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Sustained dynamics of a weakly excitable system with nonlocal interactions
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We investigate a two-dimensional spatially extended system that has a weak sense of excitability, where an
excitation wave has a uniform profile and propagates only within a finite range. Using a cellular automaton
model of such a weakly excitable system, we show that three kinds of sustained dynamics emerge when nonlocal
spatial interactions are provided, where a chain of local wave propagation and nonlocal activation forms an
elementary oscillatory cycle. Transition between different oscillation regimes can be understood as different
ways of interactions among these cycles. Analytical expressions are given for the oscillation probability near the
onset of oscillations.
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I. INTRODUCTION

Emergence of sustained dynamics from elements whose
dynamics themselves are not oscillatory is a common phe-
nomenon. Network connections of nonoscillatory elements,
for instance, give rise to such dynamics and have been studied
in various contexts, including gene networks [1], epidemic
spreading dynamics [2–5], and generic excitable units [6–10],

Excitable units undergo oscillations in many ways: Simple
two excitable systems can exhibit sustained dynamics when
delay-coupled [11]; spatially extended excitable media can
produce sustained spiral waves by introducing a perturbation
leading to the formation of a spiral core [12]; one can even
consider interactions at a distance through nonlocal links
embedded in spatially extended systems [13–16], which even-
tually forms network structures composed of wave propagation
and nonlocal interactions.

Waves in excitable media usually have an infinite propaga-
tion range, but we occasionally encounter systems that have a
weaker sense of excitability. An example is found in calcium
propagation in the epidermis [17], where waves of calcium
excitation in epidermal cells have a finite propagation range as
opposed to normal excitable waves. Also the wave profile is
uniform rather than pulselike, which is different from the cases
of propagation failure [18,19]. Interestingly, such a localized
wave can trigger secondary waves at distant places through
backfiring of nerve signals, a phenomenon called axon reflex
[20], which can be regarded as long-range connections.

This observation motivates us to investigate possible dy-
namics of weakly excitable media when network-connected
excitable units are embedded in it. In this paper, we introduce
a generic cellular automaton model of weak excitability char-
acterized by a uniform wave profile and a finite propagation
range and investigate a possibility of sustained dynamics when
long-range connections are given. We show that there are
three oscillatory regimes with distinct dynamical properties,
depending on the ranges of wave interactions and the density of
nonlocal links. These different oscillation regimes are under-
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stood as a result of emergence and interactions of oscillatory
cycles, which are closed chains of local excitation waves and
nonlocal links. In particular, the onset of oscillatory dynamics
can be fully determined by the emergence probability of such
cycles, which can be analytically treated.

This paper is organized as follows. In Sec. II we present
our model. In Sec. III, we exemplify sustained dynamics
and consider a minimal requirement for them. In Sec. IV we
investigate dynamical behavior of our model for a wide range
of parameters, where the three oscillation regimes are shown.
Analytical results are given in Sec. V, where the oscillation
probability is calculated in the regime of simple periodic
oscillations, and the mechanism of the transition into different
regimes are discussed. Difference and similarity compared to
previous works are discussed, and possible applications are
mentioned in Sec. VI.

II. THE MODEL

We consider a two-dimensional (2D) square lattice of N×N

cells with periodic boundaries. Each cell i is assigned a
nonnegative integer value ui(t), representing the activity of
i at an integer time t . From these cells L pairs are chosen, for
each of which a directed link is assigned from one cell (sender
node) to the other (receiver node). For simplicity we require
that a sender and a receiver for a given link are different, and
that once a cell is chosen as a sender or a receiver for one link,
it is not chosen any more for other links.

Each time step consists of two distinct excitation processes:
local wave propagation and nonlocal activation. A local wave
propagation process updates ui(t) to an intermediate state ũi(t)
as follows:

ũi(t) = max
j∈Ni

{uj (t),ui(t),1} − 1, (1)

where Ni represents the neighboring cells of i. In this process,
all cells decrease their activity by one, and then its value is
replaced by the highest activity in Ni .

Then a nonlocal activation process follows. Consider a link-
connected sender node j and its receiver node k. The receiver
node is activated when both the sender node and the receiver

2470-0045/2017/96(2)/022213(8) 022213-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.022213


KOBAYASHI, KITAHATA, AND NAGAYAMA PHYSICAL REVIEW E 96, 022213 (2017)

node satisfy activation conditions: For the sender node j , this
condition is given by

ũj (t) > max{uj (t),uth}, (2)

where uth is a threshold, and for the receiver node k,

ũk(t) = 0. (3)

The state at t + 1 is finally determined as follows:

ui(t + 1) =
{
uM if i is an activated receiver node,
ũi(t) else,

(4)

where uM is the maximum activity obtained by the activated
node. In this setup, the cells containing receiver nodes are
considered as ordinary excitable units: they eventually have
refractory period and are able to get maximally excited. All
the other cells, which have no refractory period, act as media
for local wave propagation.

The two parameters uM and uth determine two effective
spatial ranges of local wave propagation. Suppose that all cells
are in the rest state (ui = 0). Equation (1) means that, when
a receiver node is activated at t = 0 and a wave is initiated,
after t steps the wave propagates up to distance t , with all cells
within its propagation range having the same activity value
uM − t . This wave can induce nonlocal activations through
sender nodes that are within its propagation range t only when
uM − t � uth, or t � uM − uth, due to Eq. (2). Hence, the
activation range of the wave is defined as uM − uth.

On the other hand, Eq. (3) implies that receiver nodes that
are within the propagation range of the wave are hindered
from getting activation from other sender nodes. Since the
wave propagates up to distance uM , and it takes uM time steps
for the wave to lose the ability to suppress their activation, the
suppression range of the wave is uM and the refractory time
of an activated receiver node is also uM [21].

For later use, we introduce a parameter ρ := uth/uM .
Since uM − uth = (1 − ρ)uM, 1 − ρ represents the relative
activation range, i.e., the ratio of the activation range to the
suppression range. Throughout this work the system size is set
to N = 200. Hence, the model is fully specified by a parameter
set {uM, ρ,L} and a way of distributing L links among the
cells.

III. EXAMPLES OF SUSTAINED DYNAMICS

This system can exhibit sustained dynamics when nonlocal
links are randomly provided. Figure 1(a) is such an example,
where L = 100 nonlocal links are randomly given, with
uM = 80 and ρ = 0, and one chosen receiver node i is initially
perturbed so that ui = uM , with all other cells set to zero.
Note that our discrete system results in a square-shaped wave
pattern: the distance between the two cells at (i,j ) and (k,l)
is given by |i − k| + |j − l|, and thus the equidistant wave
front forms a square. Also note that the cells inside the wave
front have the same activity. In 2D continuous systems this
would be a disk-shaped wave pattern propagating within a
finite distance, which has been observed in calcium dynamics
of epidermis and also theoretically investigated [22].
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FIG. 1. (a) Snapshot of sustained dynamics in our model with
uM = 50, ρ = 0, and L = 100, where nonlocal links are randomly
distributed. An initial perturbation is given to a chosen receiver node
i as ui = uM , with all other cells are set to zero. The color bar
indicates the activity of each cell relative to the maximum value
uM . (b) Example of a two-link oscillatory cycle. Arrows 1 and
2 represent directed nonlocal links from the sender node to the
receiver node. Shaded square regions represent the activation range
of local excitation waves from the receiver nodes, determined by
(1 − ρ)uM . Coordinates of nodes: (104,114)→(158,68) (link 1, blue)
and (121,78)→(27,140) (link 2, magenta). (c) Periodic oscillations
observed in the two-link cycles described in (b), with uM = 80, ρ =
0, and L = 2. Solid line: receiver node of link 1; triangles: sender node
of link 1; broken line: receiver node of link 2; circles: sender node
of link 2. (d) Diagram of a minimal oscillatory cycle. Solid arrows
represent directed links; dotted arrows represent possible interactions
through propagation of excitable waves; x1 and x2 represent the
distance between the sender node of one link and the receiver node
of the other, and y represents the distance between the two receiver
nodes.

A. A single nonlocal link

What is the minimal requirement for sustained dynamics in
this model? Let us first consider a system that contains only one
nonlocal link whose sender node is within the activation range
of its own receiver node. It is easy to confirm that sustained
dynamics cannot be maintained by a single link: Suppose that
the receiver node gets activated by perturbation and a local
wave starts to propagate. While the local wave exists, the
receiver node has nonzero activity and thus Eq. (3) is not
satisfied; when the local wave disappears, Eq. (2) is no longer
satisfied. Hence, nontrivial dynamical behavior requires more
than one nonlocal link.

B. Two nonlocal links

The simplest case of sustained dynamics in this system is
given by two links placed as in Fig. 1(b). Here the sender node
of each link is influenced by a local wave generated from the
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receiver node of the other link to form a cycle, whose dynamics
is shown in Fig. 1(c).

Let x1 (x2) be the distance between receiver node 1 (receiver
node 2) and sender node 2 (receiver node 1), and let y be
the distance between the two receiver nodes, as depicted in
Fig. 1(d). In order for two links to form an oscillatory cycle,
the sender node of each link must be within the activation
range of the receiver node of the other link, which is expressed
as

x1 < (1 − ρ)uM and x2 < (1 − ρ)uM. (5)

Also, the total signaling path must be sufficiently long so that
the receiver nodes have time to recover from the refractory
state:

x1 + x2 � uM. (6)

In addition, the two receiver nodes must be sufficiently
separated, because otherwise a receiver node is suppressed
by a local propagation wave from the other receiver node
before it receives nonlocal activation. Let us call this diagonal
suppression. The condition for the diagonal suppression not to
occur is given by

y > x1 and y > x2. (7)

Note that there is no condition required for the distance
between the two sender nodes.

Equations (5), (6), and (7) are the necessary and sufficient
conditions for a two-link cycle to exhibit oscillations. The
range of the oscillation period T , which is equal to the total
signaling path x1 + x2, is also determined by these conditions
as

uM � T < 2(1 − ρ)uM. (8)

This means that the range of oscillation period vanishes when

ρ � 1
2 . (9)

Therefore, two-cycle oscillatory cycles are impossible when
the relative activation range is too short.

IV. DYNAMICAL PROPERTIES OF LINK
DISTRIBUTION ENSEMBLES

Here we investigate what kind of dynamics is typically
observed for a given parameter set {uM , ρ,L}, when different
distribution patterns of nonlocal links and different initial
conditions are provided.

For a given parameter set {uM, ρ,L}, K(=1000) different
samples are prepared, in each of which L links are randomly
distributed under the condition that no single cell is assigned
more than one nodes. For each sample we run simulations
with different initial conditions: For each run, one chosen
receiver node i is set to ui(0) = uM and all other cells are
set to zero. Since there are L receiver nodes, each sample
has L possible initial conditions. Hence, each parameter set
contains KL simulation runs.

Below, the parameter uM is changed from uM = 10 by 10
up to uM = 100; and uth values are chosen so that ρ changes
by 0.1 from 0 to 0.8. Note that possible values of ρ is limited
because both uM and uth are integers. All data in Fig. 2 are
plotted using linear midpoint interpolation.

A. Oscillation probability

We define the oscillation probability of a given parameter
set {uM,ρ,L} as follows. For each simulation run with
the initial condition described above, we check if after
tmax(=10 000) time steps there are sustained dynamics, namely
if S := ∑

i∈O ui(tmax) > 0, where O represents receiver nodes.
Note that if

∑
i∈O ui(t) = 0 at some t = t∗, then there is no

further dynamics: ui(t) = 0 for ∀i and t > t∗. If, repeating
this procedure for all L initial conditions, there is at least
one initial condition that satisfies S > 0, the sample is judged
to be oscillatory. Finally, the oscillation probability of a
given parameter set is defined as the proportion of oscillatory
samples to all K samples.

Figure 2(a) shows the oscillation probability as a function
of uM and ρ, with L = 100. For a fixed ρ value, the oscillation
probability first increases as uM increases and then decreases,
and the oscillatory region becomes narrow as ρ increases.

Sustained dynamics can be periodic oscillations or complex
oscillations; the latter case can be multiperiodic oscillations,
chaotic oscillations, or long transient dynamics, but in this
work we do not distinguish them. Figure 2(b) shows the
probability of periodic oscillations. Here we can discern two
band regions with high probabilities forming an inverted λ

shape.
Comparing Figs. 2(a) and 2(b), we see that the low

probability region of Fig. 2(a) are accounted for by the
left and the right bands of λ, and thus can be explained
by periodic oscillations, while the inner region with high
oscillation probabilities mainly exhibit complex dynamics.
The region of complex dynamics partly overlaps with the
two band regions: Depending on different samples or different
initial conditions, the same set of parameters can exhibit both
periodic oscillations and complex dynamics.

This suggests that the oscillatory region can be divided
into three regions, namely the left band region, the right
band region, and the inner region between the two bands,
each of which shows distinct dynamics indicated by statistical
properties as shown below.

B. Active nodes

We define active nodes as those whose activities last at t =
tmax. More precisely, we call cell i active if

∑tmax
t=tmax/2 ui(t) �= 0.

The active nodes are further classified into two: If an active
node induces sustained dynamics of the whole system when
chosen as an initial condition, we call it a master node;
otherwise, we call it a slave node. Note that there can be
nonactive nodes that can still induce sustained dynamics of the
whole system. Such nodes are not counted as master nodes.

Difference between master and slave nodes will be illu-
minated when we consider an effective network consisting
of local waves and nonlocal activations that are relevant
to sustained dynamics. By definition, slave nodes in this
network have only incoming links: In other words, slave
nodes are passive player in this sustained dynamics. On
the other hand, master nodes have both incoming links and
outgoing links in this effective network. Note that those
which have only outgoing links are the nodes which can
induce sustained dynamics yet still are itself nonactive nodes.
Dynamics induced by such nodes can also be induced by
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FIG. 2. Phase diagram of sustained dynamics with L = 100 nonlocal links in the parameter space of uM and ρ = uth/uM . (a) Oscillation
probability defined as the proportion of oscillatory samples of randomly distributed L links to all samples. (b) Probability of periodic oscillations.
(c) Number of master nodes. (d) Number of slave nodes. (e) Oscillation periods Tper for active nodes, normalized by the refractory time uM .
(f) Degree of synchronization σ for active nodes. In (c), (d), (e), and (f), values are averaged over all link distribution samples and all initial
conditions with which sustained oscillations are observed.

directly perturbing the target nodes of these nodes, and our
definition of master nodes exclude such nodes. Thus, master
nodes defined in this way can be considered as organizing
centers, and the sum of master and slave nodes (namely
the total active nodes) determine the size of the sustained
dynamics.

Figures 2(c) and 2(d) show these two types of active nodes,
averaged over ensembles of all samples and initial conditions
that show oscillatory dynamics. The two band regions have
small number of master nodes, while the inner regions have
many master nodes. Slave nodes are scarce in the inner region
and rich in the right band region. In the left band region the
total number of active nodes is small.

C. Oscillation period and coherence

Let A be the set of active nodes and Ti the set of all time
moments when an active node i gets nonlocally activated in
the time range [tmax/2,tmax]. Then the oscillation period T (i)

per
of receiver node i is defined as the average of time intervals
in Ti , and the oscillation period of the whole system Tper is
defined as the average of T (i)

per over A.
Using these quantities, the degree of synchronization σ for

the activity of the active nodes is defined as

σ =
∣∣∣∣∣∣

1

Z

∑
i∈A

∑
t∈Ti

exp

(
2πit

Tper

)∣∣∣∣∣∣, (10)

where Z := ∑
i∈A

∑
t∈Ti

1 is a normalization constant. The
average 〈σ 〉 for a given parameter set is calculated over all
samples and initial conditions that show oscillatory dynamics;

if there is no oscillatory sample, this value is set to zero. The
average period 〈Tper〉 is calculated in the same manner.

Figure 2(e) shows the average oscillation period normalized
by the refractory time uM . The observed period falls within the
range [uM,4uM ], and it tends to be large when the oscillation
probability is large, indicating that this region tends to form
longer and more complex cycles of active nodes. Indeed, since
the period of two-link cycles is less than 2(1 − ρ)uM according
to Eq. (8), cycles with more than two links must be involved
in oscillations in the long-period region.

Figure 2(f) shows the degree of synchronization. The two
band regions have nonzero 〈σ 〉 values, while the most part
of the inner region has vanishingly small values. The higher
values in the right region indicates that oscillations are more
coherent there. There is a region above the right band where
〈σ 〉 is particularly high, although the oscillation probability
itself is quite small there. It is also noticeable that 〈σ 〉 values
inversely correlate with the number of master nodes and that
the high 〈σ 〉 region partially overlaps with high-slave node
region, indicating that synchronization is observed when a
small number of active nodes dominate the entire system.

D. Three oscillation regimes

From the above observations, we can clearly discern three
regions with different dynamical properties, as shown in Fig. 3.

In the left band region, the oscillation probability is rela-
tively small, and the observed dynamics are mainly periodic
[Fig. 3(a)]. Here small number of active nodes are involved,
and the total activity of active receiver nodes are only slightly
coherent, and this slight coherence can be explained by a
small number of unevenly distributed signals. Therefore, it
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FIG. 3. Three typical examples of sustained dynamics for
L= 100 contained in the phase diagram of Fig. 2: Broken lines rep-
resent the activity of a selected active node, and solid lines represent
the average over all active nodes. (a) Incoherent periodic oscillations:
uM = 20, ρ = 0.2; (b) complex oscillations: uM = 50, ρ = 0; (c)
coherent periodic oscillations: uM = 90, ρ = 0.2.

is expected that in this region a small number of oscillatory
cycles are formed and their dynamics are independent of each
other.

In the right band region, which is also characterized by
periodic oscillations with small probabilities, a few master
nodes govern many slave nodes and the resulting activity is
more coherent [Fig. 3(c)], suggesting the existence of a small
number of interacting oscillatory cycles.

The inner region has high oscillation probability, the
observed dynamics being complex with longer periods and
incoherent activities [Fig. 3(b)], which, together with the fact
that most of the active nodes are master nodes, indicates that
dynamics are generated by many interdependent active nodes.
Note that the large-uM side of this region is characterized
by the existence of long transient times even when sustained
oscillations are not observed (data not shown), another
indication that many active nodes interact with each other.
Also it should be noted that the region of the complex dynamics
overlaps with both the left and the right bands.

Hence, what we typically observe in a statistical sense
as increasing uM for fixed ρ is a transition from incoherent
periodic oscillations through complex oscillations to synchro-
nized periodic oscillations. The same transition pattern is
found when L increases for a certain range of ρ: Since the
total oscillation probability has a unimodal shape [Fig. 2(a)],
we can define an oscillation boundary inside which the
oscillation probability is higher than a certain value p∗(=0.2).
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FIG. 4. Oscillation boundaries defined as the contour of the
oscillation probability equal to 0.2, for different L values indicated
adjacent to each curve. The curve for L = 100 corresponds to data in
Fig. 2(a), and all other curves are calculated by performing the same
numerical simulations as in Fig. 2(a) with different L values.

As shown in Fig. 4, the oscillation boundary shifts in the
small-uM direction as L increases, with the inverted λ structure
maintained for large L values.

V. CALCULATION OF OSCILLATION PROBABILITY

As observed above, incoherent periodic oscillations are
typically observed in the small-uM region for a fixed ρ,
and oscillatory cycles are expected to behave independently.
In such cases the oscillation probability can be analytically
treated. Below, first we calculate the oscillation probability of
individual oscillatory cycles and then consider the oscillation
probability of the whole system.

A. The two-link cycle

Let us rescale the length scale by the system size N

so that the system is now [0,1] × [0,1]. For large N , the
distance can be treated as continuous, and a normalized
parameter z := uM/N can also be treated as continuous. To
make the following analysis easier, we restrict the range of
the parameter uM within 0 � uM � N/2, or equivalently z

within 0 � z � 1/2. Since we have assumed that links are
distributed at random, the probability density D(r) of the
distance r between two randomly picked up nodes are given
by

D(r) =
{

4r r < 1
2 ,

4(1 − r) r � 1
2 .

(11)

Here the periodic boundaries are taken into account.
Suppose that there are only two links in the system. The

probability that the two links exhibit oscillations, denoted by
p(2), is obtained as the probability that the distances of the two
nodes fall into the area determined by Eqs. (5), (6), and (7):

p(2)(z,ρ) =
∫

�(2)
dz1dz2dwD(z1)D(z2)D(w), (12)

022213-5



KOBAYASHI, KITAHATA, AND NAGAYAMA PHYSICAL REVIEW E 96, 022213 (2017)

where �(2) is determined by Eqs. (5), (6), and (7), rewritten in
terms of normalized distances z1 := x1/N, z2 := x2/N , and
w := y/N . Performing the integration, we obtain

p(2)(z,ρ) = a(ρ)z4 − b(ρ)z6, (13)

where

a(ρ) = 2(1 − 2ρ)2(5 − 4ρ)

3
, (14)

b(ρ) = (1 − 2ρ)2(49 − 124ρ + 108ρ2 − 32ρ3)

10
, (15)

which are positive for 0 � ρ < 1
2 and vanish at ρ = 1

2 . Since
0 < z < 1

2 , the second term of Eq. (13), which corresponds
to the diagonal suppression, is a higher order correction that
decreases the oscillation probability.

B. The n-link cycle

Now let us consider n links arranged in an cyclic order.
It becomes a complicated task to compute the oscillation
probability of the n-link cycle p(n)(z,ρ). Here we focus only
on the lowest order of z for each n, which is obtained by
neglecting diagonal suppression.

An oscillatory n-link cycle can be obtained when (normal-
ized) distances between a receiver node of one link and the
sender node of the next link, denoted by zi (i = 1, . . . ,n),
satisfy the following conditions:

zi < (1 − ρ)z for ∀i = 1, · · · ,n, (16)

and

z1 + · · · + zn � z. (17)

This is a generalization of the condition for the two-link cycle
with diagonal suppressions neglected. From this it follows that
the n-link cycle has a nonzero oscillation probability only if

ρ <
n − 1

n
. (18)

Thus, even when 2-cycles ceases to oscillate at ρ = 1/2, larger
cycles with n > 2 can still be oscillatory, which accounts
for nonzero probabilities found in the region of ρ > 1/2 in
Fig. 2(a).

The lowest-order oscillation probability p
(n)
0 (z,ρ) is then

given by

p
(n)
0 (z,ρ) =

∫
�

(n)
0

dz1 · · · dznD(z1) · · · D(zn)

= an(ρ)z2n, (19)

where �
(n)
0 is the region defined by Eqs. (16) and (17).

Although it is difficult to obtain analytical expression of an(ρ)
for general ρ, the integration can be performed when ρ < 1/2,
which yields

an(ρ) = 2n(1 − ρ)2n

− 4n

(2n)!
{1 − n[2n − (2n − 1)ρ]ρ2n−1}. (20)

As in the case of n = 2, neglecting diagonal suppressions
implies the overestimation of the oscillation probability.

Roughly speaking, each local connection in a cycle contributes
to the overall oscillation probability by a factor of O(z2),
while each diagonal suppression contributes to it by 1 − O(z2).
Therefore, the oscillation probability is given at the lowest
order by O(z2n), and the diagonal suppression can be treated
as a higher-order correction of order O(z2n+2).

C. Oscillation probability of the whole system
with L nonlocal links

Now consider the oscillation probability of the whole
system when L links are randomly provided. Under the
present assumption that individual oscillatory cycles behave
independently, the whole system is oscillatory if at least
one oscillatory cycle of size n � 2 is formed. Considering
that the probability of n-cycle oscillations is O(z2n), one
might be tempted to think that the contribution from large
cycles are neglected. However, such large cycles cannot be
neglected in the case of large L because of a large number
of possible combinations of links to form cycles: Since there
are c(L,m) = (m − 1)!

(
L

m

)
ways of forming m-cycles from L

links, the oscillation probability of the whole system, denoted
by ptot

L (z,ρ), is written as

ptot
L (z,ρ) = 1 −

L∏
m=2

[1 − p(m)(z,ρ)]c(L,m). (21)

Figure 5(a) shows oscillation probability as a function of
z = uM/N for different L values with ρ = 0, where theoretical
curves are given by Eq. (21) with p(m) approximated by p

(m)
0

[Eqs. (19) and (20)] except for m = 2. For small uM they
show good agreement with numerical data. In particular, better
agreement is achieved for larger L. We have numerically con-
firmed that in Eq. (21) cycles with m � 4 make nonnegligible
contributions to the overall oscillation probability for large L.

For small z, ptot
L (z,ρ) is approximated by

ptot
L (z,ρ) =

L∑
m=2

c(L,m)p(m)(z,ρ). (22)

In particular, for large L, there exists a range of z such
that only the first several terms satisfying m 	 L contribute
to the sum. In this case the approximation c(L,m)p(m) ≈
(Lm/m)am(ρ)z2m is justified and the L-dependence of the
upper bound of the summation can be neglected. This means
that ptot

L can be expressed using some function φ as

ptot
L (z,ρ) = φ(L1/2z,ρ). (23)

Although this relationship holds only for small z, the scaling
itself is valid for a wider range: For a given ρ value, numerical
data with different values of L from L = 10 to L = 1000
accumulates on the same theoretical curve of ptot

L (z,ρ) when
plotted as a function of L1/2z, as shown in Fig. 5(b). This
scaling implies that sustained dynamics of the system can be
expected when L1/2z = O(1), or u2

M/N2 = O(1/L), which
can be interpreted as the probability of finding at least one link
in the vicinity of the effective range of one node, whose area
is approximately O(u2

M ).
There are two reasons for deviation of numerical data from

the theoretical curves. One is the approximation ignoring
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FIG. 5. (a) Oscillation probability as a function of z = uM/N for
ρ = 0 with different L values. Circles are numerical data and solid
curves are theoretical prediction given by ptot

L (z,ρ). (b) Oscillation
probability as a function of L1/2z for three different ρ values, for each
of which data for different L values from L = 10 to L = 1000 are
plotted. Solid curves are given by ptot

L (z,ρ), where for each ρ value
only one curve with L = 1000 is presented: For each ρ value, curves
of ptot

L (z,ρ) with different L values converge to one curve as L → ∞
when plotted as a function of L1/2z, and for L � 10 they are almost
indistinguishable. For each parameter set, the oscillation probability
is calculated in the same way as in Fig. 2(a).

diagonal suppressions, which accounts for underestimation
of oscillation probabilities in Fig. 5(a). Since this correction
becomes effective for large uM , it does not affect the system
with large L, where ptot

L reaches unity for small uM .
If z becomes large, or if L becomes large with fixed z, the

decrease of the oscillation probability becomes prominent, as
shown in Figs. 5(b) and 2(a). In these cases, it becomes likely
that links consisting of one oscillatory cycle are also members
of other cycles, and their interactions cannot be neglected.

D. Interference of cycles

If more than one oscillatory cycle are interfering with each
other, the one with the shortest oscillation period survives, so
that the sustained dynamics of the whole system persist. But
an oscillatory cycle is not only affected by other oscillatory
cycles: a different kind of cycle must also be taken into
account, namely the cycles that satisfy the condition for local
connections [Eq. (16)] but not the condition for the recovery
from the refractory time [Eq. (17)]. When a receiver node of
such cycles is activated, a chain of activation events circulates
and stops at the first activated nodes. Such cycles can be called
excitable cycles.

If a link in an oscillatory cycle is also a member of an
excitable cycle, it is possible that excitable cycles suppress
activation of the receiver node of that link. Therefore their
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FIG. 6. Conditional probability of the formation of an excitable
n-cycle when n links form either an oscillatory or an excitable cycle,
given by q

(n)
0 /[p(n)

0 + q
(n)
0 ], for n = 2, 3, and 4.

interactions result in the decrease of the oscillation probability.
Furthermore, if several oscillatory cycles are interacting as
described above, suppression of the cycle with the shortest
period among them by an excitable cycle may lead to
reactivation of the second shortest oscillatory cycle previously
hindered by the shortest one, and the resulting dynamics can be
complex. This accounts for the observed complex oscillations
in the middle range.

The condition for the formation of an excitable cycle is at
the lowest order of z is given by Eq. (16) and

z1 + · · · + zn < z. (24)

Then the probability of having an excitable cycle with n links,
denoted by q

(n)
0 , is given by (again for ρ < 1/2)

q
(n)
0 =

∫ (1−ρ)z

0
dz1 · · ·

∫ (1−ρ)z

0
dznD(z1) · · · D(zn) − p

(n)
0

= 2n(1 − ρ)2nz2n − p
(n)
0 . (25)

Thus, as z increases, not only oscillatory cycles but excitable
cycles tend to form. As shown in Fig. 6, when a cycle of
size n is formed, the probability that it is not oscillatory but
excitable becomes larger with smaller n and larger ρ. Also,
since the number of possible link combinations increases as
L, the number of excitable cycles also increases, and it is
more and more difficult for oscillatory cycles to find a place
that is outside of the suppression range of excitable cycles.
These facts account for ρ dependence of the right side of the
oscillation boundary and its leftward shift as the increase of L

in Fig. 4.
Such interactions are also responsible for coherent oscilla-

tions with small probabilities. Since there are many interacting
cycles in these cases, most of the space is covered with the
suppression range of oscillatory and excitable cycles. As a
result, either oscillation cannot survive or only a few master
nodes with the same oscillation period survive, which can
participate in coherent oscillations.
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VI. DISCUSSIONS

In a model system with a uniform and finite-range excitation
wave, we have found sustained oscillations generated by
oscillatory cycles made of a closed chain of local waves and
nonlocal activation links. Three distinct regions of sustained
dynamics, namely incoherent periodic oscillations, complex
oscillations, and coherent periodic oscillations, can be ob-
served in this order when the wave range or the nonlocal link
density is increased. This transition of dynamics is understood
as the increased appearance of oscillatory cycles and then
interactions among oscillatory and excitable cycles.

This model can be regarded as a simplified epidermal
system: cell grids correspond to layers of epidermal cells,
and sender and receiver nodes connected by a link correspond
to branching tips of a nerve fiber embedded in the epidermal
layers. In epidermis, the propagation range of calcium waves in
epidermal cells depends on stimulation intensity, and sustained
local excitations are also observed when strong stimulation is
given [22]. On the other hand, the nerve fibers do behave
as usual excitable systems. A sender end of a branched fiber
gets stimulated by excited epidermal cells and sends a signal
to the corresponding receiver end, where it releases some
peptide that induce excitation of neighboring epidermal cells
[20]. Hence, epidermal system is considered as a complex of
network-connected excitable units and weakly excitable media
with finite interaction ranges.

Since the local wave is uniform within its propagation
range, all nodes covered with it are suppressed until it
disappears. Therefore, in our model it would be both un-
interesting and unrealistic to consider too large propagation

ranges, while the cases of short propagation ranges might be
responsible for sustained sensation observed in pathological
epidermal systems [23], where the density of nerve fibers is
not necessarily large but many branchings are found [24],
which provide places for axon reflexes and thereby yield many
nonlocal connections. Indeed, as a more realistic model of
epidermal systems it is possible to construct a continuous
version of the present model, incorporating a model of calcium
propagation in the epidermis [22].

Our results can be compared to previous works of excitable
systems with nonlocal interactions. First of all, our model
does not reduce to an usual excitable system even when we set
the wave propagation range equal to the system size, because
the wave profile is different from a normal excitable wave.
Nevertheless, similar transitions have been observed in these
systems, namely from no dynamics through oscillations to
disappearance of dynamics [14,15]. Our results suggest that
long-range wave propagation is not a prerequisite for such
dynamical behavior.

Dynamical behavior observed in this model can also be
compared to oscillatory gene networks [25], where randomly
connected genes usually show periodic oscillations with basic
oscillatory cycles, while rare networks that are found by
evolutionary engineering show multiperiodic, synchronous pe-
riodic, and chaotic oscillations, which can also be understood
as interaction of oscillatory and excitable cycles.
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