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Generation mechanisms of fundamental rogue wave spatial-temporal structure
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We discuss the generation mechanism of fundamental rogue wave structures in N -component coupled systems,
based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our
analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and
growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one
to predict the rogue wave pattern without the need to solve the N -component coupled nonlinear Schrödinger
equation. Furthermore, our results show that N -component coupled nonlinear Schrödinger systems may possess
N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and
number of fundamental rogue wave structure in other coupled nonlinear systems.
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I. INTRODUCTION

Rogue waves (RWs), including scalar and vector ones,
have been observed in many different physical systems [1–6].
The RWs have some different fundamental spatial-temporal
structures, such as an eye-shaped one, an anti-eye-shaped
one, and a four-petaled one. Scalar RWs usually admit the
eye-shaped one [7–10], while vector RWs can admit anti-
eye-shaped and four-petaled ones [11–17]. The nonlinear
superposition of these fundamental RWs corresponds to high-
order RWs or multiple RWs, which could admit much more
complex structures [18–23]. Therefore, the understanding of
the fundamental RWs is the first step to explain the complex
dynamics of RWs. Present studies have shown that RWs arise
from modulational instability (MI) which is associated with
the growth of perturbations on a plane wave background
[24]. Furthermore, it is found that baseband MI or MI with
resonant perturbations plays an essential role in RW excitations
[25–27], and much effort has been given to the general
nature of the nonlinear stage of MI to understand MI more
systematically [28,29]. However, the underlying mechanisms
to form different spatial-temporal structures of fundamental
RWs have not been clear.

Previous studies of RWs were mainly focused on low-
component systems such as one-, two-, or three-component
systems [8,11–15]. However, in real physical systems, there are
many coupled systems which have high components, such as
five-component (spin-2 spinor Bose-Einstein condensate [30])
or seven-component (spin-3 spinor Bose-Einstein condensate
[31]) ones, and multimode fiber [32]. In comparison with
low-component systems, the dynamical behaviors and relevant
patterns of RWs of high-component systems are less studied,
partly because of the difficulties in solving N -component
coupled nonlinear equations.

In this paper, we discuss the mechanism of fundamental RW
structures in N -component coupled systems through analyzing
an analytical solution of nonlinear Schrödinger equations and
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the related MI dispersion form. We show that the evolution
energy and growth rate of resonant perturbations on a plane
wave background play a dominant role in shaping the basic
patterns of RWs. Due to this mechanism, the N -component
coupled systems can possess N different fundamental patterns
at most. Based on these findings and MI analysis, we propose
a simple method to predict the structures and numbers of
fundamental RWs of a nonlinear system.

II. THE COUPLED NONLINEAR SCHRÖDINGER
EQUATION WITH ARBITRARY COMPONENT NUMBER

Among the models for RW excitations, the nonlinear
Schrödinger equation (NLSE) is one of the most representative
models for its wide applications in many different physical
systems [1], and many RW experiments have suggested that the
rational solutions of the NLSE indeed describe RW phenomena
well [2–6]. Therefore, we consider the following focusing
vector NLSE with arbitrary component number N [33,34]:

iqt + 1
2 qxx + qq†q = 0, (1)

where q = (q1,q2, . . . ,qN )T , and T and † represent the trans-
pose and the Hermite conjugation of a matrix, respectively.
The vector NLSE can be used to describe the evolution of
localized waves in a nonlinear fiber with multimodes [35],
multicomponent Bose-Einstein condensate [36–38], and other
nonlinear coupled systems [1]. The model can be used to
conveniently discuss both scalar NLSE with N = 1 and vector
NLSE with N > 1, which enables us to discuss general
properties for a RW. It has been shown that there are mainly
three RW fundamental structures, such as eye-shaped, anti-
eye-shaped, and four-petaled ones in two- or three-component
cases [12,14,33,39].

III. THE MECHANISM FOR ROGUE WAVE
SPATIAL-TEMPORAL STRUCTURE

To understand the mechanism of fundamental RW struc-
tures, it is meaningful to derive a simple form to describe
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their dynamics. The general form for a fundamental RW with
N components can be followed with the method provided in
[40]. The fundamental RW solution for the above vector NLSE
with arbitrary component number can be presented as

qi = ai

{
1 + 2i(χR + bi)(x + χRt) − 2iχ2

I t − 1

Ai

[
(x + χRt)2 + χ2

I t2 + 1
4χ2

I

] }
eθi , (2)

where Ai = (χR + bi)2 + χ2
I , θi = i[bix + (|a|2 − 1

2b2
i )t]

(|a|2 = ∑N
i=1 a2

i ), i = 1,2, . . . ,N , ai and bi are the ampli-
tude and wave vector of the background in component i,
respectively, χR = Re(χ ), and χI = Im(χ ). χ is a root for
the following equation:

1 +
N∑

i=1

a2
i

(χ + bi)2
= 0, (3)

with Im(χ ) > 0. It is easy to see that the above equation
possesses N pairs of conjugated complex roots provided that
there are N different bi’s and nonzero ai’s. Through analyzing
the extreme points of the RW solution on a spatial-temporal
distribution plane, we find that the value of (χR+bi )2

χ2
I

can be used
to conveniently make a judgment regarding the RW pattern in
NLSE described systems. If (χR+bi )2

χ2
I

� 1
3 , then a fundamental

RW possesses the well-known eye-shaped structure on spatial-
temporal distribution; if (χR+bi )2

χ2
I

� 3, then the RW possesses

an anti-eye-shaped structure; if 1
3 <

(χR+bi )2

χ2
I

< 3, then the RW
admits a four-petaled structure. Each structure of fundamental
RW can be varied with the value changing of (χR+bi )2

χ2
I

. This
enables one to analyze the RW pattern based on a related
solution, but the underlying mechanism for forming different
RW patterns is still obscure.

Previous studies have suggested that MI can be used to un-
derstand RW excitation [25,27]. A spectrum analyzing method
was developed to distinguish RW and breathers generated from
a turbulence [41]. However, the relations between the MI and
RW pattern are still obscure. But these results provide some
hints to solve the above problem. We revisit the standard MI
analysis and obtain a simple form for the MI dispersion relation
[25]. This enables us to obtain quantitative relations between
the RW pattern and MI characters. Linear stability analysis is
performed on N -component plane wave backgrounds,

qi[0] = ai exp θi . (4)

The linearized stability of perturbations on the plane wave
solution can be obtained by adding weak perturbations with
Fourier modes. We perturb the seed solution in the following
way:

qi = qi[0][1 + pi(x,t)].

Keeping the linear terms of pi(x,t), the linearized disturbance
equations become

i(pi,t + bipi,x) + 1

2
pi,xx +

N∑
l=1

(pl + p∗
l ) = 0, (5)

i = 1,2, . . . ,N, where superscript ∗ represents the complex
conjugate. The perturbations pi(x,t) are periodical in x

with the period 2L, −L < x � L. Thus, pi has the Fourier
expansion

pi(x,t) = 1

2L

+∞∑
k=−∞

p̂i,ke
iμkx,

where μk = 2πk/2L, p̂i,k = ∫ L

−L
pi(x,t)eiμkxdx. Since the

partial differential equation (PDE) is linear, it is sufficient to
consider

pi(x,t) = p̂i,−ke
−iμkx + p̂i,ke

iμkx (6)

for k �= 0, while for k = 0,

pi(x,t) = ̂pi,0(t).

With the above analysis, we can obtain the MI analysis for the
periodical perturbation. We give the judging criteria for k �= 0.
Based on the above Eqs. (5) and (6), we can set

p̂i,k = eiμk�ktpi,k, p̂i,−k = e−iμk�
∗
k tp∗

i,−k,

where �k is a complex number. Then we obtain the following
equation:

KY = 0, (7)

where

K = diag
[(−�k − b1 − 1

2μk

)
μk,

(−�k + b1 − 1
2μk

)
μk,

. . . ,
(−�k − bN − 1

2μk

)
μk,(−�k + bN − 1

2μk

)
μk

] + H
(
a2

1,a
2
1, . . . ,a

2
N,a2

N

)
,

H = (1,1, . . . ,1,1)T, Y = (
p1,k, p1,−k, . . . ,pN,k, pN,−k

)T
.

The determinant of matrix K is

det(K) = μ2N
k

N∑
l=1

[
1

4
μ2

k − (�k + bl)
2

]2

×
[

1 +
N∑

l=1

a2
l

(�k + bl)2 − 1
4μ2

k

]
.

To let the vector Y have nonzero solution, the determinant
det(K) must be equal to zero, which is the dispersion relation
for linearized disturbance:

1 +
N∑

l=1

a2
l

(�k + bl)2 − 1
4μ2

k

= 0. (8)

For k = 0, we then obtain

d

dt
Re(p̂i,0) =0,

d

dt
Im(p̂i,0) =2

N∑
l=1

a2
l Re(p̂i,0).

It is obvious that p̂i,0 = αi + iβi t , where αi and βi are
some undetermined real parameters. Thus we know that this
perturbation is instable. The usual way to avoid this instability
is choosing

∫ L

−L
pi(x,0)dx = 0.

In this work, to study the localized perturbation, we use the
limit technique through taking limit μk → 0, i.e., L → ∞.
Then the above Fourier series becomes Fourier transformation.
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However, to establish the relation with the RW solution, we
still use the denotation of the Fourier series. We have shown
that RW comes from the resonance perturbation in the MI
regime [27]. Resonance perturbation also means that the limit
of perturbation wave vector μk → 0 is taken to simplify
the dispersion relation [42]. The final simplified dispersion
relation is

1 +
N∑

i=1

a2
i

(�k + bi)2
= 0, (9)

which agrees precisely with the equation of χ determining the
fundamental RW pattern (3).

Im[�k] denotes the growth rate of a perturbation and
Re[�k] denotes the evolution energy of the perturbation. One
can see that the parameters χ and �k satisfy an identical equa-
tion (3) or (9). The dispersion form for perturbations �k can
be used to know χR and χI directly for certain backgrounds,
namely, χ = �k . This is an equation correspondence, which
is distinctive from the inequation correspondence for RW ex-
istence condition and baseband MI [25]. The value of (χR+bi )2

χ2
I

can be used to conveniently make a judgment regarding the RW
pattern in NLSE described systems. Obviously, if Im[�k] = 0,
there will be no MI character, and the corresponding relation
χI = 0 makes the RW solution meaningless. This character
agrees well with the MI mechanism for RW in previous studies
[25,27]. In this way, the linear stability analysis on plane wave
backgrounds provides us with direct information for the RW
pattern.

This enables us to explain why the scalar NLSE always
admits an eye-shaped pattern for a fundamental RW. For a
scalar NLSE, there is only one component for which the
background amplitude is denoted by a and the wave vector
is denoted by b. Then the dispersion relation gives us the
dispersion form �k = −b + a i = χ . The (χR+b)2

χ2
I

= 0 will

always be smaller than 1
3 , which means that the fundamental

RW for a scalar NLSE is always an eye-shaped one. Similar
calculations can be used to explain why the anti-eye-shaped
RW and four-petaled RW exist for vector RWs [14–17]. The
previous studies indicated that a RW just exists in the cases
with Im[�k] �= 0. But the RW pattern must be observed numer-
ically or experimentally. Here we report that the parameters
Re[�k] and Im[�k] can provide the fundamental RW pattern
type directly on certain backgrounds for NLSE described
systems. Namely, the evolution energy value and growth rate
of a resonant perturbation on a certain plane wave background
determine the structure of a fundamental RW. The results
allow one to predict the RW pattern and even the number
of fundamental RWs from linear stability analysis on a plane
wave background, without the need to solve the vector NLSE.
This is the main result of this paper.

IV. PREDICT ROGUE WAVE PATTERN BASED
ON DISPERSION FORMS

The quantitative relation between the RW and MI provides
possibilities to predict the RW pattern based on the dispersion
form of linear stability analysis. The above equation (3)
possesses N pairs of conjugated complex roots, which

FIG. 1. The rogue wave patterns in the third component for
(a) five-component case and (b) six-component coupled case. It
is seen that there are two anti-eye-shaped rogue waves, two four-
petaled ones, and one eye-shaped one in (a). There are four
anti-eye-shaped ones, one eye-shaped one, and one four-petaled
one in (b). The anti-eye-shaped rogue waves are a bit different
from each other. The results agree precisely with the patterns
predicted by modulational instability analysis. Parameters: (a)
ai = 1, b1 = −2, b2 = −1, b3 = 0, b4 = 1, b5 = 2, x1 = −20, x2 =
−10, x3 = 0, x4 = 10, x5 = 20, ti = 0, (i = 1,2,3,4,5); (b) ai = 1,

b1 = −3, b2 = −2, b3 = −1, b4 = 1, b5 = 2, b6 = 3, x1 = −37.5,

x2 = −22.5, x3 = −7.5, x4 = 7.5, x5 = 22.5, x6 = 37.5, ti = 0
(i = 1,2,3,4,5,6).

means there are N different fundamental RW patterns.
Each branch determines one fundamental structure. For
an example, we show how to do this in a five-component
case. We consider a case in which all five plane wave
background amplitudes are ai = 1, and the wave vectors
are b1 = −2, b2 = −1, b3 = 0, b4 = 1, b5 = 2. For these
backgrounds, we can calculate the dispersion relation directly
and obtain five branches of dispersion relations for �k , namely,
�k(1) ≈ 1.76 + 0.68i, �k(2) ≈ 0.90 + 0.79i,�k(3) ≈ 0.79i,

�k(4) ≈ −0.90 + 0.79i, �k(5) ≈ −1.76 + 0.68i. The real
part and imaginary part of �k can be used to make a judgment
regarding the RW patterns by combing the general form
for a fundamental RW. We can know that there are five
patterns in this case. Each pattern can be known from the
above classifying condition for the RW pattern. The results
are shown in an arbitrary one-component case by the exact
RW solutions (the following general multi-RW solution for
a coupled NLSE with arbitrary N components). There are
one eye-shaped, two anti-eye-shaped, and two four-petaled
RWs in the third component for the five-component coupled
case [Fig. 1(a)]. The results indicate that the dispersion form
indeed could be used to predict the RW pattern. It should
be pointed out that several RWs belonging to one type of
fundamental RW pattern can still be distinctive from each
other. This can be validated by direct analysis of them. A
similar process can be done for many other cases [Fig. 1(b) for
a six-component case]. A double RW and triple RW have been
obtained in two-component and three-component coupled
systems for several years [12,14,33], but the underlying
reasons for them have not been explained. The results here
can be used to explain them directly. Explicitly, the two or
three RWs come from the two or three branches of the MI
dispersion form. Next, we present a multi-RW solution of
the vector NLSE with arbitrary N components, which can be
used to conveniently observe the dynamics of fundamental
RWs and their nonlinear superposition in NLSE described
systems and support the above main results of this paper.
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V. M-ROGUE WAVE FOR THE VECTOR NLSE

The soliton solution and even the multisoliton solution on
a zero background of vector NLSE have been widely derived
[43–45]. RWs on a nonzero background have been derived
for up to N = 3 components. We give a general formula for
fundamental RWs and their nonlinear superposition in the N -
component case. To obtain general M-RW solutions for the
vector NLSE, we choose a general plane wave solution (4). In
this same way as for deriving a nonlinear wave solution through
Darboux transformation [46,47], we obtain the following M-
RW solution by the generalized Darboux transformation with
the formal series technique proposed in [40]:

qi = ai

[
det(F [i])

det(F )

]
eθi , (10)

where

F = (Fk,j )1�k,j�M, F [i] = (
F

[i]
k,j

)
1�k,j�M

,

Fk,j = 1

χ∗
k − χj

[
XjX

∗
k − i(Xj + X∗

k )

χ∗
k − χj

− 2

(χ∗
k − χj )2

]
,

F
[i]
k,j = 1

χ∗
k − χj

{(
iXj − 1

χj + bi

)(
−iX∗

k + 1

χ∗
k + bi

)

+
−i(Xj + X∗

k ) + 1
χ∗

k +bi
+ 1

χj +bi

χ∗
k − χj

− 2

(χ∗
k − χj )2

}
,

M � N , Xj = x − xj + χj (t − tj ) − 1
2Re(χj ) , xj and tj are

real constants, and χj satisfies the equation

1 +
N∑

i=1

a2
i

(χj + bi)2
= 0, (11)

with Im(χj ) > 0. It is easy to see that the above equation
possesses N pairs of conjugated complex roots provided that
there are N different bi and nonzero ai . The N pairs of
conjugated complex roots correspond to N branches of MI
dispersion forms. This means that N different RW patterns
correspond to N branches of MI dispersion forms. It should be
emphasized that the maximum number of fundamental RWs is
N in the N -component case, and the number can be other
integer values smaller than N for some degenerate cases.
The M-RW is a multi-RW solution, which is a nonlinear
superposition of different fundamental RWs. It is different
from high-order RW solutions which are nonlinear iterations
from an identical fundamental RW. With the high-order
expansion for the related parameters, the general high-order
RW solutions can be constructed exactly [48].

The numbers of vector RWs in a temporal-spatial distri-
bution plane are different from the ones in scalar systems.
We have demonstrated that two or four fundamental RWs
can emerge on the distribution plane [12,39], in contrast
to the nth-order RWs of scalar NLSE for which there are
merely n(n + 1)/2 eye-shaped ones or their superposition
forms [18,19,21,49,50]. Then, how many different numbers
can exist on a spatial-temporal distribution plane for vector
RWs? Through the above RW solution, one can prove that
there are N fundamental RWs for the N -component NLSE at
most. For example, there are one eye-shaped, one four-petaled,

and four anti-eye-shaped RWs in the third component for the
six-component coupled case [Fig. 1(b)]. In particular, the six
RWs here belong to a multi-RW, which is distinctive from the
high-order RWs. The third-order RW for scalar NLSE also
admits six RWs, but the six RWs always admit an eye-shaped
one. Moreover, the six RWs here admit more freedom than
the high-order scalar RWs; the location of each RW can be
changed separately. Therefore, we call these types of RWs
as multi-RWs to make them distinct from the high-order ones.
The method can be used to generate high-order RWs. A general
form for high-order RW solutions is presented in Ref. [48].
Since we mainly intend to explain the mechanism of the
fundamental RW structure in this paper, the high-order RW
solutions are not presented in detail.

VI. POSSIBILITIES TO TEST THE THEORETICAL
RESULTS IN EXPERIMENTS

The MI analysis can be used to predict the RW pattern
in an N -component coupled system, which is supported by
exact solutions in the above discussions. However, a RW
can also be observed from many different initial perturbation
conditions. Recent studies indicate that the RW comes from
MI with resonance perturbations or baseband MI [25–27]. It
should be noted that there have been some important works that
discuss the robust property against perturbation and nonlinear
MI [29,51–53]. Very recently, the orbital stability and spectral
stability for the classical RW solutions were discussed well
in [54,55], respectively. These results further disclose and
enrich the instability property for RWs. The RW pattern does
not depend on the profile of initial perturbations and it is
determined by the MI characters of the nonlinear systems.
Therefore, eye-shaped RWs or breathers have been observed
from many different initial conditions [24,56,57]. Then, we
simulate the evolution numerically from the initial conditions
given by the exact solution with parameter deviations in the
N = 3 components case, to show that N fundamental RWs
come from the N branches of MI dispersion forms. There
are three branches of MI dispersion forms, which means
there are three different patterns in this case. The pattern
can be predicted by the linear MI dispersion form. Numerical
simulations suggest that the RW patterns are robust against
weak parameter derivations. As an example, we choose one
branch of the MI dispersion form for which three fundamental
RW patterns emerge in the three-component case separately.
With aj = 1 (j = 1,2,3), b1 = 1, b2 = 0, and b3 = −1, an
anti-eye-shaped RW emerges in the q1 component, a four-
petaled RW emerges in the q2 component, and an eye-shaped
RW emerges in the q3 component. The numerical evolution
from the ideal initial condition given by the exact solution
(2) with χ = χ1 ≡ (1 + i)

√
2/2 at t = −3 is shown in the

left column in Fig. 2. We exhibit the numeric evolution of
the initial condition given by an exact one with parameter
deviations χ = χ1 + rand(1)/80, where rand(1) is random
complex numbers with norm less than 1, shown in the right
column in Fig. 2 . It is shown that the RW patterns are indeed
robust against parameter deviations.

Furthermore, we perform the numerical evolution of the
ideal initial data with Gaussian white noises to test the
robustness of RW signals. We use the awgn function with the
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FIG. 2. The numerical stability test of the rogue wave against
parameter deviations in a three-component case. The numerical
evolution from the ideal initial condition given by the exact solution
at t = −3 is shown in the left columns. The results with parameter
deviation are shown in the right columns. The figures in the ith row
represent the density plot of |qi | (i = 1,2,3), (a), (b) |q1|; (c), (d) |q2|;
(e), (f) |q3|. It is shown that rogue waves are stable against parameter
deviations.

signal to noise ratio 100 using MATLAB to achieve the noise, and
the initial data are given by the exact solution at t = −3 (as the
ones in Fig. 2). As shown in Fig. 3, we see that the RWs are still
robust against the weak noises. Additionally, the backgrounds
admit MI, which makes the weak perturbations evolve to be
large amplitude waves. This explains that the large amplitude
periodical waves occur around the time t = 6. But this does

FIG. 3. The numerical evolution from the ideal initial condition
with Gaussian white noises. The three figures represent the density
plot for the three different components (|q1|,|q2|,|q3|) for the three-
component NLSE. It is shown that the rogue wave signals are robust
against the noises.

not affect the spatial-temporal structure of RWs. That is to say,
the exact RW solutions are useful for preparing the initial data
in the experiments even with small deviations. Recently, a dark
RW (anti-eye-shaped RW) was observed in a real experiment
[5] and MI in a vector system was demonstrated in a Manakov
fiber system [6]. The results here have great possibilities to be
checked in nonlinear fibers with two or more modes.

VII. CONCLUSION

In summary, we show that the evolution energy and growth rate of resonant perturbations determine the RW pattern type on
certain backgrounds for NLSE described systems. To understand the quantitative relation more clearly, we discuss the pattern
formation of the Akhmediev breather (AB) since the RW solution is a limit of the AB solution.

The fundamental AB solution can be constructed by the Darboux transformation [46–48], which is represented as follows:

qi = ai

⎛⎜⎜⎝
χ∗ + bi

χ + bi

eωR + χ∗ + bi + α

χ + bi + α
e−ωR − χ∗ + bi

χ + bi + α

2χI e
ωI

2χI − iα
− χ∗ + bi + α

χ + bi

2χI e
−ωI

2χI + iα

2 cosh(ωR) − 2χI e
ωI

2χI − iα
− 2χI e

−ωI

2χI + iα

⎞⎟⎟⎠eθi+ϕi ,

where

eϕi = χ + α + bi

χ∗ + α + bi

, ωR = αχI t, ωI = iα

[
x +

(
χR + α

2

)
t − 1

2χI

]
,
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and the parameter χ = χR + χI i satisfies that

1 +
N∑

i=1

a2
i

(χ + bi)(χ + α + bi)
= 0,

which is the determined equation for the AB solution.
Denoting χ = �k − μk

2 , α = μk , we find that the pairs (χ,α)
and (�k − μk

2 ,μk) satisfy the same Eq. (8). Namely, the
two independent pairs do admit an identical relation. To
understand the obtained quantitative relations, we need to
make the following expansion. Taking t → −∞, we obtain
the asymptotical expansions

qi = aie
θi [1 + 2αχIBie

ωR + o(eωR )],

where

Bi = eωI

(2χI − iα)(χ∗ + α + bi)
− e−ωI

(2χI + iα)(χ + bi)
.

This is exactly the perturbation assumption in linear stability
analysis if the high-order terms are ignored. Thus we answer
why the parameters of the AB solution are consistent with

MI analysis. Letting α → 0, the fundamental AB solution
becomes the fundamental RW solution (2). Naturally, the
dispersion relation reduces into Eq. (3) or Eq. (9). In this
way, we completely explain why the RW solutions are related
with the MI quantitatively.

The number for fundamental RWs in each component can
be N at most for N -component coupled NLSE described
systems. Furthermore, the explicit number and structure of
fundamental RWs can be evaluated by simple MI analysis
results. Possibilities to test the theoretical results are also
discussed. The results here can be extended to a three-wave
resonant system [15,58], scalar NLSE with high-order effects
[59–61], and other nonlinear systems [62–68].
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