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Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the
nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation
oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition
to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations
(SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks
of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations
(LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators
are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and
the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the
Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns
in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects
the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable)
at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of
coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.
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I. INTRODUCTION

Several far-from-equilibrium chemical, biochemical, and
biological systems exhibit oscillatory temporal patterns [1–7].
These phenomena are generated by the nonlinear interplay of
positive and negative feedback effects operating at different
time scales. Point (single) oscillators require at least one
variable (activator) that favors both changes in its own
production via autocatalytic effects and the production of a
second variable (inhibitor). Inhibitors oppose changes in the
activator on a slower time scale. Activators and inhibitors
represent different state variables in different systems. Exam-
ples are the chemical compounds in the Belousov-Zhabotinsky
reaction [8,9], the substrates and products in product-activated
glycolytic oscillations [4,10], the activators and repressors in
genetic oscillators, and the neuronal voltage and ionic current
recovery variables [5].

In many realistic systems the time scales between activators
and inhibitors are well separated, and the resulting oscillations
are of the relaxation type [2,5]. These are captured by the
prototypical van der Pol model for a triode circuit [11]
and the FitzHugh-Nagumo (FHN) tunnel-diode model for
nerve cells [12,13] and, also, by more detailed models such
as the Oregonator for the Belousov-Zhabotinsky reaction
[14–16], the Morris-Lecar model for neuronal oscillations
[17], modified versions of the Selkov model for glycolytic
oscillations [18–21], and genetic oscillators [22].

The complexity of individual relaxation oscillators results
from the combined effect of two distinct inherent properties: (i)
the presence of characteristic types of nonlinearities (typically
cubiclike) and (ii) the time-scale separation between the
participating variables referred to above. In addition to the

*horacio@njit.edu

typical large-amplitude oscillations (LAOs) of the relaxation
type, these systems may exhibit small-amplitude oscillations
(SAOs), with an amplitude difference of roughly an order
of magnitude between LAOs and SAOs, as well as abrupt
transitions between them (canard phenomenon) as a control
parameter changes through a critical range (exponentially
small in the parameter defining the slow time scale) [23–29].
Individual two-dimensional (2D) relaxation oscillators may
display either SAOs or LAOs, but not both. Higher dimensional
relaxation oscillators may exhibit mixed-mode oscillations
(MMOs) [30,31], where LAOs are interspersed with SAOs.
This creates additional effective time scales.

In addition to the individual oscillators’ intrinsic feedback
effects, oscillatory networks have feedback effects that result
from the interplay of the connectivity and the intrinsic
properties of the individual oscillators. The effects of global
coupling, where each oscillator in the network is affected
by the dynamics of the whole, have been studied in a
variety of systems both experimentally and theoretically. These
include oscillatory chemical reactions [32–37], electrochemi-
cal oscillators [38–48], laser arrays [49], catalytic reactions
[50], saltwater oscillators [51], metabolic oscillators and
cellular dynamics [20,52,53], cardiac oscillators [54,55], cou-
pling through quorum sensing [56–60], circadian oscillators
[61–63], neuronal networks [5,64–69], and image processing
[65,70].

Globally coupled networks of 2D relaxation oscillators
have been shown to generate oscillatory cluster patterns
[20,32–35,38,39,64,71–75] where each cluster consists of syn-
chronized in-phase identical oscillators. Oscillators in different
clusters differ in at least one of their attributes (e.g., frequency,
amplitude, or phase). Typical examples are the phase-locked
(e.g., antiphase) oscillatory two-cluster patterns where each
cluster exhibits LAOs or MMOs. The latter typically reflect the
effects of the network connectivity (e.g., inhibition transiently
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pushing the activator down or terminating an oscillation before
it reaches high enough values) and/or the interaction between
the connectivity and the intrinsic canard structure [76] of the
individual oscillators [72,73].

A more complex type of pattern that emerges in these
globally coupled networks is localized oscillations, where
one cluster exhibits LAO or MMOs and the other shows no
oscillations or SAOs [32–36,72,73]. The break of symmetry
requires some type of network heterogeneity such as different
cluster sizes or different global feedback intensities acting on
each cluster. Because the individual oscillators are monostable
(SAOs or LAOs but not both), localized patterns are a network
phenomenon that involves the interplay of the connectivity and
the intrinsic dynamic properties of the individual nodes. In
previous work, we showed that the canard phenomenon (gen-
erated in a supercritical Hopf bifurcation) present in individual
oscillators plays an important role in the generation of local-
ized patterns. However, the dynamic mechanisms that give
rise to localized oscillatory patterns in networks of relaxation
oscillators and how these patterns depend on the properties of
the participating oscillators are not fully understood.

The goal of this paper is to address these issues in the context
of globally coupled networks where the global feedback term
affects the rate of change of the activator (fast variable) and
depends on the weighted sum of the inhibitor (slow variable)
at any given time [32–36,72,73]. An additional goal is to
understand how these patterns are affected by the presence
of a diffusive type of coupling. Since, in contrast to global
inhibition, diffusion tends to synchronize oscillators, their
interplay generates a competition between the two opposing
effects.

We use a cluster reduction of dimensions argument [35]
and assume that the system is divided into two clusters of the
same or different sizes. The effects of the cluster size on the
dynamics of these two-cluster networks are absorbed into the
global feedback parameter coding for the intensity. Different
cluster sizes result in an effective heterogeneous connectivity.

To capture the intrinsic dynamics of the individual oscil-
lators we use a piecewise-linear (PWL) relaxation oscillator
model of the FitzHugh-Nagumo type, which is an extension of
the one we used in [77] to investigate the mechanisms of gener-
ation of the canard phenomenon. PWL models can be explicitly
analyzed using linear tools of dynamical systems and matching
“pieces of solutions” corresponding to consecutive linear
regimes. PWL models have been used in a variety of fields as
caricatures of nonlinear models to provide insights into the dy-
namics of smooth nonlinear models to investigate the dynamics
of either individual nodes or individual networks [78–104].

As in [77], the activator (v) nullcline we use is cubiclike
and has four linear pieces (Fig. 1; red curve). The inhibitor
(w) nullcline is sigmoidlike and has three linear pieces (Fig. 1;
green curve). The canard phenomenon requires the presence
of the two linear pieces in the middle branch of the v-nullcline
but a linear piece for w-nullcline suffices [77]. However,
localization in models having a linear w-nullcline is more
difficult to obtain and is less robust than in models having
sigmoidlike w-nullclines. In addition, the realistic models
mentioned above have inhibitor nullclines of the sigmoid type.

An additional advantage of using PWL models for this
study is that they provide a way of understanding how the
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FIG. 1. Cubic- and sigmoidlike piecewise linear v- and w-
nullclines for system (1). The v-nullcline f (v) (red line) is given
by (2). We used the parameter values η = 0.3 and vc = 0.3. The
w-nullcline g(v; λ) (green lines) is given by (3). We used the following
parameter values for the two superimposed w-nullclines: α = 4 (solid
green line), α = 2 (dashed green line), λ = 0.3 (solid green line),
λ = 0.21 (dashed green line), βL = βR = 0.2. Arrows indicate the
effects of increasing values of λ and α. Increasing (decreasing)
λ displaces the w-nullcline to the right (left), while increasing
(decreasing) α increases (decreases) the slope of the w-nullcline.

intrinsic properties of the individual oscillators affect the
network dynamics in terms of the different linear portions
of the PWL nullclines whose properties are easily captured
by their slopes, endpoints, and other parameters. For example,
with an increase in the values of βL and βR in Fig. 1 the
w-nullcline becomes “more linear” in the region of the phase
plane where the oscillations occur (around the four branches
of the cubiclike v-nullcine). This allows us to compare the
effects of the different “degrees of nonlinearity” in terms of
the parameters βL and βR . In this paper we compare two
representative scenarios, where the w-nullcline is sigmoidlike,
as in Fig. 1 (βL = βR = 0.05), and linearlike, with both βL and
βR significantly larger (βL = βR = 1).

The localized patterns as well as the other types of MMO
patterns analyzed in this paper can be a desired or an undesired
result of the network activity. For memory devices and working
memory [105–108], localized patterns allow for the effective
representation of information in the LAO components. In
contrast, the presence of localized oscillations may disrupt the
communication between neurons [5] and the effective pulsatile
secretion of insulin when controlled by glycolytic oscillators
or other oscillatory systems (e.g., calcium) [20,109–111] (but
see [112]). Our results will contribute to the understanding of
the mechanisms underlying the generation of these patterns
and how to control or prevent them when necessary.

The outline of the paper is as follows. Methods are reported
in Sec. II. In Sec. III A we discuss the occurrence of the
canard phenomenon for individual oscillators. This is an
extension of previous work [77] for linear w-nullclines. In
Sec. III B we discuss the canard phenomenon induced by
the global feedback parameter (γ ) when the system exhibits
bulk oscillations (one cluster). As γ increases, the LAOs
abruptly transition to SAOs. Globally coupled bulk oscillations
are not likely to be a realistic scenario, but it is a useful
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step towards the investigation of two-cluster systems. The
main reason is that the interaction between mutually coupled
oscillators can be understood in terms of a dual contribution
of the coupling term: (i) the modification of the dynamic
structure of the autonomous part of each individual oscillator
and (ii) a forcing exerted on each oscillator by the others.
The latter may favor, disrupt, or interfere with the canard
phenomenon. In Secs. III C and III D we characterize the
different network patterns that emerge in the globally coupled
system with different cluster sizes (heterogeneous), including
phase-locked LAOs, MMOs, and localized patterns. Cluster
patterns with the same cluster size show phase-locked LAOs
but not localized patterns. In Secs. III E and III F we explore the
transition mechanisms from phase-locked to localized patterns
as γ increases. This transition is abrupt for models with
sigmoidlike nullclines but gradual for models with linearlike
nullclines. In Sec. III G we show that the oscillation frequency
of the localized patterns in the two types of models have
different monotonic dependencies on γ . In Secs. III H to III J
we explore additional dynamic differences between the two
types of models. In Sec. IV we discuss our results and their
limitations and implications for network dynamics. Results
on the dynamics of linear regimes are provided in Appendix
A. Finally, in Appendix B we explore how the interplay of
global and diffusive (local) coupling between clusters affects
the generation of localized clusters. While this is not a realistic
situation, since diffusive coupling occurs between oscillators
and not between clusters, it allows us to explore the interplay
of two competing effects: the tendency of global coupling to
create clusters and the tendency of diffusion to synchronized
oscillators.

II. METHODS

A. Piecewise linear models of the FitzHugh-Nagumo type

We consider the following PWL model of the FHN type:

v′ = f (v) − w,

w′ = ε [ g(v; λ) − w ], (1)

where the prime sign represents the derivative with respect to
the variable t and the functions f and g are PWL cubic- and
sigmoidlike functions (see Fig. 1) given, respectively, by

f (v) =

⎧⎪⎨
⎪⎩

−v if v < 0,

η v if 0 � v < vc,

(1 − η vc)/(1 − vc) (v − 1) + 1 if vc � v � 1,

−v + 2 if 1 � v

(2)

and

g(v; λ)

=
⎧⎨
⎩

−βL if v < (λ − βL)/α,

α v − λ if (λ − βL)/α � v � (λ + 1 + βR)/α,

1 + βR if v > (λ + 1 + βR)/α.

(3)

The PWL cubiclike function f (Fig. 1; red line) has a
minimum at (0,0) and a maximum at (1,1). As in the smooth
case, this choice ensures that large-amplitude oscillations are

O(1) [77]. The parameter η governs the slopes of the two
middle branches L2 and L3. The slope of L3 also depends on
the parameter vc (v coordinate of the point joining L2 and L3).
The slopes of both the left (L1) and the right (L4) branches are
equal to −1.

The PWL sigmoid function g (Fig. 1; green line) has three
branches. The two horizontal branches S1 and S3 are below
and above the minimum and maximum of f , respectively. The
middle branch S2 joins these two horizontal branches. The
parameter λ controls the displacement of g to the right (λ > 0)
or the left (λ < 0). The parameter α controls the slope of the
middle branch S2, which increases with increasing values of
α. In the limit of βL,βR → ∞, the PWL system is the one
used in [77], where g is a linear function.

B. Linear regimes and virtual fixed-points

The dynamics of a PWL model of the form of (1)–(3)
can be divided into four linear regimes Rk (k = 1, . . . ,4),
corresponding to the four linear pieces Lk of the cubiclike
PWL function f (v) (Fig. 2). The initial conditions in each
regime are equal to the values of the variables v and w at the
end of the previous regime where the trajectory has evolved.

In each linear regime the dynamics are organized around a
virtual fixed point (Fig. 2), which results from the intersection
between the w-nullcline (green line) and the corresponding
linear piece (red line) or its extension beyond the boundaries
of this regime (dashed red line). In the latter case the virtual
fixed points do not coincide with the actual fixed points,
and are located outside the corresponding regime, but still
play an important role in determining the dynamics in that
regime. The trajectories in a given regime never reach the
purely virtual stable fixed points (outside the regime), but their
presence provides information on the trajectory’s direction
of motion. More specifically, within the boundaries of each
regime trajectories evolve according to the linear dynamics
defined in that regime as if the dynamics were globally linear,
and they “do not feel” that the “rules” governing their evolution
will change at a future time when the trajectory moves to a
different regime. We refer the reader to [77] for more details.

C. Networks of PWL oscillators with global inhibitory feedback

We consider networks of PWL oscillators of the FHN type
and the form of (1) globally coupled through the inhibitor
variable (w),

v′
k = f (vk) − wk − γ �(w),

w′
k = ε [ g(vk; λ) − wk ], (4)

for k = 1, . . . ,N , where N is the total number of oscillators
in the network, γ � 0 is the global feedback parameter, and

�(w) = 1

N

N∑
k=1

wk. (5)

D. Cluster reduction of dimensions and heterogeneous coupling

Following previous work [35,36,72,73] we assume that the
network is divided into two clusters where all oscillators in
each cluster are identical and have identical dynamics, while

022303-3



RANDOLPH J. LEISER AND HORACIO G. ROTSTEIN PHYSICAL REVIEW E 96, 022303 (2017)

(b)(a)

-1 0 1 2
v

-0.5

0

0.5

1

1.5

w
R

1

stable nodes

v-nullcline
w-nullcline

-1 0 1 2
v

-0.5

0

0.5

1

1.5

w

R
2

stable
focus / node

saddle

(d)(c)

-1 0 1 2
v

-0.5

0

0.5

1

1.5

w

R
3unstable nodes

-1 0 1 2
v

-0.5

0

0.5

1

1.5

w

R
4

stable nodes

FIG. 2. Linear regimes and actual and virtual fixed points for system (1). The v-nullcline (red lines) is as in Fig. 1. For the w-nullcline
(green lines) we used α = 2, λ = 0.3, βL = βR = 0.05. The superimposed dashed green w-nullcline is linear (extension of the linear piece S2).
The virtual fixed points for each regime (small blue circles) are the intersections between the extensions of the corresponding linear pieces and
the w-nullcline. The stable virtual fixed point for R2 coincides with the actual fixed point.

oscillators in different clusters may have different dynamics.
Accordingly, for a two-cluster network,

�(w) = σ1w1 + σ2w2, (6)

where σ1 and σ2 (σ1 + σ2 = 1) are the fractions of oscillators
in each cluster. Alternatively, the global coupling term, (6),
can also be interpreted as consisting of clusters with the same
fraction of oscillators each, but heterogeneous connectivity.

System (4) with (6) can be written as

v′
k = f (vk) − (1 + σk γ ) wk − σj γ wj ,

w′
k = ε [ g(vk; λ) − wk ] (7)

for k,j = 1,2 with j �= k. The zero-level surfaces (“higher-
dimensional nullclines”) for the kth oscillator are given by

wk = Nv,k(vk,wj ; γ ) = f (vk)

1 + σkγ
− γ σjwj

1 + σkγ
,

k,j = 1,2, j �= k, (8)

and

wk = Nw,k(v) = g(v; λ), k = 1,2, (9)

respectively.

Equation (8) describes a 2D surface having the shape of the
first term on the right-hand side of Nv,k(vk,0; γ ). For γ > 0, we
view the nullsurface, (8), as the v-nullcline for the individual
(uncoupled) oscillator Nv,k(v,0; 0), flattened by the effect of
the denominator and forced by the second oscillator via the
variable wj (t). When there is no ambiguity, we refer to the
autonomous part Nv,k(vk,0; γ ) in (8) as the v-nullcline for
the oscillator Ok . The oscillations in the latter “raise” and
“lower” this v-nullcline following the dynamics of wj and
therefore affect the evolution of the trajectories in the phase-
plane diagrams.

E. Diffusive coupling between clusters

System (7) with an added diffusion term reads

v′
k = f (vk) − (1 + σk γ ) wk − σj γ wj + Dv (vj − vk),

w′
k = ε [ g(vk; λ) − wk ] (10)

for k,j = 1,2 with j �= k, where Dv is the diffusion coefficient.
This way of adding diffusion is somehow artificial and does
not reflect the diffusive effects in the original system, nor is
it derived from it. However, its inclusion helps to clarify the
competitive effects of global inhibition and diffusion.
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FIG. 3. Dynamics of system (1) for representative parameter values. The v- and w-nullclines are as in Fig. 1. (a) Canard phenomenon as λ

crosses λc ∈ (0.194,0.195). The actual fixed points are foci. (b) The actual fixed points are nodes (no SAOs).

Equation (8) is extended to

wk = Nv,k(vk,vj ,wj ; γ,Dv)

= f (vk) − Dv vk

1 + σkγ
− γ σjwj − Dv vj

1 + σkγ
,

k,j = 1,2, j �= k. (11)

For Dv > 0 the v-nullcline Nv,k(vk,0,0; γ,Dv) is linearly
modified by the term Dv vk . In contrast to global coupling, this
effect is not homogeneous for all values of vk but is dependent
on its sign. For positive values of vk the v-nullcline is flattened,
while for negative values of vk the v-nullcline is sharpened.
The oscillations in vj raise and lower this v-nullcline following
its dynamics. In order for the linear piece L2 to remain positive
for Dv > 0, we restrict Dv < η.

F. Numerical simulations

Numerical solutions were computed using the modified
Euler method (Runge-Kutta, order 2) [113] with a time step

t = 0.1 ms (or smaller values of 
t when necessary) in
MATLAB (The Mathworks, Natick, MA).

III. RESULTS

A. The canard phenomenon for PWL models
of the FHN type revisited

In a 2D relaxation oscillator, the canard phenomenon refers
to the abrupt transition between SAOs and LAOs as a control
parameter crosses a very small critical range [Figs. 3(a)], which
is exponentially small in the parameter defining the slow time

scale (ε) [23–29]. We identify this critical range with a critical
value for the control parameter (e.g., λc if the control parameter
is λ). If the Hopf bifurcation underlying the creation of the
SAOs is supercritical (subcritical), then the SAOs are stable
(unstable). Relaxation-type LAOs are always stable.

The canard phenomenon for PWL models of the FHN type
with a linear w-nullcline has been described in [7] and [98] and
has been throughly analyzed in [77]. Here we briefly describe
it in the context of the PWL models of the FHN type with
sigmoidlike PWL w-nullclines using the parameter λ as the
control parameter (Fig. 3).

For the SAOs to be generated [Fig. 3(a1)], the limit cycle
must cross either the linear piece L2 or the first portion of
the linear piece L3 of the v-nullcline. Otherwise [Fig. 3(a2)]
the limit cycle trajectory moves into the linear regime R4

and the system displays LAOs. For a trajectory arriving in
R2 to be able to cross L2 or the first portion of L3, the
actual fixed point in R2 must be a focus [see Eq. (A4) with
κ = 1 in Appendix A]. In addition, the initial amplitude of the
trajectory in R2 (the distance between the actual fixed point
and the initial point in R2) must be small enough so that the
trajectory reaches the v-nullcline before reaching the region
of fast motion, which would cause it to move towards the right
branch. For the parameter values in Figs. 3(a), | η + ε | = 0.4
and 2

√
ε α ∼ 0.89 in the linear regime R2 and therefore the

actual fixed point is a focus (Appendix A). However, as ε

decreases this inequality may no longer hold. For example, for
the parameters in Figs. 3(b), | η + ε | = 31 and 2

√
ε α ∼ 0.28,

and therefore the actual fixed point is a node (see Appendix A),
and as a consequence, the system is no longer able to exhibit
the canard phenomenon.
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FIG. 4. The canard phenomenon induced by global inhibitory feedback in bulk (one-cluster) oscillatory systems. The solid red v-nullclines
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The canard critical value λc is affected by the vector field
away from the local vicinity of the small-amplitude limit
cycle. For example, all other parameters equal, for linearlike
w-nullclines, when the horizontal pieces are far away from
the v-nullcline (e.g., βL = βR = 1), λc is smaller than for
the parameters in Figs. 3(a) (not shown). Additionally, the
oscillation frequencies for values of λ around λc are larger for
linearlike than for sigmoidlike w-nullclines.

B. The canard phenomenon induced by global feedback

Here we follow previous work [35,36,73] and focus on
the dynamics of the one-cluster globally coupled system, (7):
σ1 = 1 (σ2 = 0). This is not likely to be a realistic situation
since one expects the network bulk oscillations to be unstable
for sufficiently large values of the global feedback parameter

γ and the network to be separated into clusters. However,
the dynamics of this reduced system show how the canard
phenomenon results from changes in γ for constant values of
λ. The results in this section will be helpful in understanding
the dynamics of the autonomous component of the two-cluster
systems discussed later in this paper.

From (A4) in Appendix A with κ = 1 + γ , increasing
values of γ (all other parameters fixed) can cause the fixed
point to transition from a node to a focus. In addition, from (A2)
in Appendix A, increasing values of γ change the location of
the fixed point. Therefore, the global feedback parameter γ can
act as a control parameter that induces the canard phenomenon
for fixed values of λ (Fig. 4).

The left panels in Fig. 4 show curves of the oscillation
amplitude versus γ for representative parameter values. The
corresponding middle and right panels show the phase-plane
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diagrams for values of γ before and after the canard phe-
nomenon (for blue curves in the top panels). The parameter
values in Figs. 4(a) and 4(b) are the same, except for the
w-nullcline, which is sigmoidlike in Figs. 4(a) and linearlike
in Figs. 4(b). The w-nullcline in Figs. 4(c) is linearlike [as in
Figs. 4(b)], but ε is smaller than in Figs. 4(b) (larger time-scale
separation).

In Figs. 4(a) the canard phenomenon is induced by changes
in γ . The transition is more pronounced for lower values of λ.
As γ increases, the v-nullcline flattens [Figs. 4(a2) and 4(a3)],

and for γc the limit cycle trajectory is able to cross L3, thus
generating SAOs [Fig. 4(a3)] instead of moving towards R4 to
generate LAOs [Fig. 4(a2)].

For the same value of ε and the linearlike w-nullcline in
Figs. 4(b), the system fails to exhibit the canard phenomenon
as γ changes. The effective time-scale separation in the
vicinity of the minimum of the v-nullcline is smaller than in
Figs. 4(a) because of the absence of the horizontal piece of the
w-nullcline [compare Figs. 4(a1) and 4(a2) with Figs. 4(b1)
and 4(b2)], and therefore the limit-cycle trajectories are more
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FIG. 5. Canard and noncanard (standard) SAOs in two-cluster networks. (a) Curves of v1 and v2 vs t . (b) Curves of w1 and w2 vs t . (c, d)
Phase-plane diagrams. Dashed gray curves represent the v-nullcline for the uncoupled system (γ = 0). Dashed blue and red curves represent
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022303-7



RANDOLPH J. LEISER AND HORACIO G. ROTSTEIN PHYSICAL REVIEW E 96, 022303 (2017)

rounded in Figs. 4(b) than in Figs. 4(a). This causes the
limit-cycle trajectory to move farther away from L2 and L3

in Fig. 4(b2) than in Fig. 4(a2). As a result, the v-nullcline is
able to flatten significantly before the limit-cycle trajectory is
able to cross the middle branch, and therefore the oscillations’
amplitude decreases gradually instead of abruptly. For lower
values of λ [red and green curves in Figs. 4(b)] the transition
from LAOs to SAOs is faster and the final amplitude smaller
than for λ = 0.7, but still this transition is not abrupt.

A decrease in ε for the same parameter values as in
Figs. 4(b) restores the ability of γ to induce the canard
phenomenon [Figs. 4(c)]. The decrease in ε compensates
for the lack of the horizontal pieces of the w-nullcline, thus
maintaining similar levels of the time-scale separation in the
vicinity of the minimum of the v-nullcline.

As discussed in the previous section, for ε = 0.01 and
α = 2 the uncoupled oscillator (γ = 0) fails to exhibit the
canard phenomenon. However, the canard phenomenon can
be induced by γ (not shown) with properties similar to those
at α = 4 in Figs. 4(c). The values of γc increase with λ, and in
contrast to the α = 4 case, they are both significantly larger for
α = 2 than for α = 4. Also, the range of values of γc spanned
by λ is significantly larger for α = 2 than for α = 4.

C. Canard and noncanard (standard) SAOs for two interacting
oscillators forcing one another

The interaction between two oscillators due to global
coupling can be thought of as the two oscillators’ forcing
one another through the last term in the first equation in (7) as
discussed above. If the product σkγ (k = 1,2) is large enough,
then the autonomous part of Nv,k , (8), can be in an SAO regime.
This means that if wj (j = 1,2 with j �= k) were artificially
made equal to 0, then the oscillator Ok would exhibit the
type of canardlike SAOs discussed in the previous section.
However, since wj is not necessarily equal to 0 or very small,
but also oscillates, Nv,k increases and shifts down from its
baseline location in an oscillatory fashion. This interferes with
the canard SAOs to create the more complex patterns that we
discuss in the following sections.

Among these patterns are the representative “blue” MMOs
shown in Fig. 5(a), which consist of two types of SAOs. The
ones along the ascending phase correspond to the portion of

the trajectory evolving along the left branch of Nv,1 [Fig. 5(c)]
as they respond to the motion of Nv,1 following the forcing
exerted by O2 [Fig. 5(d)]. Those in the more shallow phase
correspond to the trajectories moving around the minimum of
Nv,1, as they are able to cross the linear piece L2 to create
SAOs. We refer to them as canardlike SAOs.

Canardlike and standard SAOs are created by different
mechanisms. The standard SAOs in v1 [Fig. 5(a); blue line]
primarily respond to the oscillatory input from w2 [Fig. 5(b);
red line]. During the ascending phase, w1 is decreasing,
therefore the oscillations in v2 and w2 are intrinsically
generated by a canardlike mechanism [Fig. 5(d)] that does
not require oscillations in the input. Canardlike SAOs are
created by the canardlike mechanism described in the previous
sections. Note that although v1 receives an oscillatory input
from w2, the oscillations in w2 have a smaller amplitude during
the shallow phase than during the ascending phase, indicating
that they are less important in the generation of the SAOs in O1.

D. Localized, mixed-mode, phase-locked, and SAO network
oscillatory patterns

In the next sections we examine the consequences of the
global feedback’s ability to induce the canard phenomenon
in autonomous oscillators (σ1 = 1 and σ2 = 0) for two-
cluster network dynamics (σ1 > 0, σ2 > 0). We use σ1 =
0.2 (σ2 = 0.8) as a representative case of heterogeneous
clusters. Homogeneous clusters (σ1 = σ2 = 0.5) produce
relatively simple network patterns as we briefly explain
below.

From Eq. (7), the autonomous part of each oscillator is
affected by both the cluster size (σk) and γ . In the absence
of the forcing exerted by the other oscillator (wj ), the canard
phenomenon in each oscillator would be induced by increasing
values of both σk and γ [35,36]. The global feedback parameter
critical value for the autonomous part of each oscillatory
cluster is given by

γc,k = γc

σk

, (12)

where γc is the global feedback parameter critical value for
the single-cluster oscillator discussed above [e.g., γc = 0.32
in Figs. 4(a) and γc = 0.38 in Figs. 4(c)].
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FIG. 6. Abrupt transition between antiphase LAO and antiphase SAO patterns in two-cluster networks for representative values of γ .
Parameter values (α = 4, ε = 0.01, λ = 0.08, and σ1 = σ2 = 0.5) are as in Figs. 4(c), except that βL = 0.05 and βR = 0.05 [as in Figs. 4(a)
and 4(b)].
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FIG. 7. Localization in a two-cluster network for representative values of γ . (a) Linearlike w-nullcline. Parameter values (see below)
are as in Figs. 4(c) (including βL = βR = 1). (b) Sigmoidlike w-nullcline. Parameter values (see below) are as in Figs. 4(c), except that
βL = βR = 0.05, which is the same as in Figs. 4(a) and 4(b). We used the following parameter values: α = 4, ε = 0.01, λ = 0.08, σ1 = 0.2,
and σ2 = 0.8.

For σ1 = σ2 = 0.5, γc,1 = γc,2, and therefore both oscil-
lators would simultaneously be either in the LAO or in the
SAO regime (Fig. 6), with no intermediate types of patterns.
The forcing that the two oscillators exert on each other does
not change this fact, but the values of γ at which these
abrupt transitions occur are larger than the ones predicted by
Eq. (12).

For example, for the parameter values in Fig. 6, γc,1 =
γc,2 ∼ 0.72 (not shown) and the transition occurs at γ ∼ 0.99.
For another example, for the same parameter values and βL =
βR = 1 (a “more linear” w-nullcline), γc,1 = γc,2 ∼ 0.76 [(see
Figs. 4(c)] and the transition occurs at γ ∼ 5.21 (not shown).
In this case, the oscillation frequency is higher than in Fig. 6.

From Eq. (12), for σ1 �= σ2 it is possible for one oscillator
(σ1 < 0.5) to be in the LAO regime, while the other (σ2 > 0.5)
is in the SAO regime, thus generating localized patterns
(described in more detail below). However, the forcing effects

that the oscillators exert on each other may disrupt this scenario
and create more complex dynamics. It is, in fact, not a
priori clear whether and under what conditions these localized
patterns exist. For this to happen, the forcing effects should not
interfere with the “autonomous” canard phenomenon for each
oscillator. A richer repertoire of intermediate patterns that are
not “purely LAO” or “purely SAO” is expected to result from
the complex interactions between oscillators as happens for
other systems [72,73].

We have identified various types of network patterns for
different parameter regimes.

(i) Phase-locked LAO patterns [e.g., Figs. 7(a1) and 7(a2)]
correspond to both oscillators in the LAO regime. All other
parameters fixed, the phase difference between the two oscil-
lators depends on the relative cluster sizes. For σ1 = σ2 = 0.5
the patterns are antiphase (Fig. 6). The underlying mechanisms
are qualitatively similar to these described in [72] and [73]
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involving the standard SAOs discussed above and are not
discussed further in this paper.

(ii) Mixed-mode oscillatory patterns [e.g., Fig. 7(a3)]
correspond to either one or both oscillators’ exhibiting MMOs.

(iii) Localized patterns [e.g., Figs. 7(a5) and 7(a6) and
Figs. 7(b2) and 7(b3)] correspond to one oscillator’s exhibiting
LAOs or MMOs, while the other exhibits exclusively SAOs.
From Eq. (12), the oscillator with the larger cluster size is the
one expected be in the SAO regime.

(iv) LAO localized patterns [e.g., Figs. 10(a3) and 10(b3)]
correspond to the two oscillators’ exhibiting LAOs or MMOs,
but the number of LAOs per cycle’s differing between the two
oscillators. The typical situation is one oscillator’s exhibiting
one LAO per cycle, while the other exhibits a burst of LAOs.

(v) SAO patterns correspond to both oscillators’ exhibiting
SAOs, which may or may not be synchronized in phase or have
the same amplitude.

In addition, we have identified various irregular patterns that
emerge mostly as transition patterns between those mentioned
above. We do not analyze these patterns in this paper.

E. Gradual transition from phase-locked LAO to localized
patterns through network MMOs in the PWL model

with a linearlike w-nullcline

Figures 7(a) show various representative two-cluster pat-
terns for the same parameter values as in Figs. 4(c). The
global feedback critical values are γc,1 ∼ 1.9 and γc,2 ∼ 0.475.
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FIG. 8. Localization in a two-cluster network for representative values of γ . Phase-plane diagrams for the parameter values in Fig. 7.
(a) Linearlike w-nullcline (βL = βR = 1). (b) Sigmoidlike w-nullcline (βL = βR = 0.05). Dashed gray curves represent the v-nullcline for
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The corresponding phase-plane diagrams are presented in
Figs. 8(a).

For low values of γ [Figs. 7(a1) and 7(a2)], the system
exhibits phase-locked LAO patterns. The duty cycle is smaller
for the larger cluster (oscillator O2) since its nullcline is
flatter [Fig. 8(a2)]. The relative size of the (smaller to larger)
duty cycles for the two oscillators O1 and O2 decreases with
increasing values of γ .

As γ increases above these values, the system transitions
to MMO patterns [Figs. 7(a3) and 7(a4)]. The SAOs for
O2 in Fig. 7(a3) are canardlike [Fig. 8(a3)] (the limit-cycle
trajectories cross the linear piece L2 or, at most, the early
portion of L3). The last SAO in each cycle for O1 is also
canardlike. They all occur, as both w1 and w2 are very small
so their forcing effects are almost negligible. In contrast, the
first SAOs in each cycle are standard (not canardlike) and
reflect the motion of Nv,1 in response to the dynamics of O2

as explained in Sec. III C.
During the active phase of O1, O2 is almost silent (constant).

When O1 jumps down, w1 decreases and Nv,2 increases, thus
releasing O2. Because Nv,2 is flatter than Nv,1, O2 completes
the cycle just before O1, and for some time they are both
silent (w1 ∼ 0 and w2 ∼ 0). Figure 7(a4) corresponds to a
slightly higher value of γ . This causes the first O2 oscillation
to transition to an SAO. As this happens, O1 is moving along
the left branch of Nv,1 and continuing to release O2 from
inhibition. As a result, the second O2 oscillation is a LAO.

For larger values of γ , the system transitions to localized
patterns [Figs. 7(a5) and 7(a6)] where the smaller cluster (O1)
exhibits MMOs and the larger cluster (O2) exhibits canardlike
SAOs [Figs. 8(a5) and 8(a6)]. The SAOs displayed by O1 are
a combination of canardlike and standard SAOs (as described
above) in response to the dynamics of O2. Note that the
transition to localized patterns requires a value of γ much
larger than the one predicted by γc,1 and γc,2.

F. Abrupt transition between phase-locked LAO and localized
patterns for the PWL model with a sigmoidlike w-nullcline

Figures 7(b) show various representative two-cluster pat-
terns for the same parameter values as in Figs. 7(a), but with
a sigmoidlike w-nullcline. The corresponding phase-plane
diagrams are presented in Figs. 8(b). The global feedback
critical values are γc,1 ∼ 1.8 and γc,2 ∼ 0.45.

In contrast to Figs. 7(a), the transition from phase-locked
SAO patterns [Fig. 7(b1)] to localized patterns [Fig. 7(b2)] is
abrupt and occurs for a value of γ slightly higher than γc,2. This
is the result of the stronger time-scale separation imposed by
the sigmoidlike w-nullcline, particularly in the regions of the
phase plane where the left and right branches of the v-nullcline
are located [Figs. 8(b)].

When O1 jumps up, it causes Nv,2 to shift down, thus
inhibiting O2. For the parameter values in Fig. 7(b1) (phase-
locked SAO patterns), the trajectory for O2 is above the
minimum of Nv,2 and it continues to move down along
Nv,2. After O1 jumps down and begins to move down along
Nv,1, decreasing the forcing exerted on O2, it is released
from inhibition and the trajectory moves through R2 without
crossing L2, thus jumping up.

For the parameter values in Fig. 7(b2) (localized patterns)
the trajectory for O2 is almost at the minimum of Nv,2 when O1

jumps up. The trajectory for O2 first displays a small noncanard
SAO, which is the result of O1 causing Nv,2 to move down,
and then two canard SAOs after O1 jumps down and moves
down along Nv,1. The larger value of γ increases the ability of
the trajectory for O2 to generate canardlike SAOs by crossing
Nv,2 without jumping up.

The two models considered in this and the previous sections
differ in the distances (βL and βR) between the horizontal
pieces (S1 and S3) of the w-nullcline and the v-nullcline. To
determine which one of βL or βR has a stronger effect in
creating the abrupt transitions between the phase-locked LAO
and the localized patterns described in this section, we looked
at models with mixed values of these parameters. We found that
for βL = 1 and βR = 0.05 the system behaves as in Figs. 7(a),
while for βL = 0.05 and βR = 1 the system behaves as in
Figs. 7(b). This confirms that the increase in the effective
time-scale separation created by the left horizontal piece of
the sigmoidlike w-nullcline is key for the results discussed
above (and in the next section).

G. The oscillation frequency of the localized patterns in models
with sigmoid- and linearlike w-nullclines has different

monotonic dependencies on γ

Comparison of the localized patterns in Figs. 7(a5) and
7(a6) versus Figs. 7(b2) and 7(b3) shows that the LAO
frequency of the oscillator O1 decreases with increasing
values of γ for the linearlike w-nullcline [Figs. 7(a5) and
7(a6)], while it increases with increasing values of γ for
the sigmoidlike w-nullcline [Figs. 7(b2) and 7(b3)]. The
underlying mechanisms in both cases involve the presence
of canardlike SAOs. In Fig. 7(a5), O1 jumps up right after
reaching the minimum of Nv,1 [Fig. 8(a5)]. In Fig. 7(a6), O1

engages in canardlike SAOs after reaching the minimum of
Nv,1 [Fig. 8(a6)], thus increasing the LAO period. This is
the result of the forcing exerted by O2 and lower time-scale
separation for the linearlike w-nullcline in Figs. 7(a) compared
to the sigmoidlike w-nullcline in Figs. 7(b).

For the sigmoidlike w-nullcline [Figs. 7(b2) and 7(b3)],
the number of SAOs per cycle also increases as γ increases.
However, O1 jumps up upon reaching the minimum of Nv,1.
Also, more importantly, the number of cycles per unit of time
increases with γ because the active phase of O1 significantly
decreases with increasing values of γ . This is the result of the
flattening of the v-nullcline as γ increases and the fact that O1

jumps down near the maximum of the baseline Nv,1.

H. Localized patterns persist for lower values of α for the PWL
model with a sigmoidlike w-nullcline but

not for a linearlike w-nullcline

From our previous discussion about the effects of decreas-
ing values of α on the ability of λ and γ to induce the
canard phenomenon in the uncoupled and coupled systems,
respectively, it is not a priori clear whether the localized
patterns found in the previous section for α = 4 will persist
when we decrease α. In Fig. 9 we present our results for
the same parameter values as in Fig. 7 and α = 2 (instead
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FIG. 9. Localized and nonlocalized patterns in a two-cluster network for representative values of γ . (a) Linearlike w-nullcline (βL =
βR = 1). (b) Sigmoidlike w-nullcline (βL = βR = 0.05). We used the following parameter values: α = 2, ε = 0.01, λ = 0.08, σ1 = 0.2, and
σ2 = 0.8,

of α = 4). For the uncoupled system (γ = 0) and α = 2,
the PWL model fails to exhibit the canard phenomenon as
λ changes. For the one-cluster system, in contrast, changes
in γ are able induce the canard phenomenon, although for
significantly larger values of γc than for α = 4.

Our results in Figs. 9(b) show that for α = 2 and sigmoid-
like w-nullclines the abrupt transition between phase-locked
and localized patterns has properties similar to those at α = 4,
but the abrupt transition occurs at much higher values of γ .
In contrast, for linearlike w-nullclines the PWL model fails
to produce localized patterns [Figs. 9(a)]. There is an abrupt
transition from the LAO patterns in Fig. 9(a2) to the SAO
patterns in Fig. 9(a3).

There are additional differences in the patterns in Figs. 9(a)
versus Figs. 7(a) such as the occurrence of two LAOs per cycle
at α = 2 (not shown), which we did not observe at α = 4.

I. Localized patterns are robust to changes in λ for the PWL
model with a sigmoidlike w-nullcline but not

for a linearlike w-nullcline

Increasing values of λ increase the global feedback critical
value γc [Figs. 4(c)], and therefore it increases both γc,1 and
γc,2 and is expected to increase the values of γ at which the
transitions to localized patterns (if they exist) are present. If
the values of γ are too high, then the v-nullcline flattens before
the canard phenomenon can be induced by γ as for the case
illustrated in Fig. 4(b3). Therefore, it is not clear a priori that
the transitions shown at λ = 0.08 in Figs. 7 and 8 persist at

larger values of λ. To address this issue we used the same
parameter values as in these figures, but with λ = 0.4 (instead
of λ = 0.08). Our results are presented in Fig. 10.

The model with a sigmoidlike w-nullcline [Figs. 10(b)]
shows an abrupt transition from phase-locked LAOs to
localized patterns with properties similar to those at λ = 0.08
[Figs. 7(b)]. In contrast, the patterns displayed for the model
with a linearlike w-nullcline [Figs. 10(a)] differ from those at
λ = 0.08. Importantly, for λ = 0.4 the model does not exhibit
localized patterns. Other differences include the presence of
in-phase patterns at low values of γ (e.g., γ = 1; not shown)
and LAO localized patterns [Fig. 10(a2)] where the number
of LAOs for O2 per cycle increases with increasing values of
γ (not shown). There is an abrupt transition between these
patterns and the ones in Fig. 10(a3).

J. Localized patterns are more robust for the sigmoidlike
w-nullcline than for the linearlike w-nullcline

for larger values of ε

In Figs. 11(a) and 11(b) we show representative patterns
for ε = 0.1 and the parameter values from Figs. 4(a) and
4(b), respectively. In both cases, for low enough values of
γ the system shows in-phase patterns [Figs. 11(a1) and
11(b1)], consistent with previous findings for the smooth FHN
model [72].

As γ increases, the patterns in the PWL model with a
linearlike w-nullcline transition to the complex type of patterns
shown in Fig. 11(a2) and then to the synchronized in-phase
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FIG. 10. Localized and nonlocalized patterns in a two-cluster network for representative values of γ . (a) Linearlike w-nullcline (βL =
βR = 1). (b) Sigmoidlike w-nullcline (βL = βR = 0.05). We used the following parameter values: α = 4, ε = 0.01, λ = 0.4, σ1 = 0.2, and
σ2 = 0.8.

patterns shown in Fig. 11(a3). The phase-plane diagrams for
these patterns (not shown) are qualitatively similar to those
obtained for the single-cluster case [Fig. 4(b1)], which does not
exhibit the canard phenomenon as γ increases. The absence
of localization for the two-cluster system is associated with
this lack of ability of the single-cluster system to exhibit the
γ -induced canard phenomenon.

In contrast, for the PWL model with a sigmoidlike w-
nullcline (and the same value of λ) [Figs. 11(b)], as γ

increases the patterns transition to the localized patterns shown
in Figs. 11(b2) and 11(b3). The larger and smaller SAOs
in Figs. 11(b2) and 11(b3) correspond to the limit-cycle
trajectories crossing the linear pieces L3 and L2, respectively
(not shown). A significant difference between these localized
patterns and the ones for ε = 0.01 [Figs. 7(b) and 10(b)] is
that in the latter the SAOs are interrupted during LAOs, while
in the former SAOs and LAOs may occur simultaneously.

While localization does not occur at λ = 0.7 in the PWL
model with a linearlike w-nullcline, it may be restored at
lower values of λ [Fig. 11(c3)]. For these parameter values the
system also shows antiphase patterns [Fig. 11(b2)] at lower
values of γ .

IV. DISCUSSION

Localized patterns in oscillatory networks where one
oscillator (or cluster) exhibits LAOs or MMOs, while the
other exhibits SAOs, have been observed both experimentally
and theoretically [32–36,72,73,114–116]. In previous work we
have established that these types of localized patterns can be
obtained in networks of relaxation oscillators such as the FHN
model and the Oregonator where the individual oscillators ex-

hibit the supercritical canard phenomenon. In these networks,
localized patterns required the presence of heterogeneity in the
cluster distribution, which effectively creates heterogeneity in
the intercluster connectivity. One important aspect of these
networks is that the individual oscillators are monostable (they
exhibit either LAOs or SAOs but not both). The symmetry
break in the oscillation amplitude regime between the two
(or more) clusters is a network phenomenon. However, how
and under what conditions localized patterns emerge as the
result of the interaction between the network connectivity and
the intrinsic properties of the individual oscillators (e.g., the
canard phenomenon) were not fully understood.

In this paper we set out to address these issues in the context
of a PWL model of the FHN type where the v-nullcline is
cubiclike and the w-nullcline is either sigmoid- or linearlike.
This model belongs to the set of minimal models that are
able to produce localized patterns. Oscillatory patterns in
globally coupled models have also been studied using the
so-called phase oscillators [37,75,117–122]. In these models,
each oscillator is described solely by its phase and the effects
of the interaction of oscillators on their amplitude is neglected
by assuming weak coupling. These models are successful in
capturing the phase-lock cluster patterns where the two oscil-
lators are in the same amplitude regime, but they fail to capture
the generation of more complex patterns that involve more than
one oscillatory amplitude regime and transitions between both.

In order to identify the principles that govern how the
interplay of the intrinsic properties of the individual oscillators
and the network connectivity produces the localized patterns,
we have considered a number of representative scenarios,
which include qualitatively different types of w-nullclines
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FIG. 11. Localization in a two-cluster network for representative values of γ . (a) Linearlike w-nullcline (βL = βR = 1) and λ = 0.7.
(b) Sigmoidlike w-nullcline (βL = βR = 0.05) and λ = 0.7. (c) Linearlike w-nullcline (βL = βR = 1) and λ = 0.4. We used the following
parameter values: α = 4, ε = 0.1, σ1 = 0.2, and σ2 = 0.8.

(sigmoid- and linearlike) and different parameter values that
control the slope of the w-nullcline (α), its displacement with
respect to the v-nullcline (λ), and the time-scale separation
between the participating variables (ε).

Our results show that the presence of the supercritical
canard phenomenon in the individual oscillatory clusters is
a necessary ingredient to produce localized patterns, but it
is not sufficient [e.g., Figs. 9(a) and 10(a)]. Localized patterns
require a specific tuning between the various model parameters
and the shape of the w-nullcline. In fact, the robustness of these
patterns is strongly dependent on the shape of the w-nullcline.
Models with a sigmoidlike w-nullcline produced more robust
localized patterns than models with linearlike w-nullclines
(e.g., Fig. 7) as well as abrupt transitions between phase-locked
and localized patterns, which were absent in models with
linearlike w-nullclines. The shape of the w-nullcline has
additional effects on the network patterns. A salient one is the
fact that the monotonic properties of the localized patterns’
LAO frequency with changes in γ are different in models with
sigmoidlike and linearlike w-nullclines. This is expected to

have implications for realistic systems. However, the exact
details of these implications remain to be understood.

The different types of cluster patterns we describe in this
paper are stationary solutions in the corresponding larger
networks, which result from using the cluster reduction of
dimensions argument. Other stationary solutions are possible
and the cluster solutions we found may not be stable. Our
goal was to investigate under what conditions the localized
(and other MMO) solutions are possible, what their properties
are, how they depend on the interplay of the properties
of the participating individual oscillators and the network
connectivity, and what mechanisms govern the transition
between the large-amplitude and the localized patterns. All
this is necessary to understand how these types of patterns
emerge in larger networks. Further research is needed to
clarify these points, to examine how cluster patterns arise in
these larger networks from “noncluster” initial conditions,
and what their stability properties are [123].

In this paper we have considered a specific type of
global coupling motivated by previous work. Other studies
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have considered global feedback from the activator variable
onto itself, rather than from the inhibitor onto the activator
[69,124–127]. More research is needed to establish whether
and under what conditions localized patterns are possible
in these networks and, if they exist, to characterize the
similarities and differences between the patterns generated by
the two types of global feedback.

An alternative scenario to the one we present here involves
the presence of bistability in the individual oscillators [108]. In
this case, the role of the network connectivity is to separate the
oscillators into clusters by causing each oscillator to choose
between the stationary solutions of the individual oscillators.
This will require the presence of bistability between two
oscillatory regimes. Alternatively, the localized solutions
would involve one oscillatory and one silent cluster.

An additional goal of this study was to explore the effects
of the interplay between the two competing types of coupling:
global inhibition and diffusion (see Appendix B). Global
inhibition tends to create clusters. Diffusion is local and tends
to cause oscillators to synchronized in-phase. Indeed, when the
two clusters are of equal size and the oscillators are initially
in the LAO regime, the addition of diffusion causes them to
synchronize in-phase either in the LAO or in the SAO regime,
depending on the Dv/γ ratio. However, when the cluster sizes

are different, the addition of diffusion induced localized or
MMO network patterns that were either synchronized in-phase
or not, depending also on the Dv/γ ratio. Even when the
resulting patterns are synchronized in-phase, they do not
resemble the patterns in the absence of diffusion.

We emphasize that the diffusive type of coupling we used
in this paper is not realistic and does not reflect the diffusive
effects between oscillators in each cluster in the original
system. The questions of how oscillators in each cluster are
held together and how the different cluster sizes are generated
as the result of the interplay of global coupling and diffusion
remain open.

Network patterns can be generated by various mechanisms.
On one extreme, these patterns can be imposed by the network
connectivity, with little or no participation of the individual
oscillators. Our results highlight the richness of the patterns
generated by the interplay of the network connectivity and the
intrinsic properties of the individual oscillators.
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APPENDIX A: DYNAMICS OF THE LINEAR REGIME

The dynamics of Eqs. (1)–(3) in each linear regime are
governed by a system of the form

v′ = η v − w,

w′ = ε [ α v − w ], (A1)

where the fixed point (v̄,w̄) (virtual or actual) has been
translated to the origin and η represents the slope of the
corresponding linear piece. The coordinates of the fixed point
(v̄,w̄) for each regime are given by

v̄ = κ λ − η v̂ + ŵ

κ α − η
and w̄ = κ

λ η − α η v̂ + α ŵ

κ α − η
,

(A2)

where f (v) is described by η (v − v̂) + ŵ. Note that here we
are using the same notation for the translated system, (A1),
and the original system.

The case κ = 1 corresponds to the uncoupled system, while
the case κ = 1 + σ γ corresponds to the autonomous part of
the globally coupled system, (7). The effects of Dv are included
in the parameter η.

The eigenvalues for each fixed point are given by

r1,2 = η − ε ±
√

(η + ε)2 − 4 κ ε α

2
. (A3)

The fixed points for the linear regime, (A1), are stable if η < ε

and unstable if η > ε. They are foci if

| η + ε | < 2
√

κ ε α (A4)

and nodes otherwise. Since α � 0 and κ > 0, saddles are
possible only for α = 0. We refer the reader to [77] for a more
detailed discussion for the case κ = 1. The global feedback
parameter γ > 0 affects both the location of the fixed points
and the eigenvalues. For large enough values of γ a node can
transition into a focus.

APPENDIX B: INTERPLAY OF DIFFUSION (LOCAL)
AND GLOBAL COUPLING

1. The canard phenomenon can be induced by the diffusion
autonomous component

Global feedback and diffusion have opposite effects. While
global feedback favors the generation of phase-locked clusters
(Fig. 6), diffusion favors in-phase synchronization [Fig. 13(a)].
In the next sections we investigate the combined effect of
global coupling and diffusion. Here, we look at the effects of
the diffusion coefficient Dv on the dynamics of the autonomous
part of system (10). This is not a realistic situation, but, as
for the effects of γ on the one-cluster systems discussed in
Sec. III B, it provides information on the dynamics of the
autonomous part of each oscillator.
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FIG. 13. Interplay of global coupling and diffusion in a two-cluster network for representative values of γ . We used the following
parameter values: α = 4, ε = 0.01, λ = 0.08, σ1 = 0.5, σ2 = 0.5, βL = βR = 0.05. The dashed gray line indicates the time at which diffusion
was activated.
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FIG. 14. Interplay of global coupling and diffusion in a two-cluster network for representative values of γ and a sigmoidlike w-nullcline.
(a) λ = 0.4; (b) λ = 0.08. We used the following parameter values: α = 4, ε = 0.01, σ1 = 0.2, σ2 = 0.8, and βL = βR = 0.05. The dashed
gray line indicates the time at which diffusion was activated.

Increasing values of Dv decrease the slopes (η) of the linear
pieces L2 and L3. From (A4) this can cause the transition of
the actual fixed point in R2 from a node to a focus, therefore
favoring the occurrence of the canard phenomenon. This is
illustrated in Fig. 12 for the same parameter values as in
Fig. 4 and γ = 0. [The baseline v-nullclines for Dv = 0 in
Figs. 12(a), 12(b) and 12(c) are as in Figs. 4(a1), 4(b1), and
4(c1), respectively.]

2. Interplay of diffusion and global feedback
for equal-size clusters: In-phase synchronization

and the canard phenomenon

Here and in the next section we investigate the patterns
that result from the interplay of global coupling and diffusion.
For visualization purposes, in Figs. 13 and 14 we present
the patterns for the globally coupled system in the absence
of diffusion to the left of the dashed gray line. In a separate

set of simulations we have checked that the patterns for both
γ > 0 and Dv > 0 (right of the dashed gray line) remain
unchanged when global feedback and diffusion are activated
simultaneously (not shown).

For relatively low Dv/γ ratios, the system shows antiphase
patterns (Fig. 13). As this ratio increases, the two oscillators
synchronize in-phase [Fig. 13(c)]. In-phase patterns are also
obtained for γ = 0.3 and Dv = 0.15 (not shown), for which
Dv/γ = 0.5. For larger values of γ but similar Dv/γ ratios,
the two oscillators exhibit in-phase SAOs. The increase in Dv

does not always cause the transition from LAOs to SAOs since
once the two oscillators synchronize in-phase they behave
as a single cluster and the diffusive effects are negligible.
Therefore, the transition from LAOs to SAOs in these cases
depends on whether or not γ > γc. For example, for γ = 0.3
and values of Dv larger than the one in Fig. 13(c) the patterns
remain in the LAO regime, in contrast to the patterns in
Fig. 13(d).
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3. Interplay of diffusion and global feedback for clusters of
different sizes: Diffusion-induced localized and MMO patterns

In Fig. 14(a1) we illustrate the diffusion-induced localized
patterns for the same parameter values as in Figs. 10(b) and
a relatively low Dv/γ ratio. In the absence of diffusion, the
system exhibits phase-locked LAOs and localization is induced
by increasing values of γ [Figs. 10(b)]. Similar patterns were
obtained for other values of γ and low Dv/γ ratios.

As Dv increases, different types of MMO patterns emerge
[Figs. 14(a2) to 14(a5)], which combine the two competing
effects of global coupling and diffusion. These patterns include
in-phase MMO patterns with different ratios of SAOs and
LAOs per cycle [e.g., Figs. 14(a2) and 14(a5)] and MMO
patterns where the LAOs in both oscillators are phase-locked
[e.g., Figs. 14(a3) and 14(a4)]. As Dv increases further, the
system exhibits in-phase SAOs.

In Figs. 14(b) we show some representative patterns for low
Dv/γ ratios. Figure 14(b1) shows a transition from localized
to in-phase MMO patterns [similar to that in Fig. 14(a5)]
that combine the features of both oscillators when Dv = 0.
The in-phase MMOs have a lower LAO frequency than the
localized pattern for Dv = 0. Figure 14(b2) also shows a
transition between localized and in-phase MMOs. However,
these MMOs have fewer SAOs per cycle and a higher LAO
frequency than for Dv = 0. Finally, in Fig. 14(b3) there is
a transition between two types of localized patterns with
different ratios of SAOs per cycle and a lower frequency. In
all cases, there is a relatively abrupt transition between these
patterns and SAO patterns, often not synchronized in-phase
(not shown). These transitions sometimes involve irregular
patterns for very small ranges of Dv .
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