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Velocity correlations and spatial dependencies between neighbors in a unidirectional
flow of pedestrians
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The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of
pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004],
we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor.
The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during
the crowd motion. This structure differs depending on the value of n, for the consecutive nth-nearest-neighbor
position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further
neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed
by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians’
movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity
oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the
oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of
continuously adjusting their speed to their neighbors’. They try to keep a given distance, but follow the person in
front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical
example that illustrates the shape of a pedestrian’s personal space during movement.
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I. INTRODUCTION

When considering unidirectional flow of pedestrians a basic
question appears: Can we identify any specific behavioral
rules between neighbors during such a flow? We believe that
research on this topic is very important in the context of
modeling of unidirectional flow.

The aim of this paper is to address this question with respect
to self-organized flow of pedestrians. On the basis of calculated
velocity correlations and identified spatial distributions, we
propose a set of basic rules that drive individual behavior in a
unidirectional flow.

In order to address the issue we have analyzed experimental
data from Zhang et al. [1]. We take into consideration
correlations of velocity and spatial dependencies between
neighbors in a unidirectional flow. The results of the analysis
reveal the existence of stable patterns, which can be explained
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by a set of universal rules that drive the pedestrians behavior
in a crowd.

The article is organized as follows. Section II describes
related works. Section III includes an analysis of the spatial
distribution among pedestrians. Velocity correlations between
close neighbors in a crowd are presented in Sec. IV. Section V
contains a discussion of the obtained results. Section VI
summarizes the work.

II. RELATED WORKS

The issue of flow patterns in crowd dynamics, as well
as the relation between the velocity and density in different
contexts, has been a subject of research by different authors.
Spatial relations between people was discussed in [2], where
the idea of social distances and the theory of proxemics were
introduced.

Helbing et al. [3] presented basic ideas related to different
patterns of pedestrians’ motion such as shock waves in
dense crowds, lanes of uniform walking directions during
counterflows, circulating flows at intersections, and clogging
effects or oscillatory flows at bottlenecks. Several experiments
in normal and paniclike conditions of collective phenomena
such as lane formation in corridors and oscillations at a
bottleneck were presented in their work. The paper rightly
emphasizes that such spatiotemporal patterns emerge due to
the pedestrians’ nonlinear interactions and the interactions are
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not based on strategic considerations, but on the reactions of
particular units or groups.

Rio and Warren [4] carried out some experiments with
real and virtual groups of people, namely, they tested the
occurrence of local visual coupling between neighbors in
a crowd. They concluded that pedestrians in a crowd are
(unidirectionally) coupled to their neighbors and they con-
firmed that the influence of multiple neighbors is linearly
combined. Zanlungo et al. [5] proposed a potential to estimate
the dynamics of the relative motion of two pedestrians who
socially interact in a group while walking. They confirmed
that the two-dimensional probability distribution of the relative
distances between pedestrians is determined by their proposed
potential using a Boltzmann distribution.

Zanlungo et al. [6] analyzed the relation between the
velocity and spatial relations in different sizes of pedestrian
social groups, such as dyads and triads, as well as the formation
of different patterns, for example, V shapes and lines. In their
experimental research they found that an observed extension
of the pedestrian group’s size in the direction orthogonal to
motion decreases linearly with the pedestrian density around
them. They confirmed in their observations that an individual
pedestrian usually walks faster than two-person groups, while
two-person groups are faster than three-person groups. They
concluded that the observed differences in velocities were
weakly affected by density.

Vizzari et al. [7] analyzed mechanisms of group cohesion
preservation. Their paper refers to popular group patterns,
distances around members of groups, and correlations between
occupied area and the size of groups. A simulation model
of group behavior related to crowd density was proposed.
Mechanisms of automatic tracking of small groups in a crowd
were presented by Ge et al. [8]. They proposed an application
of bottom-up hierarchical clustering using a generalized
symmetric Hausdorff distance defined with respect to pairwise
proximity and velocity.

Mussaïd et al. [9] analyzed walking speeds and patterns in
pedestrian flow using laboratory experiments and numerical
simulations. During the laboratory experiments the authors
observed structural instabilities in the pedestrian flow with
alternation of organized and disorganized states. It was
highlighted that the lifetime of well-organized clusters of
pedestrians follows a stretched exponential relaxation law.
It was confirmed that a key variable at the origin of the
observed traffic perturbations is the interpedestrian variability
of comfortable walking speeds.

The concept of the nth-nearest neighbor was proposed by
Ballerini et al. [10], where such an approach was applied to the
analysis of a bird flock. The authors compared the behavior of
nearby birds in observed and simulated flocks using topolog-
ical and metric distances. They concluded that interactions in
a flock are driven by topological distance. Preliminary results
on the nth-nearest-neighbor analysis applied to crowd spatial
structure were presented in our previous paper [11].

Among papers that analyze pedestrians’ behavior according
to their neighbors, it is worthwhile to note that of Seitz et al.
[12]. The authors defined a set of simple rules (step or wait,
tangential evasion, sideways evasion, follower) that determines
the next possible steps. A similar approach was presented by
Moussaïd et al. [13], who used two heuristics based on visual

information that determines desired walking directions and
walking speed.

III. SPATIAL RELATIONS BETWEEN NEIGHBORS

In the following sections we use experimental data for
unidirectional flow from the Hermes project [1]. In this
paper we focus on an experiment where 349 people walk
through a 300-cm-wide corridor. This experiment uses the
widest corridor among all 28 runs, thus it was chosen for
further analysis in order to reduce the influence of boundaries.
Nevertheless, our preliminary results [11] show that the
observed phenomenon occurs also for other geometries.

The duration of this experiment is approximately 83 s and
it corresponds to 1325 frames that have been processed. The
retrieved trajectories of particular pedestrians allow one to
check basic physical characteristics such as velocity, flow,
density, and individual distances in any time and any place.
A comprehensive description of this experiment is provided
in [1]. The detailed methodology of collecting trajectories of
moving pedestrians is presented in [14].

In this paper we focus on the analysis of unidirectional flow,
usually observed in cases of evacuation or egress under normal
conditions. Thus, the results and conclusions refer to this kind
of crowd movement, where the density is about 3 people/m2.

We consider the nth-nearest neighbor as a pedestrian in
a crowd with the nth-shortest Euclidean distance to a given
occupant. The closest person to a given pedestrian is the
first-nearest neighbor, while a pedestrian with the nth-shortest
distance is the nth-nearest neighbor. This concept is presented
in Fig. 1. It is worth noting that being someone’s nth-nearest
neighbor is not a mutual relation (i.e., the fact that person A is
the closest pedestrian in a crowd to person B does not imply
that B is the closest person to A).

Additionally, we define the angle � between the pedestrian
and the neighbor as an angle between the direction of motion
and a line connecting the positions of two people (see angle �

in Fig. 1). Thus, the neighbor in front of a pedestrian is at 0◦,
while the one exactly on the right is at 90◦.

In the analyzed experiment, considering the sum over all
frames, we detected approximately 79 800–79 600 relations of
nth-nearest neighbors for each n � 8. A histogram of distances
for the nth-nearest neighbor is shown in Fig. 2. The peak of
the histogram for the first-nearest neighbor is at 54 cm, for the
second-nearest neighbor it is at 66 cm, for the third-nearest

FIG. 1. Concept of the nth-nearest neighbor and angle between
neighbors in a unidirectional flow. For the central pedestrian (orange),
the pedestrian on the right is the first-nearest neighbor. Consecutive
neighbors are marked on the figure. Here � denotes the angle between
the orange pedestrian and the first-nearest neighbor.
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FIG. 2. Histogram of distances for the nth-nearest neighbor.

neighbor it is at 79 cm, for the fourth-nearest neighbor it is at
92 cm, for the fifth-nearest neighbor it is at 100 cm, for the
sixth-nearest neighbor it is at 112 cm, for the seventh-nearest
neighbor it is at 119 cm, and for the eighth-nearest neighbor
it is at 125 cm. For the first-nearest neighbor, the histogram is
similar to the normal distribution, while for the higher n the
distribution becomes asymmetric (log-normal with positive
skew). With increasing n, both the skewness of the distribution
and the standard deviation are increasing.

A more detailed image of a pedestrian’s behavior according
to the neighbors is given in the form of a spatial distribution
histogram of the nth-nearest neighbor in Fig. 3. For each n

the shape of this distribution is circular and condensed. For
higher n, nonzero probability covers a larger area and the
condensation is lower (this corresponds to the heavy tailed
distance distribution for such values of n in Fig. 2).

The spatial distribution for the first-nearest neighbor is
visibly different from others. Pedestrians strongly prefer the
closest neighbor to be on their side rather than on the axis
of movement. For the second-nearest neighbor no significant
preference is visible, but one can observe the area around the
pedestrian (50–100 cm from the pedestrian’s center) where
neighbors are usually located. For nth-nearest neighbors,
where n � 3 the most probable location of the neighbor is
in front of or behind the pedestrian.

An aggregated spatial distribution histogram for n � 4
is presented in Fig. 4. In order to increase readability, we
introduce the black ellipse (major axis, 46 cm; minor axis,
28 cm), which represents the typical size of a pedestrian [15].
The elliptical red area depicts the most probable locations of
near neighbors. In contrast to the histograms for a given n,
for the aggregate histogram there is no preference for specific
angles.

The white area in the center depicts a pedestrian’s personal
zone, where no other pedestrians are allowed. A single point
(pixel) is marked in the white area only if during the whole
experiment there is no single moment (video frame) with one
of the four closest neighbors in such a position (we consider

(a) (b) (c)

(d) (e) (f)

FIG. 3. Spatial distribution of the (a) first-, (b) second-, (c) third-, (d) fourth-, (e) fifth-, and (f) sixth-nearest neighbors around moving
pedestrians in the analyzed experiment. The direction of motion corresponds to the top of the plot. Each point on the pixel corresponds to
1 cm2. The redder the color is the more often the nth-nearest neighbor was detected at this particular position.
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FIG. 4. Sum of the spatial distribution histogram for four nearest
neighbors n ∈ 〈1,4〉. The black ellipse in the center represents the
typical body size [15]. The central white area is forbidden for other
pedestrians.

over 159 000 mutual positions of the four closest neighbors
during the whole experiment). The observed asymmetry in the
axis of motion can be explained by the influence of triads,
the left-right asymmetry of which has been shown in other
research [6].

Finally, the angular distribution presented in Fig. 5 provides
the analysis. One can observe a sharp change in preference
for the first-nearest neighbor between 35◦ and 40◦ from the
direction of motion. For smaller angles [� ∈ (−35◦,35◦)]
pedestrians tend to strongly avoid the first neighbor, while for
larger angles [� ∈ (−140◦,−40◦) ∪ (40◦,140◦)] a neighbor is
accepted. This sharp transition in behavior occurs within just
a few degrees.

On the other hand, in the case of n � 3 the preference
for neighbors at � close to 0◦ and 180◦ is visible, however
the transition is not as sharp as for n = 1. For n = 2 we
observe an intermediate state, which is more or less isotropic.
Clear stability of this angular structure has been observed:
The nearest neighbor of a pedestrian, once determined for
a given angle, maintains this angle with good accuracy.
More generally, the stability of the nth neighborhoods of the
pedestrians is an important feature of the experimental data.

IV. VELOCITY CORRELATIONS

The positions of the pedestrians have been collected 16
times per second [1]. The changes of positions between
successive time steps are considered as velocities; there are
differences in positions divided by �t = 1

16 s.

A. Definitions

For each pedestrian i and for each time t he or she is
present in the corridor, the component of his or her velocity
vi(t) parallel to the corridor is found. In the following, we
consider only these components. The velocity components

FIG. 5. Histogram of angular distribution of the (a) first-,
(b) second-, (c) third-, (d) fourth-, (e) fifth-, and (f) sixth-nearest
neighbors according to � for n � 6. A zero angle (top) corresponds
to the direction of motion. Angular discretization is 1◦. The radius
of the plot corresponds to 400 detected positions of the nth neighbor
at a given �. Assuming approximately 79 800 total nth neighbors
detected for each n corresponds to a 0.5% chance of finding the nth
neighbor at this �.

perpendicular to the corridor axis come from the specific way
humans walk, moving not only ahead, but also left and right,
shifting the body center of gravity above the leg placed on the
ground. Here we treat this kind of motion as unavoidable and
therefore not dependent on any specific characteristics of the
crowd motion.

The time dependence of the velocities vi of two sample
pedestrians is shown in Fig. 6. We note that two effects are
visible there: the oscillations due to the rhythm of striding, of
a frequency of about 2 Hz, and slower variations in the time
scale of about 3–4 s. In Fig. 7 the Fourier spectrum is shown for
a sample pedestrian. There, the strongest maximum appears
near f = 2 Hz.
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FIG. 6. Time dependence of the velocity component parallel to
the corridor, for two neighboring pedestrians.

For each pedestrian the first and second moments of velocity
distribution is found, as

〈vi〉 =
∑Ti

t=1 vi(t)

Ti

, (1)

〈
v2

i

〉 =
∑Ti

t=1 v2
i (t)

Ti

, (2)

where Ti is the length of the time period when i is present in
the corridor. Accordingly, the variance σ 2

i = 〈v2
i 〉 − 〈vi〉2.

The correlation function is calculated as follows. For each
pedestrian i we identify the nearest neighbor j (i). As noted in
the preceding section, the angle � formed by the pair with the
corridor axis remains approximately constant during the time
evolution, therefore we can assign an angle to each pair. The

FIG. 7. Fourier spectrum of the velocity of an exemplary
pedestrian.

velocity correlation for the pair (i,j ) is

ρi,j (i),τ =
∑Tij

t=1[vi(t + τ ) − 〈vi〉][vj (t) − 〈vj 〉]
Tijσiσj

, (3)

where Tij is the length of the time period when both i and j

are present in the corridor and τ is the delay. Note that Tij in
the denominator plays the role of normalization of the time
average. Finally, the angle- and delay-dependent correlation
function ρ(�,τ ) is

ρ(�,τ ) =
∑

i ρi,j,τ

N (�)
, (4)

where the sum in the numerator is taken over those pairs of
nearest neighbors that form an angle � with the corridor
axis and N (�) is the number of such pairs. The correlation
functions for the second- and third-nearest neighbors are
calculated in the same way.

B. Analysis of the results

In Figs. 8(a)–8(c) the obtained correlations are shown as
dependent on the delay time τ for different angles �. It is
evident that, as expected, the correlations with first-nearest
neighbors are stronger than those with second- and third-
nearest neighbors. This can be seen by a comparison of the
results for zero delay, where the maximal values are 0.26
(� = 30◦), 0.22 (� = 80◦), and 0.17 (� = 50◦) for the first-,
second-, and third-nearest neighbors, respectively. The second
result is that the correlations decrease with the delay; this
was expected as well. A different result is that almost all
correlations show a kind of oscillation with the delay τ , with
the period 0.6–0.9 s. This effect can be explained as a kind
of beat, when two oscillations appear with almost the same
frequency. Actually, this effect can be observed in Fig. 6, where
two plots of velocity vs time meet once with the same phase
and once with the opposite phase. For a finite-time range, a
shift in phase and a small change of frequency have similar
consequences.

We have made an attempt to remove the beat effect at least
partially, by filtering out the main frequency related to the
striding. As is shown in Fig. 7, the Fourier spectrum of the
velocity of a sample pedestrian shows a strong maximum
near f = 2 Hz. Such a value of frequency correlates with
the most common rhythm of walking. For each pedestrian,
the characteristic frequency of striding has been filtered out
and the correlation functions have been calculated again. The
results are shown in Figs. 8(d)–8(f). A comparison of upper and
lower plots shows that when the striding frequency is filtered
out, the correlations are reconstructed only slightly. For the
first neighbor [Fig. 8(d)], the curve for 0◦ is shifted upward
by about 0.05 and this correlation becomes slightly larger than
those for other angles. For the second neighbor, the curve for
80◦ is shifted in the same way, being even more outstanding
[Fig. 8(e)]. Similarly, for the third neighbor [Fig. 8(f)], the
curve for 90◦ is shifted upward by about 0.1.

V. DISCUSSION OF THE RESULTS

Taking into account the distribution of pedestrians dur-
ing a unidirectional flow as shown in Fig. 3, some
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FIG. 8. Angle- and delay-dependent velocity correlations between (a) first-, (b) second-, and (c) third-nearest neighbors within a given �

and (d) first-, (e) second-, and (f) third-nearest neighbors within a given � after the frequency of striding is filtered out.

characteristic patterns can be observed. Regarding the first
and the second neighbor of a pedestrian, one can notice
that they are located on both sides of the pedestrian. In
general, people tend to keep a distance between themselves
and their predecessors; next neighbors, namely, the third,
fourth, fifth, etc., are usually located in front of or behind
the pedestrian. Moreover, neighbors on the sides of pedestrian
are allowed closer than those ahead of or behind them. One
can formulate a general rule regarding formulating patterns
in unidirectional movement: One should keep at least a given
distance between oneself and the person ahead, follow closely
the person directly in front, and pedestrians on the sides are
acceptable.

The occurrence of the sharp transition in angular distribu-
tion for the first-nearest neighbor in Fig. 5(a) is worth noting.
Between 35◦ and 40◦ from the axis of movement one can
observe a transition from acceptance for other pedestrians to
strong avoidance. Such a clear pattern suggests the existence
of some internal factor that determines this. One explanation
seems to be the horizontal angle of human binocular vision,
which is necessary for depth perception. This angle typically
equals 114◦ [16], i.e., up to 57◦ from the axis of movement.
Thus, a possible explanation for the observed phenomenon is
a compromise between the need for free space in front of a
pedestrian (to have an area for the next step) and the ability to
perceive at least one neighbor on the side with both eyes (in
order to determine distance). However, this hypothesis requires
further research.

Regarding the patterns, one can observe good compatibility
with the theory of social distances by Hall [2], where

different distances between people were taken into account.
Figure 4 clearly illustrates the existence and the exact shape
of the personal space around a pedestrian when moving in
a unidirectional flow. Similar results were obtained in [4];
however, in this case the personal space around pedestrians
was almost circular. This difference can be explained by the
fact that in the latter experiment participants were instructed
to move in the room in random directions.

There is also an analogy between the observed results and
forming groups of people, due to the fact that people prefer to
walk in small groups of two or three people rather than alone.
Typical patterns formed by groups are abreast, diagonal, and
riverlike [17,18]. A riverlike pattern is typical for a dense crowd
in bidirectional movement, while the other two are explainable
from a physical as well as a psychological point of view in
unidirectional flow. These two patterns are in good agreement
with the observed results, namely, the positions of the first- and
second-nearest neighbors, which correspond to the movement
in dyads and triads. The detailed analysis of mutual pedestrians
position in dyads and triads [5,6] is in good agreement with
the results presented in this paper. It is worth noting that [5]
also proposed a crowd dynamics model that uses a discomfort
potential field to model stable dyads; the minimum value of this
field corresponds to the most probable positions of the first-
nearest neighbor in the histograms of the spatial distribution
presented in Fig. 3.

Our intention when investigating the delay was to detect the
cause and effect relation between variations in the velocities
of a pair of pedestrians: one in front (cause) and the other
behind (effect). Here we see that this relation is hidden by two
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phenomena. The first phenomenon is the beat effect, which
overshadows the correlations of other origins. The second is
that pedestrians prefer to have open space before them, which
is shown in Fig. 4. Then they try to move towards the free
space between two people in front of them. As a consequence,
the distance between pedestrians along the corridor axis is
usually larger than the average and the correlation is weaker,
just along the direction where the cause and effect relation
should be the strongest. In other words, pedestrians are able
to self-organize themselves so as to minimize the necessity
to modify their velocity because of the velocity variations of
other pedestrians. The same effect is common in car traffic,
where drivers find it more convenient to occupy the left lane
because it is supposed to be free.

The decrease of the correlations with increasing n is rather
weak. This result disproves the expectation that it is only the
nearest neighborhood that is relevant to the motion. However,
as we see in Fig. 3, the first-nearest neighbors are usually
situated on the side of a pedestrian and not in front and
therefore they are supposed to be observed by the pedestrian
less carefully. Then again, the weak decay of the correlations
can be due to the self-organization of the crowd structure,
where the motion of a pedestrian correlates more with more
distant neighbors.

Another result is that the maximum of correlations expected
at a delay of about 0.3 s is invisible. The expectation is based
on the time of human reaction [19]. If a person in a queue
takes a step, the subsequent person behind also takes a step
to fill the gap and the delay of the second step with respect
to the first one cannot be shorter than the reaction time of a
human. However, having removed the striding frequency, we
see only a weak maximum of the correlation with the first
neighbor for a � of about 10◦, at a delay τ of about 0.9 s. This
maximum is rather a result of oscillations of the correlations
due to the beating effect, one of the series at 0, 0.9, and 1.8 s.
Apparently, the pedestrians adjust their mutual positions; the
queue analogy is not appropriate in a sparse crowd.

VI. SUMMARY

While the existence of self-organization phenomena in a
crowd are well known [3], the exact preferences or driving

factors of individuals that are the origins of such phenomena
are still a subject of research. The results described in
this paper widen our knowledge of mutual spatial relations
between individuals in a crowd. They can be used in modeling
crowd dynamics, especially for microscopic models, where
each individual is simulated independently. Increasing the
efficiency of computers allows the development of models that
use cognitive heuristics, like in [5,12,13], where knowledge of
factors that drive pedestrians were used directly.

Correlations between the positions and velocities of pedes-
trians in the laminar motion of a crowd in a corridor were
calculated from some experimental data. We have analyzed
and discussed spatial dependencies and velocity correlations
between pedestrians.

Analysis of spatial relations reveals a number of clear
patterns: the preference for a position on the side for the first
neighbor and for positions close to the axis of motion for the
nth neighbor for n � 3. We have shown a sharp transition in
the acceptable angle for the first neighbor and the shape of
a pedestrian’s personal space in unidirectional motion. The
observed phenomenon can be explained by simple rules.

The dependence of the correlation on the delay shows
oscillations, which can be ascribed to a superposition of
striding frequencies of the pedestrians. However, if the
individual frequencies of striding are identified by the Fourier
transform and removed from the data, the oscillations are
modified only slightly. The results are interpreted in terms of
a self-organization of positions and velocities of pedestrians.
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