

xk−1

ks
(A2)

is introduced such that G1(x) is expressed as

G1(x) = φγ−1(x)

ζ (γ − 1)�(γ − 1)
. (A3)

The function φs(x) is defined for |x| < 1 and s > 0 and is
related to the polylogarithm function, Lis(x) = ∑∞

k=1 xkk−s ,
as follows:

xφs(x) = �(s)Lis(x). (A4)

The Taylor expansion of φs(x) is considered. The nth deriva-
tive with respect to x, denoted as φ(n)

s (x), is expressed as
follows:

φ(n)
s (x) = dnφs(x)

dxn
= n!

∫ ∞

0

us−1

(eu − x)n+1
du. (A5)

It should be noted that φ(n)
s (1) = lim

x→1−
φ(n)

s (x) exists as long as

s > n + 1. The relation

1

eu − x − δ
= 1

eu − x
+ δ

eu − x

1

eu − x − δ

=
n−1∑
m=0

δm

(eu − x)m+1
+ δn

(eu − x)n
1

eu − x − δ

(A6)

is used to obtain the Taylor expansion formula for φs(x) as

φs(x + δ) =
n−1∑
m=0

δm

m!
φ(m)

s (x) + R(n)
s (x,δ), (A7)

R(n)
s (x,δ) =

∫ ∞

0

us−1δn

(eu − x)n(eu − x − δ)
du. (A8)

By setting δ = −ε < 0 and taking the limit x → 1−, the above
expansion gives

φs(1 − ε) =
n−1∑
m=0

(−ε)m

m!
φ(m)

s (1) + (−1)nr (n)
s (ε), (A9)

r (n)
s (ε) =

∫ ∞

0

us−1εn

(eu − 1)n(eu − 1 + ε)
du, (A10)

which is valid as long as s > n. Now we change the integral
variable in the right-hand side as u = εv:

r (n)
s (ε) =

∫ ∞

0

vs−1εs+n

(eεv − 1)n(eεv − 1 + ε)
dv. (A11)

When the integer n satisfies n < s < n + 1, it is possible
to evaluate the ε dependence by taking the small ε limit as
follows:

lim
ε→0+

r (n)
s (ε)

εs−1
=

∫ ∞

0

vs−n−1

v + 1
dv. (A12)

The integral of the right-hand side exists, and it can be
concluded that the following expression is applicable:

r (n)
s (ε) ∼ εs−1, ε → 0 + . (A13)

In the marginal case s = n + 1, the expression (A10) yields

r
(n)
n+1(ε) ∼ εn|ln ε|, ε → 0 + . (A14)

The above expression provides the evaluation of G1(1 − f Tc)
for small f � 1. This is expressed as

G1(1 − ε) 	

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − a′
γ εγ−2, 2 < γ < 3,

1 − a3|ln ε|, γ = 3,

1 − aγ ε + b′
γ εγ−2 3 < γ < 4,

1 − a4ε + b4ε|ln ε|, γ = 4,

1 − aγ ε + bγ ε2 4 < γ,

(A15)

and this leads us to the solution of Eq. (5) as Eq. (10).
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