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The persistence of a transition state structure in systems driven by time-dependent environments allows the
application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However,
identifying this structure is problematic in driven systems and has been limited by theories built on series expansion
about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal
environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors
[G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)], we obtain this so-called distinguished
trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and
dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension
and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes
of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the
transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
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I. INTRODUCTION

A grand challenge in the modern study of reaction dy-
namics is the development of reaction rate theories to treat
complex systems subjected to nonequilibrium forcing [1,2].
These systems occur across diverse fields, from materials
science [3-5] to biology [6-9], and drive a broad range
of emergent phenomena, such as field-induced locomotion
[10] and assembly mechanisms [11-14]. In these driven
environments, a suitable description of transition state [15]
and post-transition state [16] structure must be developed to
describe the respective reaction mechanism. Furthermore, in
many systems the complexity of describing state transitions
has required modification of the canonical view of the
mechanisms that drive reactions from one state to another
[17-19]. Thus, further theoretical characterization is needed
in order to describe the microscopic mechanisms that give
rise to observable macroscopic dynamical properties, such as
reaction rates.

In the formulation of theory for chemical reactions that
occur in simple and isolated environments, transition state
theory (TST) is ubiquitous [17,20-28]. The allure of TST
is its simplicity, as it allows the prediction of rates with
only knowledge of the landscape of the underlying potential
energy surface. The implementation of TST requires the con-
struction of a dividing surface (DS) separating reactants and
products [27,29] and, subsequently, a measure of the reactive
flux through that DS. In conservative Hamiltonian systems,
normally hyperbolic invariant manifolds (NHIM) [15,30,31]
provide methods for the development of optimal DSs and the
analysis of reaction geometries [19,32-36] at energies close to

“r.hernandez @jhu.edu

2470-0045/2017/96(2)/022222(12)

022222-1

the reaction threshold [37-40]. However, on nonlinear energy
surfaces, an analytical evaluation of the reactive flux integral
is intractable (except in a few select cases), and the flux is
measured directly using computational inefficient integration
of large numbers of trajectories. In complex environments,
deviations from TST arise as fluctuations in the environment
may cause reactive trajectories to recross the DS many times.
These recrossings contribute to an overestimate in the flux
calculation, therefore TST gives an upper bound to the rate.

In reactions that are induced by external sources, time-
dependent TST [25] has provided a framework to compute
reaction rates through location of moving saddle points (time-
dependent TSs) that provide anchors for reactive flux calcu-
lations. The hyperbolic trajectories [41—44] and associated
manifolds that partition phase space into reactive and nonre-
active portions have been termed transition state trajectories
because they play the same role in describing nonautonomous
dynamics as traditional TSs play in autonomous systems. Ma-
nipulation of these moving TSs through tailored pulses allows
guiding reactions toward a desired product and furthermore
toward the realization of optimal control of state transitions
[45-50].

Nonstatistical effects in the reactive flux [51-56] can be
prominent, specifically at the onset (transient) portions of
the transition processes [57,58]. Moreover, describing the
complex and often nonintuitive TS structures [19] in thermally
activated [41-43] and field-induced reactions [57-60] has
provided a significant hurdle to rate theory. Generalizations
of normal form theory and other methodologies [47,61-66]
built on the identification of reaction conduits that channel
reactive trajectories into product states have given insight into
the nature of phase-space structures dictating reactive events in
complex environments. Recently, Lagrangian descriptors (LD)
were introduced by Mancho and coworkers [67,68], motivated
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by the observation that positive bounded observables measured
along single trajectories will have distinct and differing
properties on each side of a phase space boundary. Methods
built on LDs have provided insight into the nonautonomous
dynamics in systems over a broad range of length scales from
ocean flow patterns [67] to chemical reactions [69-71].

Here we provide a firmer foundation to the Lagrangian
descriptor-based method developed in Ref. [69] by construct-
ing the reaction geometry (RG) in both paradigmatic linear
and nonlinear reactive systems subjected to various driving
and dissipative conditions. This LD-RG method has also been
shown to resolve the reaction dynamics of driven barrierless
reactions [70] and one- and two- dimensional models of
field-induced ketene isomerization [71]. The LD-RG method
is first verified through application to a parabolic (harmonic)
system in which the pertinent constructs can be obtained
exactly. Application to an Eckart barrier is used to illustrate the
extension of the LD-RG method to nonlinear systems. Through
variation in geometry of the reaction pathway, we show that
the physical insight gained from LD-RG is highly dependent
on the shape of the potential energy surface and the underlying
driving environment. Thermal activation is introduced in the
reactive models in the mean-field sense through Langevin
dynamics. In all reacting systems addressed thus far, the
dividing surface associated with the TS trajectory constructed
using LD-RG has been seen to be free of recrossings. Thus, this
work is a significant advance beyond Refs. [69-71] because
we now rigorously demonstrate that the LD-RG method can
be used to construct a global non-recrossing transition state
in the harmonic limit, and that it provides the structure of
the manifolds associated with the transition state trajectory
in linear and nonlinear systems under diverse environmental
conditions. A principal implication of the results presented
here is that reactive flux can be determined exactly in chemical
reactions that occur in driven complex environments.

II. THEORY AND MODEL DETAILS

For reactions that occur in a condensed phase, thermal
forces arise from solvent-reactant interactions. In the resulting
thermal environment, or when the reaction is driven under dy-
namical load, the reactant to product conversion R <> 7 () - P
proceeds through 7 (¢) which is a time-dependent TS. In a
Markovian picture of the solvent forces, the dynamics of the
reaction can be represented through a Langevin equation [72],

Mg =-Tq—VVialg.0)+ &), (D

where ¢ is a set of configuration variables, M is a diagonal
matrix containing the masses associated with each coordinate,
I' is a symmetric matrix of dissipative parameters, and the
stochastic term &(¢) is uncorrelated white noise. In most cases
we will study here, the stochastic term and the friction are
taken such that a fluctuation-dissipation relation

(ENET) =2k T T 81 — 1), 2

is obeyed. The strength of each component of this field is varied
through the independent parameters: friction and temperature.

A prototypical model for a reaction coordinate in chemical
dynamics is the Eckart barrier which is often used to
represent molecular reactions under stationary (gas-phase)
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FIG. 1. Potential energy surfaces Viu(q,gs,t =0), given by
Eq. (5), are shown for an asymmetrical Eckart system («k = 1.1) with
(a) no coupling (V, = 0) between ¢ and ¢, and in (b) with included

coupling (V5 = 400 m, ps~> Aiz). Shown below each surface is
the corresponding contour plot of V. For visual clarity the axis
corresponding to energy is shown in normalized units. The bottom
panels show corresponding slices of V|, (arbitrary units) with g, held
constant at the values marked in the respective legends. Parameters

in all panels are V= 2000 m, ps—2 1&2, V; = 800m, ps~2, and
a=085A"

environments. In a time-varying form
Vo(l — )
1 4+ exp[—2a(g — F(1))]
n Vo(l Z«/E )?

Vig.t) =

sech’[a(g — F(1))], 3)

this energy barrier separates reactants and products along a
generalized unstable reaction coordinate g which is subject
to some external time-varying forcing J(¢). The asymmetry
parameter « alters the energy difference between reactants and
products. With the addition of a coupling term

V;
Veoup(qs.1) = 7‘q3 + Valg — F()Pq2, 4)

where ¢ is an auxiliary stable coordinate, the total multidi-
mensional energy surface can be constructed as

Vior(q,qs,t) = V(q,1) + Veoup(q,gs,1)- (5)

Shown in Fig. 1 are representative energy surfaces Vi, with g
and g5 uncoupled (V, = 0) and coupled (V, > 0). Also shown
are slices through the energy surface along g with g, held
constant. These slices further illustrate the geometry of the
surface. We consider variations in the energy surface that result
from a driving form

F(t) = c; sin(21t) + c2 sin(21) (6)

which is bichromatic and periodic. In all cases, we take the
first overtone of the fundamental frequency €2; as the second
frequency 2, = 22;. The contributions of each frequency to
the total driving form are varied through the amplitudes c,
and c;.
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A. Parabolic approximation to the Eckart barrier

The anharmonic dynamical system consisting of a reactant
particle moving on an Eckart potential energy surface in a
thermal environment will serve as a basis throughout this work
to illustrate the power of the LD-RG method. The harmonic
limit of this system offers the possibility for validation of
the use of LDs to obtain the moving TS trajectory relative
to the analytical harmonic result based on the exact solution
of the linear (but nonautonomous) equation of motion (EoM).
To this end, we approximate the Eckart potential, given by
Eq. (3), with the parabolic form

Vi
Vig.t) = Vo — f[a2(1+2ﬁ+x>][q—q*—f(r)]z, (7)

where

o (Ve
= () ®

is the shift of the energetic maximum due to asymmetry in the
potential surface. For the symmetrical Eckart barrier (x = 1),
the position of the energetic barrier top (BT) has an instanta-
neous position F(¢). For the case of an asymmetrical Eckart
barrier the BT is shifted by the factor ¢* # 0. Combining
Egs. (1) and (7) gives the EoM for a time-varying parabolic
barrier in a thermal environment. This model system will serve
as a paradigm for benchmarking the developed procedures,
specifically for validation that through optimization of LDs,
TS trajectories with associated phase space separatrices can
be constructed.

B. Lagrangian descriptors

The formulation and application of LDs [67,68] has
provided insight into the often complex phase space geometry
in time-dependent systems. Particularly positive results have
been obtained by applying LDs to the study of ocean flow
currents [67], although the methodology is sufficiently general
such that is not restricted to systems with such large length
scales. A LD takes the general form

fo+7T

Plgn)])dr, 9

Io—T

M(qo.t0): =

where P is a positive quantity that accumulates as the unique
trajectory ¢ (t) evolves from point g at time fo up totime fy £ ©
in forward and backward time, respectively. Some examples of
LDs are phase space arc length, configuration space distance,
configuration space displacement, and cumulative kinetic
energy. Beyond applications in fluid dynamics, Lagrangian
descriptors are a simple and unique methodological tool for
the study of time-dependent chemical reaction phenomena and
molecular motion.

We have shown that the LD corresponding to the distance
traveled in configuration space over a time t,

to+7¢
L(gouto) = / ld.(qo. 0,0l dt, (10)
]

—Tp

can be used to reveal hyperbolic trajectories in field-induced
and thermalized chemical reactions [69-71,73,74]. The asso-
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ciated stable and unstable manifolds can also be obtained by
separating L into forward-time (L¢) and backward-time (Ly,)
components and minimizing these quantities with respect to
the initial conditions ¢q. For forward-time integration

to+1e
Li(qo,t0) = / lg.(qo.to.1)|l dt, (11)

fo

and in backward time,

f
Ly(qo,t0) = /
fo—Tp

where the intervals of forward and backward integration
are [ty,to + 7¢] and [ty — Tv,%], ||-|| is the norm and ¢q. are
generalized coordinates in configuration space.

For a single reactive degree of freedom (DoF), holding the
coordinate gy constant and minimizing with respect to g yields
the stable manifold

g (qo.t0.0)ll dt, 12)

Wi (qo = C,tp) = argmin L¢(qgo.q0 = C.,t)r,, (13)
in forward time, and the unstable manifold
W(qo = C,t9) = argmin Ly(go.q0 = C.1o)g, (14)

in backward time, where argmin(-) returns the argument that
minimizes the given function and Ry}, are suitable phase space
regions about the BT that contain the respective manifold. In
the absence of dissipation the integration times in Eqgs. (11)
and (12) can be chosen such that 7y = 7, as the dynamical
contributions in the respective time directions are on the same
order. In the presence of dissipative forces the respective
integration times are chosen such that strong minima are
observed on the L¢ and Ly, surfaces. The fundamental insight
leading to construction of the TS trajectory using LDs is
recognizing that it is the only trajectory that remains bounded
in the region of the BT as t — oo and as t — —oo. Because it
remains bounded for all time, it has extremal properties. This
insight can be utilized to locate this distinguished trajectory
through the optimization of LDs.

In the nonautonomous system given by Eq. (1), the
manifolds associated with the TS trajectory 7 are time
dependent. After constructing WW* and W", the TS trajectory
can be obtained by extrapolating to the point of intersection
between these two manifolds. This intersection point is an
instantaneous hyperbolic point. The TS trajectory can be
obtained by using this phase-space point as the initial condition
and evolving this trajectory in time. Another method which
we have found useful for constructing and visualizing the TS
trajectory is to combine the forward- and backward-time LDs
and then minimize on the resulting L = g¢L¢ + gy Ly, Where
grp = e=V™/™ are weights that account for the contraction
and expansion of phase space in a dissipative environment
[69,74]. The phase-space coordinates of the TS trajectory can
then be obtained directly by minimizing with respect to initial
conditions at some #; on this surface,

T (t9) = argmin L(qo,%0) R, (15)

and will correspond to a minimum on the L surface.
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III. PARABOLIC TRANSITION STATE TRAJECTORY

For the parabolic barrier given by Eq. (7), the TS trajectory
7 (¢) can be obtained analytically for any arbitrary motion of
the energy surface F(¢) and realization of the thermal driving.
We now restrict our discussion to a one DoF model in which
g is an unstable reaction coordinate. The equation of motion
for this single DoF system is

Vig.0)
dq

+&(1). (16)

mg=—yq—

In this case, the TS trajectory is hyperbolic and is associated
with stable and unstable manifolds WW*". The eigenvalues of
the parabolic system

1
hu = o[y £y F2man( 420k o] a7)
2m
|

1 2Vo(1 42
T = [a Vol + 2k + k)
Au — Ag 2m
2
Ty = 1 [a Vo(l + 2/ + k)
Au — A 2m

which depends on the particular realization of the deterministic
driving F(¢) and the specific noise sequence &(¢). Equations
(19) and (20) define the TS trajectory in the unstable (reactive)
degree of freedom.

Correspondence between optimization
of L and the TS trajectory

The TS trajectory associated with a moving parabolic
system remains bounded within the domain of time-dependent
barrier top positions in both the infinite future and the infinite
past. If the barrier movement is periodic, then the TS trajectory
will likewise be periodic. As shown in Fig. 2(a), for athermal
periodic driving the resulting TS trajectory is a periodic orbit
O [59]. In this case, using the methods described in Sec. II B,
optimization of Lgy, yields the same trajectory as O. With the
inclusion of thermal driving and dissipation, the corresponding
TS trajectories determined by Egs. (19) and (20), and those
obtained through optimization of the Lagrangian descriptors
are in excellent agreement, as can be seen in Fig. 2. This
numerical agreement is suggestive of the accuracy of the latter
procedure in obtaining the TS trajectory [57-59,69].

IV. REACTION MANIFOLDS
A. Parabolic barrier

The stable and unstable manifolds of a parabolic energy bar-
rier can be readily characterized in the moving frame associ-
ated with the TS trajectory. The eigenvectors of the EoM in this
moving frame correspond to the stable and unstable manifolds,
while the moving frame itself depends on the realization of the
deterministic driving F and the specific noise sequence &. For
the case of an athermal stationary barrier with a linear EoM, the

(AsS[As, Fr 1] = AuS[Au, Fit]) + %(ksS[KS,E; 1] — AuS[Au.€51])
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correspond to the stable and unstable manifolds, respectively.
Each eigenvalue carries units of inverse time. In a dissipative
system, they satisfy A; + Ay, = —y/m. This factor describes
the stretching or contraction rate of phase-space volume in
forward or backward time, respectively.

The dynamical system can now be defined on a moving
hyperbolic point using a method proposed by Bartsch et al.
[41,42,65,66] through the use of the S functionals,

— [ g(x) explu(t —1)ldT:  Rep >0,
Selm.gst] = :
+ ' g(x) explu(t —7)ldTt: Rep <0,
(18)

whose argument includes the decay rate p and driving force
g. The S functionals suppress the exponential factors in the
solution of the EoM and return the bounded portion. The TS
trajectory of the system defined by combining Egs. (1) and (7)
is therefore given by

T

2
(STAs, F3t] — S, Fit]) + 70(5[?»5,5;!] - S[Ku,é;l])] +4q" 19)

V2o } ; (20)

(

fixed point 7T = (¢*,0) corresponds to the traditional picture
of the transition state, and the stable and unstable manifolds
of T are also linear [15]. In the case of time-varying parabolic
surface in a thermal environment the manifolds associated with
7 (t) are time dependent and described by

WHT (1) : {(§ — T (1)) — As(g — T (1)) = 0}, 1)

WHT (@) :{(g —T@) = 2lg —T(0)) =0} (22)

Several cases are explored below to provide additional
illustration of the structure of the TS trajectory and the
accuracy of the Lagrangian descriptor scheme in describing
the associated manifolds.

We first examine the applicability of minimizing Lgy
to construct the corresponding manifolds on autonomous
Hamiltonian and autonomous dissipative systems. While this
is a trivial system in which to construct the reaction geometry,
it will serve as an excellent benchmark for the LD method
described in Sec. II B. In a parabolic system, the stable and
unstable manifolds are defined by the lines spanned by the
corresponding eigenvectors of the linearized EoM about the
fixed point 7". As shown in Fig. 3, 7 corresponds to a strong
minima on the L surface. This is the expected results because
a trajectory with these initial conditions will have L¢p, = 0 by
definition of a fixed point.

The stable and unstable manifolds associated with 7 can
be constructed through minimization of L¢y. This can be seen
in Fig. 4 where the optimization procedure leads to excellent
agreement with the exact analytical values of the correspond-
ing manifolds. Note that the effect of dissipation causes a rota-
tion in the manifolds, and an increase in the so-called critical
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(b)

0 0.25 0.5 0.75 1.0
t(ps)

FIG. 2. Components of the TS trajectory, 7 (top) and T (bottom) for (a) athermal and (b) thermal systems and varying values of «, y, and
T. The exact TS trajectories given by Egs. (19) and (20) are shown as solid curves. The configuration space component of 7 found through
the LD-RG procedure discussed in the main text is shown as a dashed curve (white) in each top panel. For each trajectory in (b), x = 0.5 and
the thermal parameters are as follows: (I) y = 25m,/ps, T = 298K; (I) y = 250m,/ps, T =298 K; (II) y = 725m,/ps, T = 100K; and

(IV) y = 1250 m,/ps, T = 50 K. Parameters in all panels are m = 10m,, ¢; = ¢; = 0.75A, 2, = 15ps~!, and a = 0.85 AT
14 p p p

velocity [65,66,75] V1 which separates reactive and nonreac-
tive regions of phase space for trajectories with initial position
qo held constant. Trajectories that have an initial velocity gy >
V1 are reactive and trajectories with gy < V* are nonreactive.
The effect of dissipation raises this value as a dissipative
environment removes energy from the system and a trajectory
must be launched with greater energy in order to surmount the
barrier. The corresponding LDs capture this behavior.

The agreement between the minimization of Ly, and the
exact values of W' is further illustrated in Fig. 5 where,

L(arb. units)

max

FIG. 3. Phase-space contour plots of the sum L of the forward
and backward LDs are shown in (a) for a symmetrical barrier (k =1,
y = 0) and in (b) for a symmetrical barrier (x = 1,y = 250m,/ps)
in a dissipative environment. The values of the range from minimum
to maximum are noted in the color (gray) bar. Both systems are
noiseless. The fixed point of both systems 7 is shown as a circular
marker on the time-varying potential surface (above), which is shown
in units of kg T at 298 K, with the Eckart barrier shown in black and
the parabolic approximation shown in orange (gray). Parameters in all

panels are t = 0.5ps, 7, = 0.23 ps, m = 10m,, and a = 0.85 Afl.

by construction of L¢p(q,q) with g held constant, a strong
minima is observed on the Lagrangian surface at the location

min Lf,b (a’rb‘ units) max
[

FIG. 4. Phase-space contour plots of L; and L, are shown
respectively in panels (a) and (b) for a symmetrical barrier (x = 1,
y = 0) and in panels (c¢) and (d) for a symmetrical barrier (k = 1,
y = 250 m,/ps) in a dissipative environment. The values of the range
from minimum to maximum are noted in the color (gray) bar. Both
systems are noiseless. The fixed point of both systems 7~ is shown
as a circular marker. The corresponding stable JV* and unstable W*"
manifolds calculated through minimization of L}, are shown as solid
orange (light gray) lines. They are overlaid by the exact manifolds
shown as dashed lines (black). The number of contours is increased in
the vicinity of the manifold to illustrate convergence to the minimum.
Remaining parameters are the same as in Fig. 3.
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. ' . .
1F g=-025 =— q=0.0 =— ¢q=025 =— ¢=0.5

0 10 20
q(A/ps)

1 1
-20 -10

FIG. 5. Calculation of L¢ (top) and L, (bottom) for varying initial conditions q¢ = (g,q), with g held constant at the values given in
the legend are shown in (a) for a stationary symmetrical barrier and in (b) for a stationary symmetrical barrier in a dissipative environment
(y = 250m,/ps). Both systems are noiseless. The exact value of the respective manifold is marked by a orange (gray) vertical dashed line.

Additional parameters in all panels are as in Fig. 3.

of the corresponding manifold. This minima is in excellent
agreement with the exact position of the respective manifold,
further supporting the argument that through minimization of
L}, the respective manifolds can be recovered.

A constructive proof of the claim that the manifolds of
a parabolic system can be obtained using LDs is provided
below through the explicit evaluation of Egs. (13) and (14). For
simplicity, we consider a stationary and conservative system
by setting ¥ = 0 and removing the forcing term F(¢). In the
stationary setting, the EoM is

j = w*(q —q"), (23)

where

w= \/ﬁ[aZ(l + 2k +K)). (24)
2m

We first construct the stable manifold associated with the fixed
point 7 = (¢*,0). The unstable manifold can be constructed
using similar arguments to avoid being overly pedantic.
Solving Eq. (23) yields

4(qo.1) = (go — ¢*) cosh (wr) + % sinh (f) + ¢*,

q(qo.t) = go cosh (wt) + (g0 — g*)w sinh (w1). (25)

The phase space of this system can be partitioned into
quadrants using the lines ¢ = 0 and ¢ = ¢*. In quadrants I
and III: sgn(go — ¢*) = sgn(qo) and in quadrants II and IV:
sgn(qo — q*) # sgn(qgo). The stable manifold exists in

J

quadrants II and IV, so we now confine our discussion to these
quadrants.

There are two types of trajectories that are not part of
the manifold network: reactive and nonreactive. Reactive
trajectories are defined by the set of initial conditions that begin
on the reactant side of the dividing surface, and move to the
product side in forward-time. For backward-time integration,
reactive trajectories move from the product side to the reactant
side. Nonreactive trajectories approach the barrier top, change
sign in velocity and stay on the reactant side (product side
in backward time). The time where this velocity sign change
occurs, f., can be obtained by solving

q(qo,t) =0, (26)
for ¢, which gives

f = 27)

1 |:(6]0 —q")w — 6}0}
20 [(q0 = g")® +qo |
Equation (27) has a positive asymptote at go = —w(qo — g™)
which defines the corresponding initial velocity g¢ for position
q = (qo — ¢q*) such that the trajectory is on the stable manifold.

We use minimized LDs to obtain the stable manifold. By
confining our discussion to quadrants II and IV, ¢, has the
property Ref. > 0, which means that, e.g., in quadrant II,
a trajectory either crosses the DS in forward time (reactive)
or does not cross at all (nonreactive). The absolute value
function ||g(qo,%,t)|| in the integral L¢ can be separated into
intervals before and after #., and the solution in quadrants II
and IV can be written as:

limy - fo 1G(go,0ll dt +Tim, . [ lg(qo.0)ll d

Li(go,7) =

_ R RN N TG WAVA W THO
40 ® :

2@o) Im¢t. =0and 7 > ¢, (28)

. _ *) 22 T)— * ) ]
for IIq(qo,t)II dt = _ (g qqovqo + (4(q0,7)—4")~/4°(q0.7) :

4(q0,7)

Im¢t. #0orIm¢, =0and 7 < ¢.

In a stationary environment the choice of 7y in Eq. (13) is arbitrary, and here we have set #y = 0 for simplicity. Note that for a
specific qo, the change from nonreactive to reactive trajectories, and thus from regions where Imz#, = 0 to Im. # 0, occurs at

the stable manifold.
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FIG. 6. Phase-space contour plots of L(q,?) for #y € {0,0.125,0.209,0.356} are shown in (a)—(d) for a time-varying athermal symmetrical
barrier (¢« = 1,y = 0). In all panels, the TS trajectory 7 (¢) is shown as a light-orange (light gray) striped curve over an entire period of
oscillation and the stable manifold at time #, is shown as a dashed curve (white). The time-varying potential surface is shown above in units of
kgT at 298 K, with the Eckart barrier shown in black and the parabolic approximation shown in orange (gray). In all panels, T = 0.5 ps and

additional parameters are as in Fig. 2.

We wish to minimize L¢ with respect to gy while holding
qo constant. This is accomplished by solving

dL¢(qo,7)

0, 29)
990

for g and sorting the appropriate root. The initial velocity that
solves Eq. (29) minimizes L; and we denote this velocity q'(‘f)
as it will be used to obtain the stable manifold. After some

algebraic manipulation we obtain

90 = ol — | @D (5
Qo N0 = 0 T N b (@t

which is a function of t (the integration time). In the limit
T — oo the exact value of the stable manifold is recovered,

lim ¢&(t) = —w(qo — ¢*), 31)
T—>00

and thus we have proven that Eq. (13) tends to the stable
manifold as 7 — oo. This value is in agreement with the
vertical asymptote of ¢, and the calculation given by Eq. (21).
The unstable manifold can be constructed using similar
arguments in backward time.

We have thus far illustrated the use of LDs in autonomous
systems; however, the methodology is also applicable in
nonautonomous systems such as thermalized chemical reac-
tions that occur in a Langevin-type bath [69] and reactions
that are driven by external fields [71]. Using LDs to construct
and visualize the underlying phase space geometry in time-
dependent systems is perhaps their most useful application.

In thermalized systems on time-varying energy surfaces,
the structure of the TS trajectory, and its associated manifolds,
depends on the specific form of the external driving, and
also on the geometry of the noise. For a periodically varying
parabolic surface in an athermal environment (7T — 0), the
corresponding TS trajectory is an unstable periodic orbit that
remains bounded in the vicinity of the BT region for all time

(see Sec. IIT A) [59]. Constructing this object with an LD
minimization scheme yields 7 (), as shown in Fig. 6. Note
that the configuration space component of the TS trajectory
T does not correspond to the instantaneous BT, i.e., 7 does
not correspond to the traditional view of the transition state.
The relation between 7 and the position of BT at varying
times is illustrated in each panel in Fig. 6. With the inclusion
of noise and dissipation, the TS trajectory of Eq. (16) is no
longer smoothly varying and is a function of both the external
driving form F(¢) controlling the time evolution of the energy
surface, and also the noise. However, for a parabolic barrier,
the EoM remains linear and thus the manifolds associated with
T (t) are also linear. As shown in Fig. 7, in this case, the TS
trajectory can once again be recovered through the use of the
LD minimization scheme, with the instantaneous phase space
position of 7 at time #, given by locating the conical point on
L(qo,t0)

B. Eckart barrier

Lagrangian descriptors can also be applied to construct the
reaction manifolds of anharmonic barriers. As illustrated in
Fig. 8 for a stationary Eckart barrier, the general trends are the
same as in the parabolic case. Namely, the ridge lines of L
still mark separatrices dividing reactants and products, and the
intersection 7~ of the manifolds is the instantaneous position of
the TS. Note in Fig. 8(b) the shift of the BT position by a factor
g™ due to asymmetry in the potential surface. Meanwhile, the
L surface no longer exhibits the linear structure we saw in
the parabolic cases of Figs. 3 and 4. This gives rise to curved
separatrices for the anharmonic Eckart potential. The effect of
dissipation on the manifold geometry is shown in Figs. 8(c) and
8(d). In this case, due to loss of energy into the thermal bath,
a trajectory must have a larger initial velocity with respect
to the corresponding conservative system to change from a
reactant to product state. This results in a rotation of the stable
manifold and the Lagrangian surface constructed using LDs
captures this behavior.
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FIG. 7. Phase-space contour plots of L(q,%) for #, € {0,0.4,0.75,0.9} are shown in (a)—(d) for a time-varying thermalized asymmetrical
barrier (k = 0.5,y = 25m,/ps). In all panels, the TS trajectory 7 (¢) is shown as a light-orange (light gray) striped curve over the interval
[0,70] and the stable manifold at time #, is shown as a dashed curve (white). The time-varying potential surface is shown above in units of kg T
at 298 K, which is the temperature of the thermal bath, with the Eckart barrier shown in black and the parabolic approximation shown in orange
(gray). Parameters in all panels are T = 0.5 ps and 7, = 0.22 ps. Additional parameters in all panels are as in Fig. 2.

Differences in the structure of Lfp, on harmonic and
anharmonic surfaces can also be observed by comparing slices
through the corresponding surfaces in Fig. 5 for a harmonic

FIG. 8. Phase-space contour plots of the sum L of the forward
and backward LDs of autonomous systems are shown in (a) for a
symmetrical Eckart barrier (¢ = 1) and in (b) for a asymmetrical
Eckart barrier (¢ = 0.25). Panels (c) and (d) display contour plots of
the respective symmetrical and asymmetrical systems are shown for
dissipative environments (y = 75 m,/ps). The time-varying potential
surface is shown in units of kg 7" at 298 K in the top unlabeled panels.
Open circles highlight the fixed point 7~ of each system. Parameters
in all panels are T = 0.5ps, 7, = 0.15ps, and m = 10m,,.

barrier and in Fig. 9 for the Eckart barrier. Variation of g
with g held constant leads to nonlinear behavior in L¢}, for
an Eckart barrier, and linear behavior for a harmonic barrier.
Note that the location of the manifold for a specific gy value
corresponds to the minimum on the respective curve shown
in Fig. 9 and this observation is in agreement with Egs. (13)
and (14).

The manifold network geometry for a nonautonomous
anharmonic system is shown in Fig. 10 using a time-varying
Eckart barrier in a thermal environment as a representative
model. As in the autonomous case, strong ridges are observed
on the Ly, surfaces which mark the location of the respec-
tive stable-unstable manifold. The correspondence (or lack
thereof) between the stable and unstable manifolds of the
moving hyperbolic point 7" and the time-varying geometry
of the potential energy surface can be seen by comparing
the Lagrangian surfaces in Fig. 10 with the corresponding
potentials shown above each panel. In anharmonic systems,
the time dependence of the manifolds is not only manifested
in translation associated with the moving hyperbolic point, but
the topology of the manifolds themselves is also time depen-
dent in the static coordinate system, as observed in Fig. 10.

C. Multidimensional dynamics

We now consider the case of a multidimensional reactive
system by coupling the reactive degree of freedom to a
harmonic bath mode g5 as represented by the two-dimensional
potential in Eq. (5). Inclusion of the stable bath coordinate
leads to a manifold geometry with higher dimensionality
that is significantly more complex. However, the minimum
valleys of the forward and backward LD surfaces Ly will
still correspond to the (un)stable manifolds W*", respectively.
These multidimensional structures are illustrated here for
an Eckart barrier. The lack of bounded reactant or product
regions simplifies the analysis slightly, but this is not a
restriction to the theory as we have also examined an athermal
field-driven potential energy surface with bounded metastable
states [71].
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FIG. 9. Calculation of L¢ (top) and L, (bottom) for varying initial conditions g¢ = (g,q), with g held constant at the values given in the
legend are shown in (a) for a stationary symmetrical Eckart barrier and in (b) for a stationary symmetrical Eckart barrier (y = 75m,/ps) in a
dissipative environment. Additional parameters in all panels are as in Fig. 3.

The geometric structure of L¢p, corresponds to the re-
spective manifold network. This is confirmed by comparing
the Lagrangian surface with the final-state basins constructed
from mapping each position in phase space to a final state
at time 7t which is either reactive (surmounts the energy
barrier) or nonreactive (does not surmount the energy barrier).
The forward-time surfaces Ly in Fig. 11 are determined over
the unstable coordinate [71] for different parameters and
the complementary final-state basin mapping. The similarity
between Figs. 11(a) and 11(e) confirms that the minimum

valley on Ly separates reactive and nonreactive regions for the
case of uncoupled dynamics. That is, this structure corresponds
to the stable manifold in the independent unstable coordinate.
The Lagrangian surfaces for the coupled dynamics between the
unstable and stable coordinates are shown in Figs. 11(b)-11(d)
and can be compared with the corresponding final-state basins
shown in Figs. 11(f)—11(h). In all cases presented here, the Ly
surface contains distinctive local minima, and these valleys
coincide with the basin boundaries. This correspondence
persists in phase-space slices that contain manifold structures

10y
0

FIG. 10. Phase-space contour plots of L(q,%) (top) and Ly(qo,%) (bottom) at 7, € {0,0.1,0.75,0.9} for a time-varying thermalized
symmetrical barrier (x = 1.0,y = 25m,/ps) are shown in panels (a)—(d) and panels (e)—(h), respectively. The temperature of the thermal bath
is 298 K and the integration time is T = 1.0 ps. Additional parameters in all panels are as in Fig. 2.
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nonreactive

(syrum -qre) 7

min

FIG. 11. Phase-space plots of L¢(qo,%) (top) and the corresponding final-state basins (bottom) for a two-dimensional barrier—Eckart
potential in ¢ and harmonic in g, at t, = 0 with parameters: k = 1.0,y = 25m,/ps,T = 298 K. Shown are phase-space portraits of the

unstable mode (g,¢§) for (a) uncoupled (V, = 0) and (b)—~(d) coupled (V, = 400 m, ps—> Afz) motion between unstable and stable modes with

initial values of the stable mode: (b) g, = 0.5 A,qs =0;(c) gs = 0,¢s

—10 A/ps; (d)gs =0,9, =10 A/ ps. The corresponding basins shown

below each L¢ surface illustrate areas of phase space that are nonreactive in blue (dark gray), and reactive in orange (light gray). In all panels,
the integration time is T = 2.0 ps and additional parameters are as in Figs. 1 and 2.

with complex geometry. The observation that the final-state
basin boundaries are in strong agreement with valleys on the
Lagrangian surface opens the possibility that LDs can be used
to construct the manifold network of a multidimensional TS,
even when the barrier geometry is time varying and the reaction
occurs in a thermal environment [76].

In general, the manifolds W*" are high-dimensional ob-
jects. Depending on the location of the saddle in phase space,
the orientation of its (un)stable directions, as well as the
particular form of the coupling and the external driving, the
(un)stable manifolds W*" may, of course, also be observable
along different coordinate axes and in different slices through
the high-dimensionality phase space. For example, in the
present case of an unstable Eckart barrier coupled with a stable
harmonic mode, Lagrangian surfaces in the stable coordinate
exhibit the typical structure seen in the vicinity of stable points.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have used Lagrangian descriptors to
construct separatrices, hyperbolic trajectories, and surfaces
of no return in a physical system—driven by the Eckart
potential—that is a standard model for thermal barrier crossing
reactions in chemistry and chemical physics. A central result
in this work is the proof that minimization of the Lagrangian
descriptors leads exactly to manifolds of the TS trajectory
in the case of harmonic barriers. This LD-RG method is
applicable across many activated dynamical systems in and
it can be used to provide key insight into reaction or transition

processes, including, as we have shown here, in thermalized
systems with many degrees of freedom.

The LD-RG theory has been illustrated for a Markovian
solvent, although based on the lack of simplifying assump-
tions, we conjecture that it is readily extendable to reactions in
structured solvents. By altering the time-dependent transition
states associated with hyperbolic trajectories [77] to give
specific reaction outcomes, the results presented here provide
for the possibility of future developments toward optimal
control of selectivity in field-driven and solvent-mediated
reactions [48,78].

We are currently pursuing these methods to address reac-
tions in solvent environments with cavitational heterogeneity
[79], and specifically to coarse-grained mesoscale dynamics
in which the underlying solvent has intrinsic softness [§0-85].
Such systems are not presently amenable to analytic treatments
because the mean-field representations of microscopic systems
are not exactly renormalizable at the mesoscale. Our prelim-
inary results show that variations in solvent softness—i.e.,
deformable solvent environments—manifest in alterations of
the reaction geometry and subsequently the rates of the
underlying reaction mechanics.

Reaction rates can be derived using the Lagrangian de-
scriptor method in multiple ways. A brute force calculation
can be performed by numerically integrating large numbers
of trajectories and calculating the reactive flux through the
moving dividing surface as was done in Ref. [44] using the
perturbation theory-based TS trajectory. The rate constants
obtained from this method approach the exact classical
rates as the number of trajectories is increased because the
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dividing surface constructed using Lagrangian descriptors is
recrossing-free [58]. In the long-time limit with respect to
the decay of the reactive flux, the rates can be derived from
the stability exponents (i.e., Lyapunov or Floquet exponents)
of the TS trajectory [57,60]. This method minimizes the
computational resources needed to obtain the rates by reducing
a calculation that uses a large number of trajectories to one
that uses a single trajectory, but it does not capture the
decay rate of the reactive flux in the short-time limit. A
more robust method for the calculation of the flux integrals

PHYSICAL REVIEW E 96, 022222 (2017)

in the usual TST expression of the rate constant would
use the moving dividing surface obtained from the LD-RG
theory.
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