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Criticality triggers the emergence of collective intelligence in groups
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A spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the
decision-making process. Within the model, the temporal evolution of the state of systems is governed by a
time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the
change of interaction energy between the neighboring agents (change of the level of conflict) and the change
of a locally defined agent fitness. Three control parameters can be identified: (i) the social interaction strength
βJ measured in units of social temperature, (ii) the level of confidence β ′ that each individual has on his
own expertise, and (iii) the level of knowledge p that identifies the expertise of each member. Based on these
three parameters, the phase diagrams of the system show that a critical transition front exists where a sharp
and concurrent change in fitness and consensus takes place. We show that at the critical front, the information
leakage from the fitness landscape to the agents is maximized. This event triggers the emergence of the collective
intelligence of the group, and in the end it leads to a dramatic improvement in the decision-making performance
of the group. The effect of size M of the system is also investigated, showing that, depending on the value of the
control parameters, increasing M may be either beneficial or detrimental.

DOI: 10.1103/PhysRevE.96.022309

I. INTRODUCTION

Human groups are proven to outperform single individuals
in solving a variety of complex tasks in many different
fields, including new product development, organizational
design, strategy planning, research and development. Their
superior ability originates from the collective decision making:
individuals make choices, pursuing their individual goals on
the basis of their own knowledge or expertise and adapting their
behavior to the actions of the other agents. Social interactions,
indeed, promote a mechanism of consensus-seeking within
the group, but they also provide a useful tool for knowledge
and information-sharing [1–5]. This type of decision-making
dynamics is common to many social systems in nature, e.g.,
flocks of birds, herds of animals, ant colonies, schools of
fish [3,6–15], as well as bacterial colonies [16–18], and even
artificial systems [19–22].

Even though the single agent possesses limited knowledge,
and the actions it performs are usually very simple, the collec-
tive behavior leads to the emergence of a superior intelligence
known as swarm or collective intelligence [23–26], which has
recently been receiving a growing amount of attention in the
literature with regard to its antecedents and proper measures
[27,28]. In the past few years, a great deal of research has been
aimed at improving our knowledge of social behavior in natural
systems [29–31], with the goal of understanding the physical
origin of the collective intelligence of such systems [1,32–36].
A large part of those studies recognized consensus-seeking as
one of the key factors in the decision-making process, enabling
the emergence of collective intelligence [37–45]. However,
it was also recognized that the development of brand new
technologies, products, and novel findings may be the result
of accidental events or the outcome of extremely gifted minds,
as in the case of scientific discoveries leading to Nobel prizes
being awarded. Therefore, in modeling the decision-making

process of human groups, one has to take into account the effect
of social interactions, which promote consensus-seeking, but
also the influence of the level of expertise or knowledge of
individuals. From this perspective, a few models of decision-
making can be found in the literature. Those models attempt
to capture the influence of the main drivers of the individual
behavior in groups, and in particular of self-interest and
consensus-seeking [46–50]. Following this line of research,
in this paper we employ a model of decision-making, already
proposed in [50], in which consensus-seeking is modeled using
the Ising-Glauber dynamics [51,52], whereas the knowledge
of each member in the group is modeled through an individual
fitness landscape described in terms of a Kauffman NK

model [53,54]. A continuous-time Markov chain governs the
decision-making process, where the transition rates of an
individual’s change of opinion are represented by the product
of the Ising-Glauber rate [52,55–58], which mimics the process
of consensus-seeking within the group, and the Weidlich
exponential rate [59,60], which speeds up or slows down the
change of opinion depending on the level of individual fitness.
Here, we explore how the dynamics of the system is affected
by the strength of social interactions, the level of knowledge of
individuals, and their self-confidence. In particular, we focus
on the behavior of the system at criticality, where a phase
transition and a significant amount of information exchange
occur, and we study how these conditions are related to the
emergence of collective intelligence of the group. Recent
investigations suggest that criticality and large amounts of
information flow are the conditions leading to the emergence
of collective intelligence [25,63–72].

II. THE DECISION-MAKING MODEL

Here we summarize the decision-making model (DMM)
proposed by two of the authors in Ref. [50]. We consider a
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FIG. 1. The multiplex network utilized to build up the model.
Observe that on each decision layer the structure of the social network
(blue links) may be different. Blue links identify those spins (on a
given layer) that interact through an Ising-like interaction energy.
Red dashed links connect the different decision layers. These types
of links identify, for any given member, the interaction among spins
on the different decision layer, leading to an additional energy term
that provides the fitness of each single member of the group.

set of M interacting agents, which is assigned to carry out
a task. The latter consists in attempting to solve a complex
combinatorial problem by identifying the set of configurations
with the highest fitness of the group, out of a certain finite (but
large) number of different configurations.

A. The Hamiltonian of the system

Consider a discrete system comprised of M agents. Each
agent is characterized by a state vector σ k = (σ 1

k ,σ 2
k , . . . ,σN

k ),
k = 1,2, . . . ,M . The spin σ

j

k = ±1, j = 1,2, . . . ,N , is a bi-
nary variable taking only two possible values ±1. It represents
the opinion that the agent k has on the j th decision variable dj .
Each decision variable identifies a “decision layer” (see Fig. 1),
where spin-spin interactions occur leading to the definition of
an Ising-like energy term.

The entire system is then described by a multiplex network.
Moreover, interaction among the different decision layers
occurs as a consequence of the fact that each state vector
σ k is associated with a certain energy level that defines the
fitness of the k-agent. The Hamiltonian of the system is then

H (s) = E(s)−ρV (s) = −1

2
JAs · s−ρV (s)

= −1

2
J

∑
ij

Aij sisj−ρV (s), (1)

where the state vector s of the whole system is a
vector of n = M × N components s =(s1,s2, . . . ,sM ) =
(σ 1

1 ,σ 2
1 , . . . ,σN

1 ,σ 1
2 ,σ 2

2 , . . . ,σN
2 , . . . ,σ 1

M,σ 2
M, . . . ,σN

M ), E(s) is

the Ising energy, due to the mutual spin-spin interaction, and
V (s) is the fitness associated with the state vector s. In Eq. (1),
Aij are the elements of an N -block adjacency matrix A. Note
that A is a block matrix, since social interactions occur only
among the spin belonging to the same decision layer. The
independent parameter ρ defines the weight of the fitness V (s)
compared to the Ising energy E(s).

B. The Markov chain formulation

Starting from any initial condition, the dynamics of the
system of spins, identified by the Hamiltonian Eq. (1), can be
modeled in terms of a continuous-time Markov chain where
the probability P (s,t) that at time t the state vector takes the
value s out of 2M×N possible states satisfies the master equation

dP (s,t)
dt

= −
∑

l

w(sl → s′
l)P (sl ,t)

+
∑

l

w(s′
l → sl)P (s′

l ,t), (2)

where sl = (s1,s2, . . . ,sl, . . . ,sn) and s′
l = (s1,s2, . . . ,

−sl, . . . ,sn). The transition rate of the Markov chain (i.e., the
probability per unit time that the opinion sl flips to −sl while
the others remain temporarily fixed) is chosen by following
a similar argument to that presented by Glauber [52], and it
is the product of an Ising-like term that models the process
of consensus-seeking aimed at minimizing the level of social
conflict, and the Weidlich exponential rate [59,60], which
models the self-interest behavior of the agents, i.e.,

w(sl → s′
l) = 1

2

[
1 − sl tanh

(
βJ

〈κ〉
∑

h

Alhsh

)]

× exp{β ′[�V (s′
l ,sl)]}. (3)

In Eq. (3), Alh are the elements of the N -block adjacency
matrix A. The quantity βJ can be interpreted as the social
interaction strength measured in units of temperature β−1, and
〈κ〉 is the mean degree of the network of interactions among the
agents on each decision layer. The use of the reduced coupling
constant J/〈κ〉 is needed to guarantee that independent of
the type of network structure, the Ising energy term is an
extensive physical quantity. In fact, for the case of a fully
connected network, such as the one considered in this study,
the quantity 〈κ〉 = M − 1 and the number of links among the
nodes is M(M − 1)/2. Hence, the term

∑
ij Aij sisj in Eq. (1)

increases quadratically with M , but dividing by 〈κ〉 would
again lead the Ising-like interaction energy to increase linearly
with the number of nodes M . The quantity β can be interpreted
as the degree of trust the members have in the judgement or
opinion of others. Similarly, the quantity β ′ = βρ/2 can be
related to the level of confidence the members have about
their perceived fitness, i.e., about their own knowledge or
expertise. Note that the Markov process Eq. (2) with transition
rates Eq. (3) is shown to obey the detailed balance conditions
(see Ref. [50]), with steady-state probability P (s,t → +∞) =
P0(s) = Z−1 exp [−βE(s) + 2β ′V (s)], where the partition
function Z = ∑

s exp [−βE(s) + 2β ′V (s)]. The quantity
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�V (s′
l ,sl) is simply the change of fitness of the agent when its

opinion changes from sl to −sl .

C. Group decision and the degree of consensus

As the process evolves, the bit-string d(t) of the decision of
the group of agents needs to be determined at each time step
t given the state vector s(t). Different choices can be made.
Among these, the majority rule seems appropriate, especially
in the presence of cognitive limits of the agents, as it avoids
the need for inquiring about the value of fitness perceived
by each agent at time t . Therefore, given the set of opinions
(σ j

1 ,σ
j

2 , . . . ,σ
j

M ) that the agents have about the decision j , at
time t , we set

dj (t) = sgn

[
M−1

∑
k

σ
j

k (t)

]
, j = 1,2, . . . ,N. (4)

If M is even and in the case of a parity condition, dj is
uniformly chosen at random between the two possible values
±1. The group fitness is then calculated as V (t) = V [d(t)] and
the ensemble average 〈V (t)〉 is then evaluated together with
the degree of consensus among the agents [50],

χ (t) = 1

M2N

N∑
j=1

M∑
kh=1

R
j

hk(t), (5)

where R
j

hk(t) = 〈σ j

k (t)σ j

h (t)〉. Observe that 0 � χ (t) � 1.

III. THE FITNESS LANDSCAPE

In this section, we define the complex fitness landscape of
the system. More precisely, the fitness landscape is defined
consisting of 2N discrete values. To identify each single
value, we first need to label each of them, in other words
we need to count them. Toward that end, we use a binary
numeral system so that each fitness value is identified by a bit-
string d =(d1,d2, . . . ,dN ), where each variable di = ±1, i =
1,2, . . . ,N is a two-state variable. The total number of different
configurations is 2N , and each bit-string d is then associated
with a certain fitness value V (d). The discrete landscape V (d)
may be almost anything, e.g., it may be represented by the
length of the Hamiltonian cycle in the traveling salesman
problem (TSP) [73], the optimization function in the knapsack
problem [74], the Kauffman NK landscape [53,54], a fractal
landscape [75] (see also Appendix 2), or any other complex
landscape [76]. In this study, we will make use of the complex
landscape defined within the framework of the NK Kauffman
model of combinatorial complexity [53,54]. The motivation of
this choice is that within the NK framework, it is relatively
easy to model the cognitive capabilities of each agent in the
groups (i.e., it is easy to take into account that each agent in
the group has his own personal understanding of the problem),
and to tune the complexity of the landscape through the
parameters N and K . Within the NK approach, the discrete
fitness function V (d) is computed as the weighted sum of N

independent stochastic contributions Wj (dK
j ), j = 1,2, . . . ,N ,

which only depend on the corresponding sub-bit-string dK
j =

(dj ,d
1
j , . . . ,dK

j ) of length K + 1, where K may take the values
K = 0,1, . . . ,N − 1 [53,54]. The number of different values

that each contribution Wj (dK
j ) may take is 2K+1, i.e., it is

equal to the number of different configurations that can be
enumerated with a K + 1 bit-string. The fitness landscape of
the group V (d) is then defined as

V (d) = 1

N

N∑
j=1

Wj

(
dK

j

)
. (6)

The integer index K tunes the complexity of the problem:
increasing K increases the complexity C. Consider, indeed,
that the entire NK fitness landscape can be generated (see
Appendix A) by combining together, through Eq. (6), L =
2K+1N different values, drawn at random from a uniform
distribution. Thus, we need to specify L different numbers
to completely define the NK fitness landscape. With this in
mind, we can easily estimate the complexity C as

C = log2 L = K + 1 + log2 N. (7)

Equation (7) shows that the parameter K is much more
influential than N in affecting the complexity of the landscape.
It is worth noticing that for K = N − 1 the complexity
becomes C = N + log2 N and L = 2NN , which then in-
creases exponentially with N . Recalling that a measure of
complexity is also provided by the number of local maxima,
we expect that, for K = N − 1, also the number of local
optima increases exponentially with N . This has been indeed
found by Kauffman [53,54], who showed that, under the
condition K = N − 1, the number of local optima is on
average 2N/(N + 1). Incidentally, we note that solving an NK

Kauffman combinatorial problem, i.e., finding the optimum of
the NK landscape, is classified for K > 2 as an NP -complete
problem [77].

In our DMM model, each agent in the group possesses a
specific cognitive level (i.e., the level of knowledge). To model
this level of knowledge, we introduce the probability p ∈ [0,1]
that each single agent knows the contribution Wj (dj ) to the
total fitness. Based on its level of knowledge, each agent k can
then compute its own perceived fitness as

Vk(d) =
∑N

j=1 DkjWj

(
dK

j

)
∑N

j=1 Dkj

, (8)

where D is the matrix whose elements Dkj take the value 1 with
probability p and 0 with probability 1 − p. Observe that when
p = 0 all the elements Dkj = 0, at which point we set Vk(d) =
0. Observe that with this definition of perceived fitness Vk(d)
the quantity �V (s′

l ,sl) appearing in Eq. (3) is �V (s′
l ,sl) =

Vk(σ ′
k) − Vk(σ k), with σ k = (σ 1

k ,σ 2
k , . . . ,σ

j

k , . . . ,σN
k ) and

σ ′
k = (σ 1

k ,σ 2
k , . . . , − σ

j

k , . . . ,σN
k ), i.e., as mentioned so far,

it is the change of the fitness perceived by the agent k =
quotient(l − 1,N ) + 1 when its opinion σ

j

k on the decision
j = mod(l − 1,N ) + 1 changes from sl = σ

j

k to s ′
l = −σ

j

k .

IV. CRITICALITY, MUTUAL INFORMATION, AND THE
EMERGENCE OF COLLECTIVE INTELLIGENCE

Calculations have been carried out assuming that the
network of social interactions on each single decision layer
is fully connected. We simulate the Markov process by
using the well-established stochastic simulation algorithm
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FIG. 2. The stationary values of the normalized averaged fitness
V∞ (a) and of the statistically averaged consensus χ∞ (b) as a function
of βJ . Results are presented for β ′ = 10, p = 1, N = 15, and K =
14, and for three different team sizes M = 7, 21, and 100.

proposed by Gillespie [50,61,62]. For any given set of input
parameters, we computed hundreds of different realizations of
the same process (we replicated the simulations 200 times)
and calculated the ensemble average of the realizations. The
simulation stopped at steady state, i.e., when changes in the
time averages of consensus and group fitness over consecutive
time intervals of a given length were sufficiently small.

In Fig. 2 we show the stationary values of fitness V∞ =
〈V (t → ∞)〉 and the degree of consensus χ∞ = 〈χ (t → ∞)〉
as a function of the quantity βJ for different group sizes
M = 7, 21, and 100, and N = 15, K = 14, β ′ = 10, and for
a level of knowledge p = 1.0.

Results clearly show that a critical range of βJ values
exists at which both consensus and fitness have a sharp and
concurrent increase. Notably, this transition from low to high
fitness is affected by the group size M , in that, for given
β ′ = 10 and p = 1.0, an increase of M moves the transition
to higher values of βJ . Somehow unexpectedly, increasing
M does not seem to sharpen this transition, which occurs
instead in a pure Ising system. This is clearly related to the
presence of an additional energy term in the Hamiltonian of
the system. Indeed, in our model, two terms contribute to
the total energy of the system: (i) the Ising social interaction

FIG. 3. The stationary values of the normalized averaged fitness
V∞ (a) and of the statistically averaged consensus χ∞ (b) as a function
of βJ . Results are presented for β ′ = 5, p = 1, N = 15, and K = 14,
and for three different team sizes: M = 7, 21, and 100.

energy, i.e., the level of conflict (or disagreement) within the
group, and (ii) the energy term associated with the perceived
(individual) fitness. The latter breaks the symmetry of the
system dynamics, making it sensitive to the parameter β ′. Thus,
for β ′ = 5 (the other quantities being fixed), the trend of V∞
and χ∞, represented in Fig. 3, differs from the case β ′ = 10,
and, this time, it resembles closely what is expected for the
pure Ising systems. Indeed, the transition is much steeper and
becomes sharper and sharper as the number of agents M is
increased.

To identify the presence of phase transitions and critical
fronts, we represent, for given values of p and M , the long-term
system response (i.e., the steady-state response), in terms of
average fitness V∞ and level of consensus χ∞, as a function
of βJ and β ′. The phase diagrams can then be generated, and
the critical transition fronts identified. An example is reported
in Fig. 4 for p = 1, N = 15, K = 14, and M = 7. A critical
transition front can be clearly observed, where a sudden and
concurrent change of the group fitness V∞ [Fig. 4(a)] and
consensus χ∞ [Fig. 4(b)] takes place. For any given value of
β ′, a critical value (βJ )C at which the transition from low to
high fitness and consensus is completed is identified as the
critical threshold of the control parameter βJ . The resulting
phase diagram is illustrated in Fig. 4(c), where the solid line
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FIG. 4. The stationary values of the normalized averaged fitness
V∞ (a) and of the statistically averaged consensus χ∞ (b) as a function
of βJ and β ′. The phase diagram is represented in (c). Results are
presented for p = 1, N = 15, K = 14, and M = 7.

represents the critical transition front, and two phases can be
distinguished: (i) the ordered region where the consensus is

high, with the binary opinions (spin) of the agents almost all
aligned along the same direction, and (ii) the disordered region
where the consensus is low, i.e., where the opinion of the
agents are randomly distributed. The critical front comprises a
thick branch and a thin one. These two branches are separated
by the point of coordinates {β ′

min,(βJ )min}, where β ′
min is the

value of self-confidence β ′ at which the critical threshold
(βJ )C , needed to complete the transition, takes its minimum
value (βJ )min. For β ′ < β ′

min [see Fig. 4(c)], increasing βJ

from zero leads to a significantly sharper transition (thick
branch). On the other hand, when β ′ > β ′

min a much softer
transition occurs (thin branch). Note that for β ′ = 0, the only
driving force is consensus-seeking. In this case, the system,
not being influenced by any information associated with the
fitness landscape, follows exactly the Ising-Glauber dynamics,
resulting in an inefficient decision-making process in terms of
fitness. Increasing the level of self-confidence β ′ causes the
agents to be driven also by self-interest while remaining, for
β ′ < βmin, sufficiently prone to changing their mind based
on the opinions of the other group members. The presence
of the self-interest is then beneficial, since by breaking the
symmetry of the pure Ising system, each member is pushed
to make choices aimed at increasing the fitness. This in turn
also expedites the process of consensus-seeking, decreases
the level of social interaction strength needed to trigger the
phase transition, and explains why increasing β ′ from zero
makes the critical transition threshold (βJ )C decrease down to
a minimum value (βJ )min. However, as soon as β ′ > β ′

min,
agents, because of their high level of self-confidence, are
reluctant to change their mind. Thus, even when they are
wrong, i.e., even when their choices do not necessarily lead
to an increase of fitness, agents hardly accept a changed
opinion unless the social interaction strength between them
is increased. This leads to higher values of (βJ )C , to smoother
transition, smaller fitness, and, in the end, to a decay in the
performance of the group in making decisions.

Increasing the number of agents from M = 7 to 21 (see
Fig. 5), the overall qualitative trend of the quantities V∞
and χ∞ remains almost the same. However, some differences
should be noted: (i) for β ′ < β ′

min the fitness V∞ presents,
at the critical transition, a higher peak; (ii) for β ′ > β ′

min the
transition is smoother, leading to smaller fitness values; and
(iii) the parabola-shaped critical front changes in that β ′

min is
significantly decreased and (βJ )min slightly increased. These
changes are clearly shown in Fig. 6, where the critical transition
fronts are presented for M = 7 (blue line) and M = 21 (red
line), given p = 1, N = 15, and K = 14. Note the presence of
two points: (i) Qmin for M = 7 and (ii) Pmin for M = 21. These
two points identify the minimal values of critical value (βJ )C
triggering the phase transition. On the thick branch, being
β ′ < β ′

min, the critical transition is sharp and the step change
of group fitness and consensus is very significant. On the thin
branch (β ′ > β ′

min), the critical transition is smeared and the
group-fitness and consensus variations are smaller. Moreover,
moving on the thin branch of the front, along the β ′-increasing
direction, worsens the performance of the decision-making
process (see also Figs. 4 and 5).

As mentioned earlier, increasing M makes β ′
min smaller and

(βJ )min slightly larger. This has an important consequence, as,
depending on the value of β ′, increasing the number M of the
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FIG. 5. The stationary values of the normalized averaged fitness
V∞ (a) and of the statistically averaged consensus χ∞ (b) as a function
of βJ and β ′. The phase diagram is represented in (c). Results are
presented for p = 1, N = 15, K = 14, and M = 21.

agents may either be beneficial or detrimental. Indeed, for large
β ′ (i.e., on the thin branch side of the phase diagram in Fig. 6),

FIG. 6. The critical critical transition fronts for M = 7 (blue line)
and M = 21 (red line). Results are presented for p = 1, N = 15, and
K = 14. On the thick part of the lines, the critical transition is sharp
and is associated with a very large step from low to high fitness. On
the thin line, the critical transition is smeared and the step change
in fitness is smaller. It even decreases as one moves along the line
to increase β ′. Note that increasing M from 7 to 21 makes the point
Pmin move to Qmin, thus β ′

min decreases significantly whereas (βJ )min

increases slightly.

increasing M worsens the performance of the decision-making
process in terms of fitness values. On the other hand, when β ′
is small (i.e., on the thick branch side of the phase diagram
in Fig. 6), increasing M improves the performance of the
decision-making process as it leads to an increase of fitness.
This makes it clear why in the literature the size of the team
is a strongly debated aspect of team design, for some studies
show that a small group performs better than big groups, but
also the opposite has been demonstrated to occur depending
on environmental conditions [78,79].

So far, we have shown that the collective intelligence of the
group (i.e., the ability to make decisions leading to high values
of the group fitness) emerges just at the critical transition.
The literature [25,63–72] ascribes the emergence of collective
intelligence to high values of mutual information and to an
increase of information flow among the members of the group.
However, in this study we are not interested in determining the
level of mutual information among the members of the group,
which is a point that has already been sufficiently investigated
in the literature. We are interested instead in determining the
mutual information between the fitness V∞ and the consensus
χ∞ within the group. The rationale behind this choice is that
the mutual information between fitness and consensus can be
considered as a proxy of how much information leaks from
the fitness landscape to the group members, and therefore
it is an indirect measure of the amount of awareness of the
entire group about the fitness landscape itself. The mutual
information MI(x,y) between two stochastically distributed
continuous variables x and y is

MI(x,y) =
∫

dx dy p(x,y) log2
p(x,y)

p(x)p(y)
. (9)

It is a measure of the information gained about the behavior
of one random variable, say x, by observing the behavior of
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the other variable y. Hence, the mutual information measures
the difference between the initial uncertainty on the variable x

and the uncertainty that remains about x after the observation
of the behavior of the variable y. From this perspective, it
measures the amount of information leakage from the variable
y to the variable x, and vice versa.

Figure 7 shows the quantity MI(χ∞,V∞) as a function
of the control parameters β ′ and βJ for M = 7 [Fig. 7(a)]
and M = 21 [Fig. 7(b)]. Results are presented for p = 1,
N = 15, and K = 14. Notice that MI(χ∞,V∞) is small
everywhere except close to the critical front, where it takes
higher values. The highest mutual information is obtained
for β ′ < β ′

min, where also the fitness V∞ and the consensus
χ∞ are maximized. This seems to confirm previous findings,
which showed that the mutual information among different
spins is maximized at the criticality [65,80]. However, here we
go a bit further and find out that also the mutual information
between the fitness and the consensus of the group is
maximized at the transition threshold. This clearly shows that,
at criticality, a significant amount of information leaks from
the complex fitness landscape to the group of agents, leading
to a superior performance of the group decision making in
terms of fitness values. In other words, at the critical threshold,
the indirect exchange of information, promoted by social
interactions, provides the group with higher knowledge of
the fitness landscape. The exploration of the landscape is then
strongly improved, leading to better choices and finally to the
emergence of the collective intelligence of the group [27].

V. THE EFFECT OF LEVEL OF KNOWLEDGE

The critical dynamics described so far is observed even in
the presence of cognitive limits of the agents, i.e., for p < 1.
Figure 8 show the fitness V∞ as a function of β ′ and βJ for
p = 0.3 [Fig. 8(a)], p = 0.7 [Fig. 8(b)], and p = 1. [Fig. 8(c)].

The emergence of the collective intelligence, in the presence
of the cognitive limits of the agents, can be explained by
considering that, at the critical threshold, the agent with limited
knowledge will exploit social interactions and consensus-
seeking to follow those agents with higher knowledge,
resulting in a final consensus about the decisions to make. Note
that for p = 0.7, the performance of the group, in terms of V∞
values, is comparable to, although a bit smaller than, p = 1
[Fig. 8(c)], whereas if p is sufficiently small, e.g., p = 0.3, the
performance of the group lowers quite significantly. Figure 9
shows the critical fronts for different values of p. In particular,
as p is decreased, a continuous decrease of the minimum value
β ′

min and a concurrent increase of (βJ )min can be noted. Thus,
as the cognitive capacity of the agents decreases, they need to
rely more on the others in order to make good decisions. More
importantly, the presence of relatively highly self-confident
individuals easily worsens the performance of the group, since
self-confident individuals are reluctant to change their mind,
thus inhibiting the exploration of the fitness landscape.

VI. THE EFFECT OF LEADERSHIP

It is widely recognized that one of the key features of a
charismatic leader is self-confidence. Having a self-confident

FIG. 7. The mutual information MI(χ∞,V∞), in color scale (blue
for low values, red for high values), between the consensus χ∞ and the
group fitness V∞, M = 7 (a) and M = 21 (b). Results are presented
for p = 1, N = 15, and K = 14. Notice that MI(χ∞,V∞) is small
everywhere but close to the critical front, where it takes higher values.
The highest mutual information is obtained for β ′ < β ′

min.
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FIG. 8. The stationary values of the normalized averaged fitness
V∞ as a function of βJ and β ′. Results are presented for p = 0.3 (a),
p = 0.7 (b), p = 1 (c), and for N = 15, K = 14, and M = 7.

leader helps the team to feel the same and pushes it to move
ahead and solve problems [81–84]. This type of leadership

FIG. 9. The critical transition fronts for different levels of
knowledge of the agents: p = 0.3, 0.7, and 1. Results are presented
for N = 15, K = 14, and M = 21. Note that decreasing p reduces
β ′

min and increases (βJ )min.

is nonauthoritative, and it is called participative. Within
the proposed model, self-confidence is modeled trough the
parameter β ′. Therefore, to analyze the effect of the leadership,
we assume that the level of confidence of the leader is β ′

L,
while the other members of the group have smaller confidence,
β ′

NL = αβ ′
L, where α is a factor ranging in the interval

0 � α < 1.
Figure 10 shows the steady-state fitness V∞ as a function of

βJ and α for M = 7, N = 15, K = 14, and p = 1.0, and two
different levels of confidence of the leader: β ′

L = 5 [Fig. 10(a)]
and β ′

L = 10 [Fig. 10(b)]. Figure 10(a) shows that for β ′
L <

β ′
min (i.e., for a not too confident leader), provided that the

system is in the ordered side of the phase diagram but close to
the transition front, the best performance is obtained when all
members have the same self-confidence as that of the leader.
To explain this, let us first consider that, being β ′

L < β ′
min, the

exploration of the landscape is already sufficiently facilitated
as agents are prone to change their mind based on the opinion
of others. Therefore, values of α < 1 would make the agents
even more prone to change opinion, and thus to underestimate
their self-interest in making decisions. This will make the
random walk of the agents on the group fitness landscape
too chaotic, hampering an easy identification of the good set
of decisions. We conclude that for β ′

L < β ′
min, the presence

of a leader is detrimental. On the other hand, if β ′
L > β ′

min
[Fig. 10(b)], the fitness of the group is maximized for values
of α < 1. For β ′

L = 10, i.e., for the specific case considered in
Fig. 10(b), results show that the decision-making performance
is maximized for α ≈ 0.5, i.e., when the level of confidence
of the leader almost doubles that of the other members. This is
evident if one considers that, for β ′ > βmin, the exploration of
the landscape is quite strongly inhibited. But, we have shown
that to make a good decision, the exploration of the landscape
needs to be enhanced. Lowering the self-confidence β ′

NL of
the other (nonleader) members of the group just makes this
happen, leading to better performance. However, if β ′

NL 	 β ′
L,

nonleader members will largely neglect their self-interest in
making decisions. Thus, driven by consensus-seeking, they
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FIG. 10. The stationary values of the normalized averaged fitness
V∞ as a function of βJ and α. Results are presented for p = 1,
N = 15, K = 14, M = 7, and β ′

L = 5 (a), β ′
L = 10 (b).

will end up following the leader in making decision. But,
since the leader already has a high level of self-confidence, the
resulting low level of landscape exploration will worsen the
performance of the decision-making process.

VII. GROUPTHINK PHENOMENON

In the literature, consensus achievement within groups
is often associated with the emergence of collective intel-
ligence [37,38,44]. However, it has also been recognized
that consensus-seeking may even lead to a phenomenon
known as groupthink [85–87], i.e., a faulty thinking that
occurs in highly cohesive groups and leads to an irrational
or dysfunctional decision-making outcome. When groupthink
occurs, members try to minimize conflict and to reach
consensus without critically evaluating possible alternative
point of views. Groupthink occurs in situations where members
have similar backgrounds, which increases the propensity for
them to agree on a rather irrational or poor final decision.
Evidence of such a phenomenon emerges naturally in our

FIG. 11. The occurrence of groupthink. Far from the critical
threshold, i.e., for high values of the social interaction strength (high
level of trust), the pressure for consensus seeking makes the members
completely overlook the effect of their decision on their own perceived
fitness. The dynamics of the system resemble the classical dynamics
of a pure Ising-like system. This leads to a high value of consensus
χ∞ (b) but to a very low value of group fitness V∞ (a). Results
are presented for p = 1, N = 15, K = 14, M = 7, and for β ′ = 5
and 10.

model as shown in Fig. 11, where V∞ [Fig. 11(a)] and
χ∞ [Fig. 11(b)] are plotted as a function of βJ for two
different values of β ′. Indeed, for large values of βJ , i.e.,
far away from the critical threshold (βJ )C , the driving force
related to consensus-seeking is dominant. This facilitates the
achievement of consensus among the members, independent
of the level of fitness. The final outcome is simply that the
entire group converges to a highly agreed upon but ineffective
and inadequate final decision.

VIII. CONCLUSIONS

The present study identifies specific conditions leading
to the emergence of collective intelligence in groups of
interacting agents. To this purpose, we have employed a recent
model of group decision making. This model formulates the
decision process of the agents in terms of a time-continuous
Markov chain, where the transition rates are defined so as
to capture the effect of the self-interest, which pushes each
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single agent to increase the perceived (individual) fitness,
and the social interactions, which stimulate members to seek
consensus with the other members of the group. The process
is then characterized by three different parameters: (i) the
strength of social interaction βJ in units of social temperature
β−1, (ii) the level of self-confidence β ′ of the agents in their
own expertise, and (iii) the level of knowledge p of each agent.
These parameters all together identify the long-term behavior
and the different phases of the system. In particular, critical
fronts can be identified at which a concurrent transition from
low to high fitness and from low to high consensus within the
group takes place. We show that at the critical transition, the
mutual information between the fitness landscape and the level
of consensus within the group is maximized, demonstrating
that, at the criticality, a significant amount of information
exchange, promoted by social interactions triggers the emer-
gence of a superior performance of the group in making good
decisions, thus leading to the emergence of the collective
intelligence of the group. We show that the self-confidence
of the agents has an important influence on the performance
of the decision-making process. Our simulations show that too
high or too low self-confidence levels are deleterious, as they
hamper the emergence of collective intelligence. However,
for any given size M of the group, an optimal level β ′

min
of self-confidence can be found that minimizes the critical
social strength (βJ )C required to trigger the transition to the
collective intelligent state and to maximize the performance
of the group in making decisions. Concerning the effect of
M , results show that it can be twofold. In fact, increasing
M may lead either to an increase in the performance, if the
level of self-confidence of the agents is low, or to a decrease
in the performance in the opposite case. We also analyze the
effect of the level of knowledge p on the decision-making
performance of the group. We show that even at a very low
level of knowledge, e.g., p = 0.3, the performance of the
group can be kept relatively high. However, to this purpose,
the agents need to be less self-confident and to trust more
in their peers. We also demonstrate that the presence of a
highly self-confident leader is not significantly beneficial, and
may even be detrimental. Moreover, the social phenomenon
of groupthink naturally emerges within the proposed model
when the driving force pushing the members toward consensus
strongly prevails over the self-confidence level of the agents.
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APPENDIX: THE FITNESS LANDSCAPE

1. The N K model

In the NK model, a real-valued fitness is assigned to
each bit string d =(d1,d2, . . . ,dN ), where di = ±1. This is
done by first assigning a real-valued contribution Wi to
the ith bit di , and then by defining the fitness function
as V (d) = N−1 ∑N

i=1 Wi(di,d
i
1,d

i
2, . . . ,d

i
K ). Each contribution

Wi depends not just on i and di but also on K (0 � K <

N − 1) other bits. Now let us define the substring si =
(di,d

i
1,d

i
2, . . . ,d

i
K ) by choosing at random, for each bit i, K

other bits. The number of contributions Wi(si) is equal to
the number of different values that can be enumerated with
the substring of k + 1 binary elements, i.e., it is 2K+1. Each
single value Wi(si) is drawn from a uniform distribution,
usually in the range [0,1]. Thus, a random table of N × 2K+1

contributions is generated independently for each ith bit,
allowing the calculation of the fitness function V (d). The
reader is referred to Refs. [53,54] for more details on the NK

complex landscapes. Notice that increasing the complexity
C = K + 1 + log2 N not only affects the number of local
maxima, but also the autocorrelation of the landscape itself.
In particular at the maximum level of complexity, i.e., when
K = N − 1, one can show that the number of local maxima
is 2N/(N + 1) and that the fitness values are completely
uncorrelated with each other; in this case, the fitness landscape
is represented by an isotropic white noise. This means that
when using the NK model, it is not possible to control
separately the complexity, the autocorrelation, and the actual
level of anisotropy of the landscape. Also, it is worth noting
that the stochastic fitness function V (d), being the mean value
of several independent uniformly distributed contributions of
expectation value W̄ = 〈W 〉 and variance σ 2

W = 〈(W − W̄ )2〉,
is very well approximated, as prescribed by the central limit
theorem, by a Gaussian distribution with average 〈V 〉 = W̄

and variance σ 2
V = 〈(V − W̄ )2〉 = σ 2

W/N . Thus, increasing the
number of decisions N leads to a decrease of σ 2

V , so that for
very large N the distribution of fitness values V degenerates
into a Dirac δ distribution centered in W̄ . To prevent this from
occurring, we preferred to rescale the fitness values V in such
a way as to keep the same average W̄ and the same variance
σ 2

W , i.e., we use

V → W̄ +
√

N
(
V − W̄

)
. (A1)

2. The spectral method

A different way to generate random landscapes of given
complexity is to use spectral methods. The advantage of such
methods is that they allow us to control separately the level
of complexity, the autocorrelation function, and consequently
also the anisotropy of the landscape. We assume that the
rugged surface is statistical homogeneous, i.e., translationally
invariant. For the sake of simplicity, we also consider that
the surface is periodic. Therefore, the rugged surface can be
expressed in the form of a Fourier series,

h(x) =
+∞∑

hk=−∞
ahke

iqkh·x, (A2)

where x is the in-plane position vector and h is the out-of-
plane height of the surface. Also, we have qkh = (k,h), with
k,h = . . . ,−2,−1,0,1,2, . . . and x = (x,y). The quantities
ahk = ξkh + iηkh satisfy the relation a00 = 0, a−h,−k = ahk to
guarantee that h(x) is real, and they are determined by drawing
from a Gaussian distribution the random real quantities ξkh and
ηkh with zero mean and variance 〈ξ 2

kh〉 = 〈η2
kh〉 = 〈|akh|2〉/2 =

σ 2
hk/2. One can easily show that 〈akhalm〉 = σ 2

khδk,−lδh,−m,
where δij is the Kronecker delta operator. Then the

022309-10



CRITICALITY TRIGGERS THE EMERGENCE OF . . . PHYSICAL REVIEW E 96, 022309 (2017)

autocorrelation function is

〈h(x′)h(x)〉 =
∑
kh

σ 2
khe

iqkh·(x′−x). (A3)

Thus, choosing the quantities σ 2
kh allows us to identify the

autocorrelation function of the landscape. Note that the
resulting surface h(x) is Gaussian with zero average and
variance 〈h2〉 = ∑

kh σ 2
kh. Now, in order to fully define the

rugged landscape h(x), we need to specify the quantities qkh

and σ 2
kh. Thus, if we choose an even number n = 2R−1, with

the integer number R � 2, and if we assume qkh = (k,h), with
k,h = −n, . . . ,−2,−1,0,1,2, . . . ,n − 1, then we can employ
the fast Fourier transform numerical technique to calculate
2n × 2n = 22R different values hij of the fitness landscape as

hij =
n−1∑

hk=−n

ahke
iqkh·xij , (A4)

with xij = (πi/n,πj/n), and i,j = −n, . . . ,−2,−1,0,1,2,

. . . ,n − 1. Given the number N = 2R, which defined the
number of points of the fitness landscape, we can also tune
the complexity of the landscape by choosing the number of
nonzero coefficients ahk , h,k = 1,2, . . . ,r , with r = 2L (note

that L � R). In this case, in order to completely specify the
surface, we need to know r × r = 22L coefficients ahk plus
the single number n so the complexity of the landscape can be
estimated as

C = log2(22L + 1) ≈ log2 22L = 2L. (A5)

In the case of a fractal-like self-affine surface, the statistical
properties of the surface h(x) are invariant under the transfor-
mation

x → tx, h → tHh, (A6)

where the Hurst exponent H is related to the fractal dimension
of the surface, Df = 3 − H . For self-affine surfaces, the
quantities σ 2

hk satisfy the relation

σ 2
hk = σ 2

11

(
h2 + k2

2

)−H−1

. (A7)

Hence, σ 2
hk can be determined once we know σ 2

11 and the fractal
dimension of the landscape. The reader is referred to [75] for
more details on the generation of a random surface h(x) with
spectral techniques.
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