PHYSICAL REVIEW E 96, 022205 (2017)

Effects of nonlinear gradient terms on the defect turbulence regime in weakly dissipative systems
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We investigate the behavior of traveling waves in a defect turbulence regime with the periodic boundary
conditions by using the lowest-order complex Ginzburg-Landau equation (CGLE), and we show the effect of the

nonlinear gradient terms in the system. It is found that the nonlinear gradient terms which appear at the same
order as the quintic term can change the behavior of the wave patterns. The presence of the nonlinear gradient
terms can cause major changes in the behavior of the solution. They can be considered like the stabilizing terms.
The system which was initially unstable or chaotic can become stable by including the nonlinear gradient terms.
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I. INTRODUCTION

New theoretical approaches, experimental analyses, and
systematic use of computer science in data processing have
been developed during the past 20 years in the context of
pattern-forming nonequilibrium systems including fields such
as quantum optics, hydrodynamic instabilities, autocatalytic
chemical reactions, and nonlinear oscillators in diverse fields
These give a useful framework of reference to discuss the
formation, selection, and stability properties of nonlinear and
nonequilibrium phenomena [1,2]. For example, it has become
quite clear that hydrodynamic instabilities manifest themselves
in the form of various patterns which vary from the simple to
the complex. Hence a few relatively simple systems, such
as Rayleigh-Bénard, Taylor-Couette, and Bénard-Marangoni
systems, became very popular as prototypes that reveal a rich
variety of complicated behavior in space and time, which can
have both coherent and chaotic components, where nonlinear
theories of dissipative pattern formation in nonequilibrium
systems may easily be tested [1,2].

To model those driven nonlinear systems with dissipation
and dispersion, some prototype of nonlinear evolution equa-
tions has been derived using three approaches. The first class
of prototype equations which describe correctly the dynamics
of the system on long space-time scales near the onset of the
instability is amplitude or envelope equations, which describe
the slowly varying amplitude of a plane wave, and for which the
distance from onset is the expansion parameter. An example is
the cubic complex Ginzburg-Landau (CGL) equation, which
arises as an envelope equation near a forward bifurcation to
traveling waves [3—6]. The other example is the cubic-quintic
CGL equation, which arises near the onset of a weakly inverted
bifurcation associated with traveling waves [7-9]. The second
class of prototype equations for the investigations of pattern-
formation problems can be understood quantitatively in terms
of theoretical models involving nonlinear phase equations,
which describe the slowly varying phase of a plane wave and
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thus provide a welcome test of this theoretical approach well
above the bifurcation where amplitude equations are no longer
applicable. The prototype of a nonlinear phase equation is the
Kuramoto-Sivashinsky equation [10,11]. Sometimes, there is
coupling between amplitude and phase equations. The third
class of prototype equations is order parameter equations,
which contain a phenomenological aspect, and whose use
in the field of pattern formation was pioneered by Swift
and Hohenberg [12]. They are constructed such that they
reduce to the appropriate envelope equation near the onset
of the instability and also reflect the correct symmetry of the
underlying problem.

The cubic and the cubic-quintic CGL equations play
an important role in many branches of physics, such as
Taylor-Couette flow [13-15], Rayleigh-Bénard convection
[3,4], plan Poiseuille flow in fluid systems [16], chemical
disturbances [17], ionization waves in the glow discharge
[18], nonlinear optics [19-23], laser physics [24-29], theory
of phase transitions [30], nonlinear transmission line [31-35],
stick-slip motion [36], Bose-Einstein condensates [37], liquid-
gas interfaces [38], ferromagnets [39,40], and DNA molecular
systems [41]. The one-dimensional cubic and the cubic-quintic
CGL equations possess a rich variety of solutions including
coherent structures such as pulses (solitary waves), fronts
(shock waves), sinks (propagating hole with asymptotic group
velocity negative), sources (propagating hole with asymptotic
group velocity positive), periodic unbounded solution [42-51],
vacuum, periodic and quasiperiodic solutions [52], slowly
varying fully nonlinear wave trains [53], and a transition to
chaos [54-61].

In many applications, there are many ways to generalize the
above amplitude, phase, and order parameter equations, in or-
der to include qualitatively new features, such as higher-order
derivatives, higher-order nonlinearities, differential operators,
symmetry groups, and nonlinear gradient terms, and the
resulting evolution equations are considerably more compli-
cated than the original evolution equations. An interesting
example which contains additional nonlinear gradient terms is
the one-dimensional lower-order complex Ginzburg-Landau
(LOCGL) equation [62-65]. The LOCGL equation which
describes a system exhibiting a subcritical bifurcation to
traveling waves must contain a quintic nonlinearity. At this
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order, it is necessary to include the lower-order nonlinear
gradient terms:

A+ VA =6 +ix)A+ 1 +ic)An + (1 —icy)|APPA
— (1 —ics)|AI"A — q1| A A,
—@lAA — g3 A’ AT, (1)

with g1 = g1, +iqu, g2 = qor +iq2;, and g3 = g3, +igs;.
Here A(x,r) describes the amplitude of extended spatial
patterns. The value ¢ is associated with spatial dispersion,
while ¢3 and cs are associated with nonlinear dispersions.
V is the linear group velocity of the waves. The values g,
q2, and g3 represent coefficients of nonlinear gradient terms.
It has been shown that the nonlinear gradient terms cause
an asymmetry on localized states and change the value and
even the sign of the group velocity with which the localized
states propagate. For large enough values of the nonlinear
gradient terms the localized states become unstable [62-64].
Two of these nonlinear gradient terms, i.e., |A|>A, and AzAi
appear naturally in the asymptotic derivation. A sufficient
condition, |q;; — q3;| < 2, has been proven for the global
existence of solutions to the Cauchy problem of this equation
[66,67]. However, it has been observed that restricted classes of
bounded solutions including traveling waves may exist outside
this parameter range. The last term |A|§A is a local term that
has been introduced to stabilize the solutions of variable size.
This last nonlinear gradient term has significant consequences
on the width of the localized solutions and provides a good
model for the description of turbulent patches in laminar
domains [68]. In addition, in Refs. [69,70] the author also
focused his work in particular on the effect of the gradient term
|A |)2(A, which expresses the advection of the concentration field
by the traveling wave. As shown by Barten et al. [71,72] the
wave generates a concentration current which is antisymmetric
with respect to the midplane of the convection layer.

Since we take the periodic boundary conditions, the
convective term VA, may be transformed away by going into a
moving frame of reference. Also, the parameter x = x, + i x;,
which is proportional to the distance from criticality, can be
taken as real, since the imaginary part can be transformed away
by a simple transformation [73].

The present study extends our previous research into
the spatiotemporal dynamics observed in Fig. 1 by
adding the nonlinear terms to the system. We have chosen to
associate the three nonlinear gradient terms in order to study
their impact in a defect turbulence regime. The effects of the
nonlinear gradient terms are examined by using the indicators
such as the Lyapunov exponent and the energy bifurcation
diagram.

The outline of this paper is as follows: in Sec. I, we give an
analytical approach of the model equation in order determine
the new Benjamin-Feir-Newell condition. In Sec. III, we
detail the effects of the nonlinear gradient terms on the
spatiotemporal dynamics of nonlinear traveling waves. Finally,
concluding remarks are made in Sec. I'V.

II. ANALYTICAL STUDY

In this study, we determine the growth rate A, of which the
nature of the system (stability or instability) depends on its
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FIG. 1. Defect turbulence regime observed for x = 0.6,¢; = 2.5,
¢c3 =0.5,¢5 =1.1,and L = 150, with ¢; = ¢, = g3 = 0.0+ 0.0i.

sign. We determine also the Benjamin-Feir Newell condition
in the case of the LOCGL equation.

In order to investigate how weak and time-dependent per-
turbations evolve along the extended system described by the
LOCGL equation, we consider the following linear-stability
analysis. Equation (1) admits the trivial solution A = 0 and
spatially homogeneous solutions of finite amplitude:

A= Ape™, where |Ao)* =11+ /1+4y), (2

with w = —|Ag|*(c3 — ¢5]Ag|?). The existence of Ag requires
that x, > _Tl for a subcritical bifurcation. The linear stability
of the steady state can be examined by introducing a perturbed
field of the following form:

A(x,t) = Age'[1 + eB(x,1)], 3)

where ¢ < 1. Substituting solution (3) into Eq. (1), we obtain
upon linearization the equation for the perturbed field as
follows:
B, +iwB = x,B + (1 +icy)By
+ Bl Ao’ [2(1 —ic3) — 3(1 — ics)| Aol*]
+1A0* B [(1 —ic3) — 2(1 — ic5)| Agl’]
— |Aol*Bi[(q1r + q2r) + i(q1i + q2i)]
— Aol Bi[(g2r + q3r) +i(q2i +g3)]. (4

The symbol * denotes a complex conjugate. We assume a
general solution of the following form:

B = Bi(t)e™ + By(t)e ™", ®)

where k represents the wave number. One gets a closed system
of equations for B(t) and Bj(t), setting B;(t) Bjope* and
By (t) o< Byge'. After substituting Eq. (5) into Eq. (4), we
obtain the determinant

(@a—=b)—i(c+d)
(e—f+ilg—n

(et f)—i(g+h)|

(@a+b)y+i(c—d) =0 ®
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where

a=x —k*+1Aol*2 — |Ao]) — &,

b = klAol*(qui + q21)s

d= k|A0|2(q1r + 6]2r)7

¢ = o+ k*c; + |Aol*2cs — 3es|Agl?),

e = |Aol*(1 = 2|Ao]?), (7)
and

f = klAol*(qai + g3),
g = klAol*(c3 — 25| Ao ),
h = k|Aol*(q2r + q3r)- 8)

We arrive at the following nonlinear dispersion relation
Ak, Aol?):

Ap— ==k — xr + 140’ @ = 3|41 £ VM =N, (9
where

M = Aol (1 = 2|40 + K {[(q2 + q1,)* + (g2 + q11)*]
—(q2r + @3 )" + (qai + g3)*} + (3 — 2¢5]Ag)],

(a) 25

Re())
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and
N = [0+ c1k* + |Agl*(2c5 — 3es5|Ap/D]. (10)

The negative sign (—) of the square root in Eq. (9) corresponds
to amplitude modes, while the positive sign (+) is for the
phase modes [61]. In the last case, for very large k, the growth
rate is negative and behaves as —k®. So, short wavelength
perturbations are always damped. However, long wavelength
perturbations can grow, destabilizing the original plane-wave
solution. By replacing x, and w in Eq. (9) with the values
given by Eq. (2), we expand it for small k:

Ay = PK> 4 0(kY), (11)
where
u-+v
P=——n— 12
—1+2|Ap)? (12)
with

u=—1+2|A* — ci(—c3 + 25| Ag]?)
+ |A0|2(‘112i - ‘132:' - ‘132r)’
v = 2|Ao|X(quqsi + 923 — @iq1i — q1-q2r)- (13)

If the coefficient P is negative, the system remains stable.
The criterion of the instability is given by

u+v<DO. (14)

(b) 04

0.5 1.5

Ao

0 0.5 1.5

FIG. 2. Variation of (k,A) for x = 0.6,¢c; = 2.5,¢3 = 0.5,¢5 = 1.1, and L = 150, with (a) g = ¢» = g3 = 0.0+ 0.0i, (b) g; = 0.1 +0.1{
andg; = q3 =04+40.4i,and (c) g; = 0.5+ 0.5i and ¢, = g3 = 1.0+ 1.0i.
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t

FIG. 3. Localized pattern energy Q in defect turbulence regime
with g = ¢, = ¢35 = 0.0+ 0.0i.

This condition represents the criterion of Benjamin-Feir-
Newell in the LOCGL equation. Let us remark that if the
nonlinear terms are suppressed, we have the usual criterion of
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FIG. 4. (a) Running wave regime for y = 0.6 ¢; = 0.5+ 0.9i,
q> = 0.6 4+ 0.6i, and g3 = 0.9 + 0.9i. (b) Phase portrait of running
waves.
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the Benjamin-Feir-Newell in the cubic-quintic case given by
1-— c13 — 2|A0|2(1 — C1C5) >0 [61]

In Fig. 2, we plot the (k,A;) curves for different values
of the nonlinear gradient terms. When the nonlinear gradient
values are zero, the system is completely unstable [Fig. 2(a)].
It is obvious that, as the nonlinear gradient terms increase,
the instability region is replaced by the stable region and the
system becomes more and more stable [Figs. 2(b) and 2(c)].

III. NUMERICAL SIMULATIONS

In this section, we introduce some definitions, equations,
and numerical algorithms that are used in order to obtain useful
results that are discussed below.

A. Dynamical indicators

We essentially characterize the different types of dynamical
behavior of the system by the energy function Q and the largest
Lyapunov exponent Ay, The first one is defined by

L

— 1 2
00 = 5 [ AR, (15)

1Al

(a) 500
400
300
200

100

0 015 ‘ 1.5
Re(A)
FIG. 5. Oscillating regime in system for x = 0.6, g; = 1.5+
0.5i,g, = 0.6 + 0.6i,and g3 = 1.5 + 0.9i. (a) Space-time plot of |A|
propagating in one dimension. (b) Phase portrait of wave patterns.
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which is frequently used to characterize nonregular dynamics
in optics [74], localized patterns in fluids, and other physical
systems [75]. The one-dimensional system is assumed to be
of length 2L. In order to check more of the dynamic behavior
of the system and to provide a more quantitative aspect of the
dynamics, we calculate the largest Lyapunov exponent defined
by [76,77]

1 SA(x,t .
Amax = lim | —1In M . with
t—oo | t 118 A, 0l

x=L 172
{/ |8A(x,t)|2dx} , (16)

=L

[18ACx, D

where §A is a small perturbation such as A = Ag + §A, Ag
is the initial value of the amplitude wave. Here, § A(x,0) =
10_4A0, and § A satisfies the linearized evolution equation

994 =J 5A (17
ar ’

with J being the Jacobian matrix of Eq. (1). This num-
ber quantifies how fast the distance between two initially
close trajectories §A of the vector field A either vanishes
exponentially (Apx < 0) or diverges (Aymax > 0). The largest
Lyapunov exponent is the dynamical invariant most easily and

1Al

(a) 500
450

350

=~ 250

150

L
-50 -25 0 25 50
X
(b) [ ]
4 ]
O 4
2 L 4
0 1 1
0 50 100 150
t

FIG. 6. (a) Laminarregime and (b) pattern energy Q, as a function
of time for g, = 1.5+ 0.5 and ¢, = ¢35 = 1.5+ 1.5i.
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0.2 0.4 X 0.6 0.8 1

FIG. 7. (a) Bifurcation diagram of Q,,x and (b) largest Lyapunov
exponent An,y as a function of x,, without nonlinear gradient terms.

accurately estimated from the experimental time series [77].
This method has been extensively used for many different
dynamical systems to quantify chaos [78-82].

In fact, when A,y is positive or negative, the perturbation
of a given trajectory is characterized by an exponential
separation or approach, respectively. Hence, attractors such
as stationary patterns or uniform equilibria are characterized
by negative Any.c. Conversely, complex behaviors such as
chaos and spatiotemporal chaos will exhibit positive Apmax-
Dynamical behaviors whose the largest Lyapunov exponent
is zero correspond to equilibria with invariant directions, such
as periodic or quasiperiodic solutions and nonchaotic attractors
characterized with polynomial growth rate [79].

B. Numerical results

To solve numerically Eq. (1), we use a finite difference
scheme in space and the standard fourth-order Runge-Kutta

0 0.2

-0.02 ‘

0 0.2 04 ) 06 0.8 1

FIG. 8. (a) Bifurcation diagram of Q. and (b) largest Lyapunov
exponent A,y as a function of x,, with ¢; = 0.1 4+ 0.1, g, = 0.2 +
0.2i,and g3 = 0.3 4+ 0.3i.
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FIG. 9. (a) Bifurcation diagram of Q .« and (b) largest Lyapunov
exponent A,y as a function of x,, with ¢; = 0.8 + 0.8, g, = 0.5 +
0.5i, and g3 = 0.7 4+ 0.7i.

algorithm in time [61,83]. The numeric results’ precision
is examined by testing several steps of integration in space
and in time. We have chosen a grid spacing of dx = 0.25
and the typical time step was dt = 0.01. The parameters cy,
c3, and ¢s were taken in a defect turbulence region [61].
The precise nature of the observed dynamics in the system
depends sensitively on the choice of the nonlinear gradient
terms’ values. The main results are given in Figs. 3-10. In
particular, we concentrate the discussion on the influence of
the nonlinear gradient terms. Figure 3 shows the energy as
a function of time corresponding to the defect turbulence
regime. It confirms the chaotic behaviors of the system with
fluctuations which can be observed. By taking into account
the presence of the nonlinear gradient terms, the dynamics of
the system changes. Oscillating patterns are observed in the
domain as is seen in Figs. 4 and 5; the corresponding largest
Lyapunov exponent is zero. Figure 4 shows the presence of the
running waves into the system [84,85]. There are quasiperiodic
states. The motion of waves travel at constant speed and take
one direction, according to their initial condition, and this is
the so-called oriental symmetry breaking. A double periodicity

(a) 1.5

Im(A)
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in time and in space is observed. In Fig. 5, we have another
type of oscillating pattern in a color-coded space-time plot
[see Fig. 5(a)]. After a transient time, the waves propagate
uniformly, with a well-defined wave number and constant
amplitude. We note also the presence of an attractor into the
system which annihilates the wave patterns [Fig. 5(b)].

With the values ¢, g2, and g3 getting larger and larger, the
system is completely stable [see Fig. 6(a)]. The corresponding
energy function observed in Figure 6(b) shows the constant
value of Qn.x Whatever the value of yx,, which confirms the
stability of the system. The drop observed near x = 0 expresses
the fact that the initial condition is a hole.

Figures 7-9 show the largest Lyapunov exponent A, and
the bifurcation diagram of the pattern state as a function of
the control parameter x, for Eq. (1). They allow us to see
clearly how the system changes its dynamical behavior with
the presence of the nonlinear gradient terms.

Figure 7(a), which expresses the case without the nonlinear
gradient terms, is obtained by taking repeatedly the maximum
value of the energy function Q. in a given time interval at
different times (well after the transient is died); this is done
for many different values of the control parameter x,. As can
be seen, the system is briefly stable, and then the instability
is present in the whole system. In fact, if there is a unique
Omax, then the system is stationary or periodic, while for finite
continuous distribution of Q.x values, the behavior is either
quasiperiodic or chaotic.

The Lyapunov exponent shown in Fig. 7(b) indicates the
dynamical behavior of the system and confirms the results.
Figure 8 is obtained for increasing values of the nonlinear
gradient terms. We observe several transitions between regular
and chaotic states. In particular, there is a small stability part of
the system in the range x, € (0.0,0.3). Beyond the point x, =
0.44, the system becomes stable again until the value y, =
0.55, with another bifurcation point at y, = 0.6. On the other
hand, the transition from a regular to a chaotic wave pattern
is flat. In the plot of the Lyapunov exponent [Fig. 8(b)], the
chaotic motions identified are validated by the positive values
of Amax, While the stable region corresponds to the negative
values of Ap,x. For the large value of the nonlinear gradient
terms, the system becomes more and more stable as is seen in
Fig. 9. The phase space trajectory seen in Fig. 10 illustrates
the dynamic behaviors which are visualized at different points

(b) 1.5

-15 -1 -0.5 0.5 1.5

0
Re(A)

FIG. 10. Phase portrait of Fig. 7 showing (a) the chaotic case and (b) the stationary case.
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of the bifurcation diagram of Fig. 8(a). For the value x, = 0.8
in the unstable region, the chaotic motion is obvious as is
seen in Fig. 10(a). The amplitude of the variable accidentally
drops to zero to produce defects. The phase space of Fig. 10(b)
obtained in the stable region shows that all the chaotic motions
are suppressed, and a stationary state is observed.

IV. CONCLUSION

In this paper, we have studied the effects of nonlinear
gradient terms on dissipative systems by using the lowest-order
Ginzburg-Landau equation. First of all, we have calculated

PHYSICAL REVIEW E 96, 022205 (2017)

analytically the parameter regions where wave amplitude can
be stabilized by establishing the new criterion of Benjamin-
Feir-Newell (BFN) for the lowest-order Ginzburg-Landau
equation. We have found that this criterion is not similar to the
one obtained in the cubic-quintic Ginzburg-Landau equation
case.

By considering the wave patterns in the chaotic regions in
particular in a defect turbulence, it was shown that the pres-
ence of the nonlinear gradient terms changes the dynamical
behavior of the system: the chaos disappears progressively in
the domain. The fact that the nonlinear gradient terms can
stabilize the system leads us to conclude that they can be
considered as the stabilizing terms.
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