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Geometric Brownian motion (GBM) is frequently used to model price dynamics of financial assets, and a
weighted average of multiple GBMs is commonly used to model a financial portfolio. Diversified portfolios can
lead to an increased exponential growth compared to a single asset by effectively reducing the effective noise.
The sum of GBM processes is no longer a log-normal process and has a complex statistical properties. The
nonergodicity of the weighted average process results in constant degradation of the exponential growth from
the ensemble average toward the time average. One way to stay closer to the ensemble average is to maintain a
balanced portfolio: keep the relative weights of the different assets constant over time. To keep these proportions
constant, whenever assets values change, it is necessary to rebalance their relative weights, exposing this strategy
to fees (transaction costs). Two strategies that were suggested in the past for cases that involve fees are rebalance
the portfolio periodically and rebalance it in a partial way. In this paper, we study these two strategies in the
presence of correlations and fees. We show that using periodic and partial rebalance strategies, it is possible to
maintain a steady exponential growth while minimizing the losses due to fees. We also demonstrate how these
redistribution strategies perform in a phenomenal way on real-world market data, despite the fact that not all
assumptions of the model hold in these real-world systems. Our results have important implications for stochastic
dynamics in general and to portfolio management in particular, as we show that there is a superior alternative to
the common buy-and-hold strategy, even in the presence of correlations and fees.

DOI: 10.1103/PhysRevE.96.022305

I. INTRODUCTION

Multiplicative stochastic processes are commonly used to
model assets prices as these are strongly affected by relative
fluctuations. The most popular framework used in finance to
model stock prices is GBM. It is used in the classic Black-
Scholes model [1] as well as in many other models [2,3]. It was
noted that in random multiplicative environments the median
represents the typical path much better than the mean. Hence,
it is not recommended to simply maximize the expectation
of the wealth [4] but rather to maximize the expectation of
the log of the wealth [5]. In fact, utilizing the log space of
wealth can be traced back to Daniel Bernoulli [6]. Inspired by
the St. Petersburg paradox, he invented the log utility function
in 1708 [7], which reflects a declining marginal utility of the
wealth, and later also led to the concept of risk aversion [8].
In gambling and repeated investments, Kelly was the first to
suggest the usage of logarithmic utility [9,10]. Finite sum of
multiplicative stochastic processes is not ergodic [11], which
implies that the time average is not the same as the ensemble
average. There is a growing interest in stochastic ergodicity
breaking in a wide range of physical systems [12,13].

The nonergodicity of this process implies that systems that
are naïvely expected to flourish (arithmetic mean larger than
1), in reality may be doomed to extinction (geometric mean
lower than 1). A possible workaround for this unfortunate
outcome can be achieved by diversification and cooperation
[14,15]. The dominance of the geometric mean for the typical
path in multiplicative processes was demonstrated by proving
that the price trajectory behaves almost surely as [16]

lim S(t)(t → ∞) =

⎧⎪⎨
⎪⎩

∞, E{ln[S(1)]} > 0

oscillation, E{ln[S(1)]} = 0

0, E{ln[S(1)]} < 0.

(1)

Also, for assets with price dynamics that follow GBM, the
price will be nowhere near its expected value for large
times [17]. The noise fluctuations in GBM process have a
negative effect on the growth, as can be seen in the Ito
correction term [18]. This correction term is of σ 2 magnitude
and reflects the difference between the arithmetic mean and
the geometric mean. A useful way to reduce the noise is
by diversification in which N GBM processes are summed
together. The sum of GBM processes is not ergodic, thus
there is a difference between the time average, lim t → ∞,
and the ensemble average, lim N → ∞, where the ensemble
average > time average. In reality, the interesting dynamics
is when N and t are finite. One of the results derived from
the nonergodicity of the process is that for small t the
growth is close to the ensemble average but decreases over
time toward the time average as described in Ref. [11]. By
infinite diversification (i.e., lim N → ∞), the stochastic noise
is removed and the ensemble average is achieved. One way to
recover from the nonergodicity without infinite diversification
and to gain a steady growth over time is by keeping constant
weight for each GBM in the weighted sum as described
in Ref. [19]. The constant rebalanced portfolios are also
called balanced portfolios. Balanced portfolios should not be
confused with buy-and-hold (passive) portfolios in which the
number of shares held in each asset are kept fixed, hence
when the wealth changes, wealth fractions also change. The
wealth of a balanced portfolio composed of GBM assets is a
log-normal process. It was shown that balanced portfolios,
in the absence of transaction costs, have steady expected
growth [17]. In practice, the constant rebalance required for a
balanced portfolio exposes it to transaction costs. The effects of
transaction costs on a Kelly portfolio with one risky asset and
one risk-free asset with zero growth were studied in Ref. [20].
It was shown in Ref. [20] that there is an optimal rebalance
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period that is proportional to α
2
3 where α is the transaction costs

parameter. In this model, transaction costs were calculated as
a fraction of the volume traded: for each transfer of wealth W ,
α · W is paid as fees (0 < α < 1). A partial rebalance strategy
in which only part of the wealth required for full rebalance is
transferred, was studied in Ref. [20] as well, and it was shown
that this strategy outperforms the periodic rebalance strategy.
Different return distributions, including binary and log normal,
were considered and exhibited similar results [20].

Another important strategy is the growth-optimal portfolio
pioneered by J. Kelly in 1956 [9]. Although Kelly formulated
his model in terms of gambling and repeated investments,
the results are applicable to portfolio management as well
[21]. Kelly portfolio is a portfolio in which the optimal asset
allocation is determined by maximizing the expected value of
the log of the wealth and under the assumption that the assets
properties do not change over time, the wealth fraction of
each asset should be kept fixed (i.e., balanced portfolio). Kelly
portfolios have many important mathematical properties. For
example, the Kelly optimal portfolio lies on the Markowitz
efficient frontier for assets with log-normal return distribution,
small means, and small variances [10]. The applicability of the
Kelly portfolio in real financial markets was shown in Ref. [21].
In Ref. [22], the authors extended the concept of balanced
portfolios and presented an algorithm that asymptotically
performs as well as the best balanced portfolio in hindsight.
Although the Kelly and the balanced portfolios were designed
to maximize the expected growth, many investors are also
interested in minimizing the risk. The trade-off between
growth and risk in Kelly portfolios was studied and resulted
in the fractional Kelly approach, which allows the investors
to choose their desired growth-risk trade-off [23]. Another
source of risk in the Kelly portfolio is that in real life the
“game” probabilities or the return distribution are estimated
and are subject to random noise. Thus, choosing the right
fractions can be complicated and one can choose fractions
that can lead to losses and even ruin in some cases. In a setup
that includes cooperation of M players who share their wealth
and redistribute it at each time step in a random multiplicative
setup, it was shown that a cooperative strategy can reduce the
risk significantly [14]. More generally, the concept of sharing
resources to reduce risk and increase growth has been shown
also in a broader economic context [24].

The analysis of the complex noise dynamics in stochastic
processes in general and in financial markets in particular
is subject to a lot of researches in statistical physics and
econophysics [25,26]. In this work we investigate the noise
dynamics of the sum of stochastic processes viewed as a finan-
cial portfolio. Specifically we are investigating the dynamics of
such portfolios in the presence of correlation, rebalancing, and
transaction costs. We show that even with minimal rebalancing
it is possible to stay closer to the ensemble average and to avoid
the degradation toward the time average. We also show that
these partial rebalancing strategies have a practical use in the
presence of transaction costs and in real market trading.

A. Modeling scheme

The basic model we consider is a portfolio, composed of
N � 1 asset(s). The price of asset i (si where i ∈ {1, . . . ,N})

follows GBM and can be defined by a stochastic differential
equation (SDE):

dsi = si[uidt + σidBi(t)], (2)

where Bi(t) is a standard Brownian motion, ui is the drift, and
σi is the standard deviation. The solution of this SDE yields
the price for each asset at any time t > 0:

si(t) = si(0)e[(ui− σ2
i
2 )t+σiBi (t)]. (3)

Without loss of generality we can assume that ∀i,si(0) = 1.
For GBM the arithmetic mean is E[si(t)] = eui t , while the
variance is Var[si(t)] = e2ui t (eσ 2

i t − 1), and the geometric

mean is GM[si(t)] = et(ui− σ2
i
2 ). The wealth held in each asset

is defined by

Wi(t) = si(t)qi(t), (4)

where qi(t) is the number of shares held by asset i at time t .
The wealth of the portfolio is the sum of the wealth of all the
assets and is defined by

W (t) =
N∑

i=1

qi(t)si(t). (5)

As noted in the introduction, the expected value of a GBM
random variable does not represent well its long-term behavior.
Thus, we define gp(t), the exponential growth rate of the
portfolio:

gp(t) =
ln

[
W (t)
W (0)

]
t

. (6)

Without loss of generality, we can assume that W (0) = 1.
Thus, Eq. (6) reduces to

gp(t) = ln[W (t)]

t
. (7)

We are primarily interested in the expectation and the
variance of the growth (E[gp(t)] and Var[gp(t)], respectively).
Note that the expected growth is achieved by taking the
natural logarithm, ln, of the geometric average. In addition
to the growth measures, many investors are also interested
in minimizing the risk. We use the following risk measure,
proposed in Ref. [23]:

Pr (T ,l) = P [W (T ) � W (0)(1 − l)]. (8)

This measure represents the probability of losing at least a
fraction l of the initial wealth at time T . The expected growth
of each asset is:

E{ln[si(t)]}
t

= ui − σ 2
i

2
. (9)

We mark the expected growth of each asset as E[gi(t)] and
the expected growth of the portfolio as E[gp(t)]. Figure 1
shows ln[W (t)] for typical paths of both single asset [Fig. 1(a)]
and N = 2 assets [Fig. 1(b)]. It can be seen that although
for each asset E{ln[W (t)]} = 0, combining the two assets to
a portfolio yields a positive E{ln[W (t)]}. This demonstrates
the advantages of diversification. Also, as expected, in the
portfolio with N = 2 assets, ln[W (t)] has a lower variance.
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FIG. 1. Representative trajectories of the logarithm of the wealth
for single and multiple assets. Time dynamics of the logarithm of
the wealth for passive portfolios of N = 1 (a) and N = 2 (b) assets
are shown. Solid gray lines represent the expectation, E{ln[W (t)]},
over 100 000 random realizations, while blue and black dashed lines
represent single random realizations. Wealth dynamics of each asset
was simulated with the following parameters u = 0.02 and σ = 0.2
(see methods for more details about the simulations).

The rest of the paper is organized as follows: in the first
two sections of the results chapter we study and compare two
strategies for portfolio management. The first is a balanced
portfolio in which the fractions invested in each asset are
kept fixed and the second is a passive portfolio in which the
quantities invested in each asset are kept fixed. In Sec. II A,
we study the dynamics of balanced portfolios and analyze

its properties without transaction costs, but for correlated and
uncorrelated assets. In Sec. II C we study the dynamics of
passive portfolios for short and long times. In the Sec. II D 1
we study the periodic rebalance strategy, where the portfolio is
rebalanced every τ days instead of continuously. In Sec. II D 2
we study the partial rebalance strategy, in which the fixed
fraction approach is relaxed and only part of the required
wealth for full rebalance is being transferred from one asset
to another. In Sec. II E we apply the above redistribution
strategies to real world data, and in the last chapter we
conclude.

II. RESULTS

A. Theoretical analysis of a balanced portfolio

In this section, we analyze the mathematical properties of
a balanced portfolio. We derive analytic expressions for the
expected growth, the variance of the growth, and the risk
measure defined above [Eq. (8)]. We start by analyzing the
behavior of balanced portfolios for N correlated GBM assets.
We define ui,σi to be the drift and the standard deviation of
asset i, σij to be the covariance between assets i and j , and fi

to be the wealth fraction invested in asset i.
Proposition 1: The wealth of a balanced portfolio is a log-

normal process and defined by the following SDE:

dsp = sp[updt + σpdB(t)], (10)

where

up =
N∑

i=1

uifi (11)

and

σp =
√√√√ N∑

i=1

N∑
j

fifjσij . (12)

The expected growth of balanced portfolio is given by

E[gp(t)] =
N∑

i=1

uifi − 1

2

N∑
i=1

N∑
j=1

fifjσij . (13)

The variance of the growth of balanced portfolio is given
by

Var[gp(t)] = 1

t

N∑
i=1

N∑
j

fifjσij . (14)

The risk measure defined by Eq. (8) is given by

P [W (t) � W (0)(1 − l)]

= 1

2

⎛
⎝1 + erf

⎧⎨
⎩ ln [W (0)(1 − l)] − t

(
up − σ 2

p

2

)
σp

√
2t

⎫⎬
⎭

⎞
⎠. (15)

Equation (13) shows that balanced portfolio has a steady
exponential growth over time. The proof can be found in
Appendix A.
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B. The effect of correlations on balanced portfolios

Portfolio diversification is thought to lower the risk and
increase the growth. In reality, however, assets are correlated,
thus the effect of diversification is lessened. Correlation
between assets can result from various reasons. For instance,
stocks of companies from the same industry are often highly
correlated because they are influenced by the same economic
factors. Also stocks of companies from different industries and
markets show significant correlations [27].

In this section, we study the effect of diversification on a
given balanced portfolio of N correlated assets. To focus on the
effects of correlation, we simplify the model so that the price
dynamics of all assets share the same properties (i.e., ∀i ui = u

and σi = σ ), and we do not consider yet transaction costs. For a
given balanced portfolio of N identically distributed correlated
assets, we find the size (Neff) of an equivalent portfolio with
the same expected growth, composed of Neff independent
identically distributed (i.i.d.) assets with the same u and σ .
In other words: a balanced portfolio with N correlated assets
is equivalent, in terms of the expected growth and its variance,
to a balanced portfolio with Neff uncorrelated assets.

Proposition 2:

Neff = N2

N + ∑N
i=1

∑N
j �=i ρij

, (16)

where ρij is the Pearson correlation coefficient between assets
i,j .

In the simple case of uniform correlation coefficient, where
ρij = ρ ∀i �= j , we get

Neff = N

1 + (N − 1)ρ
. (17)

If ρ < 0, then Neff is given by

Neff =

⎧⎪⎨
⎪⎩

undefined, N > 1 − 1
ρ
,

∞, N = 1 − 1
ρ
,

N
1+(N−1)ρ , N < 1 − 1

ρ
.

(18)

The proof and an illustration of the dramatic effect of the
correlation can be found in the Appendix B

C. Passive portfolio dynamics

As can be seen from Eq. (9), the expected growth of a
GBM asset is reduced due to the noise (standard deviation)
term. Diversification is often used to lower the investment risk
by reducing the standard deviation. The simplest approach
of a diversified portfolio is a passive portfolio in which the
investor buys stocks and holds them, keeping the number of
shares held in each asset constant. In this case the portfolio’s
wealth is a stochastic process, which is a finite weighted sum
of log-normal processes. The wealth dynamics is defined by

W (t) =
N∑

i=1

qisi(t), (19)

where qi are constants. A finite sum of log-normal processes
is not a log-normal process and does not have a known return
distribution. Unlike a balanced portfolio, the expected growth
of a passive portfolio declines over time. For t → 0 it has the
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FIG. 2. Expected growth of a passive portfolio over time. The
parameters used in the simulations shown in (a) and (b) are u = 0.5
and σ = 1 for all assets. (a) shows the results of a portfolio with
N = 2 i.i.d. simulated assets. The gray solid line represent the passive
portfolio’s growth, while the black dashed line represents the balanced
portfolio’s growth. (b) The effect of N on the expected growth.
(c) The risk measure as function of N is presented. The parameters
used in (c) are T = 10,σ = 0.4, and u = 0.13. (d) The expected
growth of a passive portfolio over time in log scale is shown. The
blue doted line represents the results that follow from Eq. (24).
The parameters used in this simulation for all setups are N = 4 and
σ = 0.9

same expected growth as a balanced portfolio, but it declines
over time toward the expected growth of a single asset and
the effect of diversification diminishes. The dynamics of a
weighted average of N i.i.d. GBM processes, which can be
viewed as a passive portfolio, was also studied in Ref. [11].
The authors proved that the long-time average growth is

lim
t→∞

E{ln[W (t)]}
t

= u − σ 2

2
, (20)

where u and σ are the drift and the standard deviation of the
assets, respectively. This proves that in the long run, a passive
portfolio of N assets has the same expected growth as that
of a single asset. They also proved that the ensemble average
growth is

lim
N→∞

E{ln[W (t)]}
t

= u. (21)

The maximal expected growth of the passive portfolio is
the expected growth of a balanced portfolio, which for a finite
N is smaller than the arithmetic mean. Increasing the number
of assets, increases the time elapsed until a passive portfolio
and a balanced portfolio have similar expected growth.

Figure 2(a) shows the expected growth over time for a
simulation of a passive portfolio of N = 2 i.i.d. assets. Each
asset has an expected growth of u − σ 2

2 = 0, but as can be seen,
due to diversification, the portfolio has a positive expected
growth that declines over time. Increasing the number of assets,
increases the expected growth of the portfolio for short times
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and also leads to slower decline of the growth towards the
single asset value [Fig. 2(b)].

In addition to a higher expected growth, a balanced portfolio
also presents a lower risk relative to a passive portfolio. The
risk measure [Eq. (8)] as a function of N is shown in Fig. 2(c).
It shows that a balanced portfolio has lower probability to lose
a fraction of its initial wealth. Increasing the number of assets,
decreases the risk in both setups.

The problem of finding an analytic expression to the
expected growth of a passive portfolio is not trivial. One
approach was taken in Ref. [28], where it was proven that
for t >> ln (N)

σ 2 a passive portfolio of i.i.d. assets with expected

growth of 0 (i.e., u = σ 2

2 ), will be dominated by the asset with
the maximal value. Then, the median, which approximates the
exponent of the expected growth, can be found using extremal
statistic theory [29], leading to the results

Median[W (t)] ≈ e
√

2σ 2t ln (N), (22)

and in terms of expected growth,

E[gp(t)] =
√

2σ 2 ln (N )

t
. (23)

Combining theoretical analysis and numerical approxima-
tion, we suggest a different approach to this problem, by show-
ing the relation between a passive and a balanced portfolio.
The wealth fractions of a passive portfolio change whenever
the assets values change. We define fi(t) to be the wealth
fraction invested in asset i at time t . The main idea behind
this approach is to express the expected growth of a passive
portfolio as an integral over time of the expected growths of
consecutive balanced portfolios, leading to Proposition 3 (the
proof can be found in Appendix C) the long-time expected
growth of a passive portfolio of N i.i.d. assets is

E[gp(t)] = 1

t

∫ t

0

[
u − σ 2

2

N∑
i=1

fi(τ )2

]
dτ

= u − σ 2

2
+ σ 2

√
ln(N )

tσ
. (24)

The last term represents the excess growth of a passive
portfolio. In Fig. 2(d), the expected growth of a passive
portfolio derived by different methods [numerical simulations,
the results achieved by Ref. [28], and those which follow from
Eq. (24)] are compared.

D. Balanced portfolio in the presence of transaction costs

To keep the proportion fixed, it is needed to continually
rebalance the portfolio whenever the assets values change. The
presence of transaction costs can make frequent rebalancing
expensive and inefficient as it involves buying and selling
assets. There is a tradeoff between the benefits from the
rebalancing and the costs of the fees. In this section, we study
two rebalance strategies that aim at maximizing the expected
growth of a balanced portfolio in the presence of transaction
costs. We use a volume model for the transaction cost, in which
for each transferred wealth W the costs are α · W (0 < α < 1).
We will also use the notation Fees in basis points (BPS). BPS

is a common unit of measure for a percentages in finance. One
basis point is equal to 10−4 and α = (Fees · 10−4).

1. Periodic rebalance strategy

Instead of continually rebalancing the portfolio, this strat-
egy applies a full rebalance periodically each τ time units. In
between the rebalances, the portfolio behaves like a passive
one. If τ → ∞ the portfolio is passive and if τ → 0 the
portfolio is balanced. Short τ implies frequent rebalances,
thus many buy and sell operations occur, which might lead
to decline in the expected growth due to the transaction costs.
Long τ implies longer periods with passive behavior, which
can lead to an expected growth degradation as demonstrated
in passive portfolios (see Sec. II C). For intermediate periods
however, the passive portfolio growth degradation is relatively
small. In other words, rebalance can be made less frequently
without degrading the growth dramatically, yet benefiting from
the reduction in the transaction costs. The optimal rebalance
period is sensitive to the transaction costs parameter, Fees. To
study this sensitivity we conducted simulations and measured
the expected growth achieved using the optimal rebalance
period, each time with different Fees. Increasing Fees increases
the optimal rebalance period. Another interesting effect is
that increasing Fees makes the growth less sensitive to the
rebalance period (i.e., ∂E[gp(t)]

∂τ
is smaller if the transaction

cost is higher). The effect of Fees on the expected growth
and the optimal rebalance period is shown in Fig. 3. Both
the maximal growth and the minimal optimal rebalance period
were obtained for the case with the smallest Fees as can be seen
in Figs. 3(a) and 3(b). In the case with the highest transaction
costs, the expected growth is less sensitive to the rebalance
period and there is a wide range of rebalance periods that
yield a comparable growth to the optimal expected growth. In
Ref. [20], the authors found that for a Kelly portfolio with two
assets (one risky asset and cash) the optimal rebalance period
is proportional to ∼α

2
3 , where α = Fees · 10−4. In the current

setup, for a portfolio with N = 2 GBM assets, we obtained
similar results by running a simulation and finding the optimal
τ for each Fees and then fitting a linear regression line to the
log scaled results. The 95% confidence interval of the fitted
exponent lied in the range 0.66–0.77. The optimal rebalance
period is also sensitive to the number of assets. Increasing the
number of assets increases the time in which a passive portfolio
behaves like a balanced portfolio. This can suggest that it is
possible to increase the rebalance period without degrading the
expected growth significantly and benefit from the reduction
in the transaction costs. Indeed, in the presence of transaction
costs, the optimal rebalance period is an increasing function of
the number of assets. Increasing the number of assets also
makes the expected growth less sensitive to the rebalance
period (i.e., ∂E[gp(t)]

∂τ
is smaller when the number of assets is

higher). Comparing Figs. 3(a) and 3(b) shows the effect of N

on the growth and on the optimal rebalance period: the larger
the N , the larger the optimal τ is, and the expected growth
is less sensitive to τ . The reason behind this is that large N

is less sensitive to the growth degradation of passive portfolio
and thus increasing the passive periods can be beneficial in the
presence of fees.
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FIG. 3. Expected growth as a function of τ for different Fees.
The parameters used for all simulations are u = 0.125, σ = 0.5, T =
100, and N = 2 (a) or N = 64 (b).

2. Partial rebalance strategy

Partial rebalance strategy refers to cases in which only
a fraction D (0 < D < 1) of the required capital for full
rebalancing is transferred between the assets. This implies
that during the rebalance step, the wealth invested in asset i at
time t , Wi(t), is updated to be

W rebalanced
i (t) = Wi(t) − D[Wi(t) − W (t)fi]. (25)

The transaction cost for this rebalance operation is thus
α · D · |Wi(t) − W (t)fi |. D = 1 implies full rebalance, and
D = 0 implies passive portfolio. If τ > 0 and D = 1, the
partial strategy is equivalent to the periodic strategy. The
idea behind this strategy is that to reduce transaction costs,
rebalancing should occur more frequently but smaller amounts
should be transferred at each rebalance compared to the
periodic rebalance strategy. In partial rebalancing, the portfolio
is no longer balanced. The dynamics of the fractions can be
formulated as follows:

Wi(t + dt) = W rebalanced
i (t)Ri(t,t + dt), (26)

where Ri(t,t + dt) is the return of asset i between the times
t and t + dt , and fi is the desired optimal fraction of asset i.
If the fractions are time-varying, the fraction of asset i at time
t + dt is

fi(t + dt) = W rebalanced
i (t + dt)

W (t + dt)
. (27)

Thus, after rebalance, using Eq. (25) for t + dt , we get

fi(t + dt) = fi(t)Ri(t,t + dt)∑N
i=1 fi(t)Ri(t,t + dt)

(1 − D) + Dfi. (28)

Although we have not found an analytical solution to this
equation, several observations can be made. fi(t + dt) is a
weighted average of the original optimal fraction fi and fi(t).
If D = 1 (full rebalance) the fractions remain constant. If D =
0 (passive portfolio), the fractions dynamics is subject to the
noise of the returns. Increasing D reduces the variance of
the fraction as it adds more weight to the constant desired
fraction. If the fractions are time-varying, the dynamics of the
total wealth is

W (t + dt) = W (t)
N∑

i=1

fi(t)Ri(t), (29)

and the variance of the fractions has a negative effect on the
expected growth, as it increases the variance of the wealth.
Despite the fact that for partial rebalance the portfolio has no
longer fixed fractions, we can still ask how far the fractions are
from their optimal fixed values. It turns out that even for a very
small D the variance of the fraction distribution is surprisingly
small. Figure 4(a) shows that while the standard deviation of
the fractions of the passive portfolio increases over time, the
standard deviation of the fractions using partial rebalancing
is smaller and approaches a constant value. This phenomenon
is crucial for the understanding of the advantages of partial
rebalancing over no rebalance at all. In Refs. [30] and [31], it
was shown that for very large N and for any D > 0, the wealth
fractions follow a power law distribution. Figure 4(c) shows
that the partial strategy overcomes the period rebalancing for
every chosen rebalance period. Dopt changes as a function
of the rebalance period, τ , but for every τ there is a partial
strategy with Dopt < 1 that overcomes the periodic rebalance.
Figure 4(b) shows that the optimal full rebalance using periodic
rebalance strategy (i.e., D = 1) is obtained by τ = 0.63 years,
represented by the blue dotted line, but the optimal result
are achieved using partial rebalancing with τ = 0.1, Dopt =
0.2 represented by the black dashed line. Increasing the fees
reduces Dopt as can be seen in Fig. 4(d). Comparing Fig. 4(b)
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FIG. 4. Periodic and partial rebalancing strategies. Standard
deviation of the wealth fractions for partially rebalanced and passive
portfolios is shown in (a). Expected growth over time as a function of
D for different rebalance periods is shown in (b) (Fees = 105) and
(d) (Fees = 405). Comparison of the partial and periodic strategies
is shown in (c). The parameters used in (a) are u = 0.03 and
σ = 0.2, and the parameters used in (b–d) are u = 0.125, σ = 0.5,
and T = 100.

to 4(d) one realizes that, as expected, the optimal full rebalance
period is longer if the fees are larger as can be seen in the blue
line of Fig. 4(b) but for all rebalance periods Dopt is smaller.
Increasing the number of assets also decreases Dopt.

The optimal partial rebalance parameter (Dopt) is an
increasing function of the rebalance period. Naïvely, one could
expect that as long as the ratio D

τ
remains the same, taking

different values for D and τ would yield similar growth.
This is because in each case similar amounts are eventually
transferred, however, as demonstrated in Fig. 4(a), the optimal
results are obtained for more frequent (small τ ) and weaker
(small Dopt) rebalance events.

Figure 5 shows the relationships between Dopt and τopt,
where τopt is the optimal rebalance found using periodic
strategy and Dopt is the optimal parameter found using partial
strategy. In Fig. 5(a), Dopt and τ are found for different fees.
It can be seen from the inset in Fig. 5(a) that τopt ∼ 1

Dopt
.

Figure 5(b) shows that the partial strategy outperforms the
periodic strategy. It also shows that the gap between the two
strategies increases as the fees increase.

Figure 6 summarizes the results for all methods in a GBM
market. The red line represents the steady growth of a balanced
portfolio without transaction costs, the black line represents
the declining growth of passive portfolio, the purple line
represents a continuously balanced portfolio with transaction
costs, the gray line represents the results achieved by the
best partial rebalance strategy, and the blue line represents
the results achieved by the best periodic rebalance strategy. It

FIG. 5. Optimal values of the parameters and the expected growth
for periodic and partial rebalance strategies. Optimal D and optimal τ
for different fees is shown in (a). Optimal expected growth as function
of fees for periodic and partial rebalance strategies is shown in (b).
The inset of (a) shows the results on a log scale. The parameters used
for this simulation are u = 0.125, σ = 0.5, N = 2, T = 20.

is evident that using a partial rebalance strategy, transaction
costs are reduced dramatically, and the growth approaches the
performance of a balanced portfolio without transaction costs.

E. Real market experiments

Using mathematical models such as GBM raises the
question of whether these models reflect well the real world
and whether the theoretical results remain valid in real stock
markets. To answer these questions we tested the above
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Continuous rebalance

FIG. 6. Comparison of all methods for portfolio of uncorrelated
assets. The parameters used for all simulations are u = 0.2, σ =
0.6, N = 4, fees = 40.
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FIG. 7. Comparison between rebalancing strategies on a typical
portfolio, for the period of 2002–2017. Stocks symbols that are part of
this portfolio are: ADP, DE, EMN, JNJ, NBL, PWR, REGN, SCHW.
Graph shows the cumulative return for different strategies. The best
performance is achieved by continuous rebalance when no fees were
considered, represented by the red line. When fees were considered
the best strategy was the partial strategy with D = 0.1 represented
by the gray line.

rebalancing strategies against real market data using realistic
transaction costs models. We show that our theoretical and
simulated results also hold in the real world and that the
rebalance strategies perform better, in a statistically significant
way, than buy-and-hold portfolios when transaction costs are
taken into account. To illustrate the power of these strategies
we tested them in various setups, including randomly chosen
assets from different stock markets, varying number of assets,
and two transaction costs schemes. In all setups the rebalance
strategies gained substantial excess growth on average and
beat the passive portfolio in over 90% of the experiments,
each experiment with different randomly chosen stocks. The
fact that rebalanced strategies outperform buy-and-hold on
randomly chosen stocks implies that it is very likely to
improve any portfolio regardless of the stocks composing it.
For simplicity we assigned a weight of 1

N
to each stock in

the portfolio. Nonequal fraction allocation could potentially
lead to even more efficient rebalance results. In addition to
the fees per trade model that was used in the theoretical
part of the article, in this section we also validated our
results, using another very popular transaction costs model,
the fees per share model. In this scheme the fees are the
maximum between a minimal fee and the number of traded
shares times the cost per share (Max(minFees, costPerShare ×
numberOfTradedShares)). We used minFees = 1.5 dollar and
costPerShare = 7 cents. An example of a typical experiment
is presented in Fig. 7. In this experiment we ran a portfolio
composed of N = 8 randomly chosen stocks from S&P 500,
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FIG. 8. Comparison between rebalancing strategies on many
portfolios, for the period of 2002–2017. (a) Growth distribution
of portfolios composed by eight randomly picked stocks. In each
realization eight stocks were sampled and their mean growth was
calculated for varying values of the partial redistribution parameter
(D). Gray shaded area corresponds to 25%–75% of the growth
distribution of the 1000 random choices of stocks, while the black
line corresponds to the median of each distribution. The X axis is
in a logarithmic scale. (b) Boxplots describing the mean growth
distribution for D = 0.1 (left), D = 0 (middle), and the difference
between the two (right) are shown. P value indicated at the bottom of
the graph corresponds to a paired Mann-Whitney u test. Blue arrow
indicates the fraction of realizations (in percentage) that a strategy
with a diffusion factor D = 0.1 yielded a better result compared with a
passive strategy. Red arrow indicates the complementary percentages
in which the passive strategy is better.

NYSE, and NASDAQ for the period of 2002–2017. It can be
seen that the partial rebalancing strategy performed better than
the buy-and-hold and the continuous rebalance with fees (the
purple line) for most of the tested period.

As opposed to the simulation environment, in real markets
there are rare extreme cases in which even the continuous
rebalance without fees performs worse than the buy-and-hold
but in the vast majority of the cases rebalance is beneficial.
Figure 8(a) shows the growth rate distribution, as a function
of D, of 1000 random choices of 8 stocks from S&P 500
for the period of 2001–2016, and a transaction fee of 0.4%.
D = 0 represent the buy-and-hold strategy, and it can be seen
that this strategy performs worse than other strategies with
D > 0. Figure 8(b) compares the growth distributions between
buy-and-hold (D = 0) and the optimal D, which was set here
to D = 0.1, the right most column shows the difference in
growth for each randomly picked set of stocks between the
two strategies. It can be noted that partial rebalancing in this
setup drives the growth of the portfolio by ∼50%. That is,
instead of 0.02, the growth of the partially rebalanced portfolio
is 0.03, and it outperforms the passive portfolio by more than
90% of the portfolios. A Mann-Whitney nonparametric u test
was used to check if this difference is statistically significant
yielding a very strong signal (P value < 10−90).

In real life, rational investors also wish to minimize risk,
thus every trading strategy should also be evaluated by risk
measures in addition to the return and growth. To illustrate
that the rebalance strategies also outperform the buy-and-hold
strategy in terms of risk, we ran 50 different experiments. On
each experiment we chose three assets randomly from NYSE
and NASDAQ for the period of 2002–2017 and measured the
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Sharpe ratio of each strategy. It turned out that the Sharpe
ratio of the partial strategy was 17% larger than the one of the
buy-and-hold strategy, making the partial rebalance strategy
in real markets also very appealing in terms of risk. It should
be noted that due to the incompleteness of the market the
prices that were observed in the market will not necessarily
be available for trading, due to competition with other traders
or other real-life friction phenomenon. Though every real-data
experiment is exposed to this problem, to confront this issue
we also took into account intentionally very high commission
rates that should include the uncertainty one has in real
market scenarios. We repeated our live experiment this time,
using minFees = 1.5 usd and costPerShare = 12 cents, which
is much higher than the common commission rates, and still
on average the Sharpe ratio of the partial rebalance strategy
was 11% larger than the one of buy-and-hold.

III. METHODS

In this paper we studied management strategies applied to
portfolios composed of GBM and real-world assets. Specif-
ically, we studied the portfolio’s wealth dynamics and the
influence of updating strategies for varying values of the
parameters. We combined both theoretical analysis and numer-
ical simulations. For the theoretical analysis we used stochastic
process theory and Itô calculus. The theoretical results were
verified numerically using the following methodology.

A. Numerical simulation

To simulate portfolio’s dynamics, Monte Carlo simulations
were written in c-sharp [32] and the results were analyzed in
R [33]. For each simulation M = 100 000 realizations were
generated. The size of M was determined to yield negligible
standard errors compared to the measured quantities, where
the standard error is σs√

M
(σs is the standard deviation of the

sample).
The wealth of a portfolio composed of N assets is defined

by

W (t) =
N∑

i=1

qi(t)si(t), (30)

where qi(t) is the number of shares invested in asset i at time t

and si(t) is the price of asset i at time t . The price of each asset
followed a GBM stochastic process, which was simulated by
the exact solution to the GBM equation:

si(t + dt) = si(t)e
(ui− σ2

i
2 )dt+σi

√
dtzi , (31)

where ui and σi are constant.
The noise terms, zi ∼ N(0,1), were simulated using

Mersenne Twister pseudo-random number generator (PRNG)
[34]. To generate correlated dynamics, given a correlation
matrix, N correlated random noise terms were simulated using
Cholesky decomposition method [35]. To study the effect
of a specific parameter, simulations were repeated using the
same random seed with varying values of the parameter. The
parameters that were changed during the simulations are

(1) ui—the drift of asset i.

(2) σi—the standard deviation of asset i. The values of ui

and σ 2
i were set to reflect real stocks and ranged between 0 and

1 (in 1/year units). In several experiments u and σ were chosen
to reflect a negative growth of the asset (i.e., u − σ 2

2 � 0) to
illustrate the power of the diversification and to emphasize the
difference between the arithmetic and the geometric mean.

(3) N—the number of assets. Finite portfolio sizes were
considered with values ranging from 1 to 1024

(4) Fees—transaction costs in BPS. A wide range was
tested from 0 to 405 BPS.

(5) α—transaction costs coefficient (α = Fees · 10−4)
(6) T —the time horizon. Short and long time horizons

were considered ranging from 0 to 1000 years.
(7) τ—the rebalance period. A wide range of rebalance

periods was simulated staring from τ = 1
24 days, that was used

to simulate continues rebalancing, to τ = 1 year that was used
to simulate infrequent rebalancing.

(8) D—the partial parameter. Values ranging from 0 to 1
were simulated where D = 1 used to simulate full rebalance
and D = 0 used to simulate passive portfolio.

(9) l—the loss percentage for the risk Eq. (8)
(10) ρij —the correlation coefficient between assets i and

j .
(11) W (0)—the initial wealth. Without loss of generality,

for convenience we set to W (0) = 1
(12) si(0)—the initial price of asset i. With out loss of

generality, for convenience we set to W (0) = 1
Each realization built on N random trajectories correspond-

ing to the prices of the N assets. Data from all realizations
were then aggregated every dt and empirical expectations,
standard deviations, and the medians for ln[W (t) and G(t)]
were calculated [see Eq. (7)]. The risk measure [Eq. (8)] was
calculated by counting the fraction of realizations in which
W (T ) � W (0)(1 − l).

The simulation of a passive portfolio for one realization was
done by calculating the price of all assets between time t = 0
and t = T , every predefined time step dt , using Eq. (31), and
then calculating the portfolio’s wealth W (t) using Eq. (30).
The simulation of a balanced portfolio for one realization was
done by the following steps:

(1) Calculate the price of each asset, si(t) using Eq. (31)
every dt between time t = 0 and t = T .

(2) Set Wi(t) = si(t) · qi(t).
(3) Rebalance the portfolio every τ time units. Before each

rebalance prices were recalculated.
(a) The rebalance is done by updating the wealth of

each asset i

W rebalanced
i (t) = Wi(t) + D[W (t) · fi(t) − W (t)]

−α|D[W (t) · fi(t) − W (t)]|. (32)

(b) Update the quantity of each asset i

qi(t) = W rebalanced
i (t)

si(t)
. (33)

B. Empirical simulation

For the empirical analysis we used the statistical program R

and the QUANTMOD package [36]. Daily values of 500 stocks
traded in the S&P 500 were downloaded from Yahoo finance.
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Stocks that were in trade since 2001 until 2017 were chosen
leaving us with a list of 407 stocks. After deducting dividends
and updating closing prices we used these data to simulate
partial rebalance strategy in the presence of transaction fees.
1000 realizations were made for portfolios with 2, 4, 8, and
16 stocks, varied values of the partial parameter D, and the
transaction costs.

IV. DISCUSSION

The assumption of market equilibrium is that all rational
investors have the same information, thus it is impossible to
“beat the market” and the recommendation is to passively hold
a combination of the chosen portfolio and a risk-free asset. The
mathematical properties of a balanced portfolio show that with
no transaction costs it is better to hold a balanced portfolio,
instead of the passive one. In the presence of transaction costs
it is important to examine if it is still possible to use a balanced
portfolio and to outperform the passive one. In this paper,
we study this question using a realistic setup of correlated
GBM assets with transaction costs and tested the results in
real markets.

We proved that the wealth dynamics of a balanced portfolio
is a log-normal process and derived analytical expressions for
the drift and standard deviation of this process. We demon-
strated that the diversification effect in passive portfolios
degrades over time and that the expected growth declines
toward the single asset’s value. We also derived an analytical
expression for the relation between passive and balanced
portfolios. In addition to full rebalance, we have studied two
rebalance strategies: periodic and partial. Using a periodic
strategy, we demonstrated that it is possible to rebalance
the portfolio less frequently and still gain a steady excess
growth. We showed that using a partial rebalance strategy,
i.e., transferring only part of the required wealth for a full
rebalance, it is possible to dramatically reduce the impact of
transaction costs. We showed that while the expected growth
of a single asset is dominated by the geometric mean (u − σ 2

2 ),
using diversification it is possible to approach the arithmetic
mean, u, and for i.i.d. assets it is possible to achieve expected
growth of u − σ 2

2N
. The wealth fractions fluctuations (standard

deviation of the fractions) is an additional source of noise that
has a negative influence on the long term expected growth over
time. While the standard deviation of the fractions in a passive
portfolio are increasing over time, using partial strategy it is
possible to reduce the standard deviation of these fractions to a
steady level. This property makes the partial strategy superior,
as it enables to keep the advantages of a balanced portfolio
while reducing the transaction costs. Figure 6 summarizes the
results for all methods in a GBM market.

While this paper focuses on the updating strategies part of
portfolio management, we wish to refer also to the optimal
asset allocation part. The problem of optimal asset allocation
was addressed in the pioneering work of Markowitz [37], for
which he was awarded the Nobel prize in 1990. The idea
was to minimize the variance of the portfolio given a desired
return. Knowing that W (t) is very close to a multiplicative log-
normal process it is sensible to maximize its expected growth
as suggested in Ref. [9]. Maximizing the expected growth

can be easily done with linear optimization by choosing the
fractions that maximize equation (13). If the variance-return
trade off approach of Markowitz is taken, it is still crucial

to add additional constraint and to ensure that up − σ 2
p

2 > 0;
otherwise, it leads to a certain loss as shown in the introduction.

Indeed, it was shown that GBM does not necessary reflect
real market’s properties such as, fat-tail return distribution
[38,39], volatility clustering, and long-range memory [40]. De-
spite this fact, we have tested the different rebalance strategies
on real data, and to our surprise an optimal partial rebalance
strategy has been shown to improve portfolio growth, even
with naive fraction allocation, by a factor of ∼50% in more
than 90% of the cases compared to a buy-and-hold strategy.
We have tested rebalancing strategies on a daily data. Before
applying our results to real markets one has to carefully assess
the parameters of the specific market, and other complications
that may occur. For example, in high-frequency trading, Dopt is
expected to be lower due to short time autocorrelation effects.
Liquidity, book details, and discretization of stocks need also
to be taken into account.

In the past, several mathematical models were purposed to
model stocks to better reflect real financial markets properties.
For example, the ARCH model [41], the GARCH model
[42], and the Heston model [43]. The latter was shown to
be consistent with return probability of the Dow Jones, S&P
500, and NASDAQ [44], as well as with high-frequency return
data from DAX [45]. It will be interesting to test our results
on these and other models.

More research questions that remain open include:
(1) finding an analytical solution to the fractions equations
introduced in Sec. II D 2, for small N values with and without
transaction costs, (2) studying additional rebalance strategies,
and (3) considering different transaction costs models. In real
life the assets properties are subject to a substantial noise,
thus another crucial topic that is yet to be explored is the
consequences of choosing the wrong optimal fractions.
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APPENDIX A

Proof of proposition 1:
The expected growth is given by

E[gp(t)] = E[ln(W (t)]

t
, (A1)

and the variance of the growth is

Var[gp(t)] = E{ln[W (t)]2}
t2

− E[gp(t)]2. (A2)

The wealth fraction of each asset is kept fixed and the wealth
invested in the ith asset is fi · W (t), where fi is the fraction of
the portfolio’s total wealth invested in asset i and

∑N
i=1 fi = 1.

At time t we can write

W (t) =
N∑

i=1

W (t)fi. (A3)
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After rebalance, the prices change and in time t + dt we get

W (t + dt) = W (t)
N∑

i=1

fiRi(t,t + dt), (A4)

where Ri(t,t + dt) is the return of asset i between the times
t and t + dt . Since the price dynamics of each asset follows
GBM, we get, using the Mil’shtejn method [46]

S(t + dt) = S(t) + S(t)uidt + S(t)σi

√
dtZi

+ 1
2S(t)σ 2

i ((�Bt )
2 − dt), (A5)

S(t + dt) = S(t) + S(t)uidt

+ S(t)σi

√
dtZi + S(t)O

(
1
2σ 2

i dtZi

)
, (A6)

where ∀i Zi ∼ N(0,1). Thus, if dt → 0, then we can neglect
the last term and get

Ri(t,t + dt) = S(t + dt)

S(t)
= 1 + uidt + σi

√
dtZi, (A7)

and therefore

W (t + dt) = W (t)
N∑

i=1

fi(1 + uidt + σi

√
dtZi). (A8)

We define a new random variable

Np =
N∑

i=1

fiσiZi, (A9)

which is normally distributed as well, with variance

Var(Np) =
N∑

i=1

N∑
j

fifjσij , (A10)

where σij = Cov(σiZi,σjZj ). Using Np, we can rewrite
Eq. (A8) and get

W (t + dt) = W (t)

(
1 +

N∑
i=1

uifidt + σ (Np)
√

dtZp

)
,

(A11)

where Zp ∼ N(0,1). Equation (A11) is valid for all t , thus
we can conclude that under continuous rebalance the wealth
of a balanced portfolio follows a GBM with up = ∑N

i=1 uifi

and σp = σ (Np) because up and σp are constant. From GBM
properties, we get

E[gp(t)] = up − σ 2
p

2
=

N∑
i=1

uifi − 1

2

N∑
i=1

N∑
j=1

fifjσij .

(A12)
The variance of the growth can be calculated by plugging
Eq. (A12) in its definition [Eq. (A2)], resulting in

Var[gp(t)] = 1

t2
E{ln[W (t)2]} − E[gp(t)]2

= 1

t
σ 2

p = 1

t

N∑
i=1

N∑
j

fifjσij . (A13)

APPENDIX B

Proof of proposition 2:
The correlation matrix is defined using Pearson’s formula.

The expected growth of the portfolio is given by Eq. (13),
hence, for identically distributed assets (fi = 1

N
), we get

E[gp(t)] = u − 1

2N2

N∑
i=1

N∑
j=1

σij . (B1)

For the uncorrelated portfolio (i.e., when σij = 0 for i �= j )
this becomes

E[gp(t)] = u − σ 2

2N
. (B2)

We can rewrite Eq. (B1) by splitting it to correlated and
uncorrelated parts:

E[gp(t)] = u − σ 2

2N
− 1

2N2

N∑
i=1

N∑
j �=i

ρij σ
2. (B3)

The last term represents the change due to correlation. To find
Neff, we compare the expected growth of a correlated portfolio
to an uncorrelated one:

u − σ 2

2N
− 1

2N2

N∑
i=1

N∑
j

σij = u − σ 2

2Neff
, (B4)

which yields

Neff = N2

N + ∑N
i=1

∑N
j �=i ρij

. (B5)

In the simple case of uniform correlation coefficient, where
ρij = ρ ∀i �= j , we get

Neff = N

1 + (N − 1)ρ
. (B6)

APPENDIX C

Proof of Proposition 3 Eq. (24):

E[gp(t)] = 1

t

∫ t

0

{
u − σ 2

2

[
1 −

√
ln(N )

tσ

]}
dt

= u − σ 2

2
+ σ 2

√
ln(N )

tσ
. (C1)

Proposition: For i.i.d. assets,

E[gp(t)] = E{ln[W(t)]}
t

= 1

t

∫ t

0

[
u − σ 2

2

N∑
i=1

fi(t)
2

]
dt. (C2)

Proof: Looking at the time frame, [t,t + dt] where dt → 0
with initial wealth of W (t) and initial fractions of fi(t)i ∈
(1,N ) and applying the same theoretical analysis as in
Eqs. (A1)–(A12), we get

E
{
ln

[
W (t+dt)

W (t)

]}
dt

= u − σ 2

2

N∑
i=1

fi(t)
2. (C3)
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Therefore,

E{ln[W (t + dt)]}
dt

= E{ln[W (t)]}
dt

+ u − σ 2

2

N∑
i=1

fi(t)
2.

(C4)

Expanding it further by taking steps of size dt → 0, we get

E{ln[W (t + dt)]}
dt

=
t
dt∑

t=0

u − σ 2

2

N∑
i=1

fi(t)
2. (C5)

Thus, in the limit of dt → 0, we get

E{ln[W (t)]}
t

= 1

t

∫ t

0

[
u − σ 2

2

N∑
i=1

fi(t)
2

]
dt�. (C6)

Next, we get numerical results for
∑N

i=1 fi(t)2 and by fitting a
functional form to the numerical results, we get

N∑
i=1

fi(t)
2 = 1 −

√
ln(N )

tσ
. (C7)

We can now plug it into the integral of Eq. (C6) and get

E[gp(t)] = u − σ 2

2
+ σ 2

√
ln(N )

tσ
�, (C8)

as requested in Eq. (C1)
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