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The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open
issue in physical and biological systems alike. This calls for studies on the control of synchronization and the
degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic
hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent
moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and
oscillator mobility mutually affect each other. We show that the interplay between the active effects and the
mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range,
nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order
of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These
should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different
reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
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I. INTRODUCTION

The phenomenon of synchronization in which a large
number of microscopic units spontaneously organize them-
selves into displaying cooperative behavior plays an important
role in a wide class of systems, ranging from physics and
biology to ecology, social dynamics, and neurosciences [1,2].
Cooperative behavior in many living systems made of a large
number of living beings can be observed across a range of
biological systems, e.g., a suspension of cells synchronizing
their genetic clocks [3–7] and flashing of fire flies [8], and their
artificial imitations [9]. For instance, when genetic oscillators
that control the expression of a fluorescent protein is inserted
in E. coli bacteria, they can flash at a regular rate [3,10]; when
coupled, a large population of bacteria can flash rhythmically
in a synchronized manner [4,6]. Two other notable relevant
examples are the vertebrate segmentation clock [11] and
oscillating chemical reactions [12].

The collective excitations in a large number of these
nonequilibrium physical, chemical, and biological systems are
in the form of cooperative oscillations of active interacting
elements [13], e.g., chemical oscillators [14–21] and synthetic
genetic oscillators [4], and biologically relevant systems
[22–30]. Spontaneous locking of interacting oscillators to a
common phase [31] leads to synchronization of the oscillators,
a ubiquitous collective behavior [1,2], observed, e.g., in
complex networks of phase oscillators [31,32]. These call for
studies on synchronization of a collection of locally interacting
mobile oscillators. These have been studied extensively, in
particular, in agent-based discrete systems [33–36], where the
network usually consists of a group of interacting moving
oscillators. Equivalently, these model studies may also be
viewed as examples of synchronization in dynamical networks,
where the connectivity between any two oscillators evolves in
time [32,34,37]. Recent studies on agent-based models with
a large number of interacting mobile oscillators in one and
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two dimensions (2D) indicate that increasing the mobility
of the oscillators significantly affects the steady states and
may even lead to global synchronization [33,38]. In addition,
recent works provide evidence in favor of cell movement
promoting synchronization of coupled genetic oscillators
[39,40]. Our work complements these existing studies. General
understanding of how the mobility of the oscillators affects
synchronization (or the lack thereof) in a collection of mobile
oscillators forms the principal motivation of this work.

In this article we focus on the the generic long-wavelength
properties of small fluctuations in a collection of diffusively
mobile, nearly-phase-coherent, noisy out-of-equilibrium os-
cillators in 2D. We introduce a generic active hydrodynamic
theory for such systems. We analyze the broken-symmetry
phase fluctuations of these oscillators in their nearly-phase-
coherent states and examine the general conditions for syn-
chronization. Hydrodynamic approaches are distinguished by
their generality of predictions and have been successfully
applied to the ordered broken-symmetry phases of many
equilibrium and nonequilibrium systems [41,42]. Hydrody-
namic theories are particularly suitable to extract statistical
properties in the limit of large-distance and long-time scales
[41,42]. In order to generalize the scope of our study, we
study a collection of a large number of diffusively mobile
oscillators in the continuum limit, where the local phase and
number density fluctuations can mutually affect each other.
In other words, in a discrete agent-based description, the
agents undergo a persistent random walk that depends on the
local phase fluctuations [43]. The active interplay between
the oscillator phases and the oscillator mobility is shown
to control the degree of phase coherence. This forms the
principal result of this work. Our model provides a generic
long-wavelength description for active mobility-induced syn-
chronization [33,38,44,45] in 2D with the additional feature
that the mobility is affected by local phase fluctuations. We
expect it to be relevant in experiments pertaining to a wide
class of systems, ranging from oscillating chemical reactions
[46–49] in the presence of catalysts to vertebrate segmentation
clocks [11,28,36], oriented live cytoskeletal extracts [24], and
clock synchronization in mobile robots [37], as well as help in

2470-0045/2017/96(2)/022201(10) 022201-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.022201


TIRTHANKAR BANERJEE AND ABHIK BASU PHYSICAL REVIEW E 96, 022201 (2017)

designing new artificial imitations [9]. Our work generalizes
studies on synchronization in a complex dynamical network
[32–34,38,43], where the time evolution of the network is
affected by the oscillator phases.

In order to concentrate on the essential physics of phase
fluctuations and ordering [35], we study the active stochastic
dynamics of a collection of diffusive particles of concentration
c(x,t) in 2D on a rigid substrate, each carrying oscilla-
tors in their nearly-phase-coherent state. The oscillators are
represented by a complex field Z = exp[iφ(x,t)], with unit
amplitude and phase φ at point x and time t , and have
the same internal symmetry as the XY model [50]. In stark
contrast to related two-dimensional equilibrium systems with
XY symmetry, we show that this model displays a wide class
of behaviors, ranging from synchronization with long-range
order (LRO), quasi-long-range order (QLRO), and nearly long-
range order (NLO) to linear instability with desynchronization
and short-range order (SRO), and nonlinear stabilization of
linear instability. These are controlled by the interplay between
active effects and particle diffusivity. In analogy with thermally
excited systems, these regimes with different natures of order
are characterized by the analog of the Debye-Waller factor
∼exp(−�), where � = 〈φ(x,t)2〉 (〈· · · 〉 denotes the average
over the noise distributions) [50,51].1 Here � provides a
measure of order or degree of phase synchronization: For a
given L, where L is the system size, the smaller � is, the higher
the order or the degree of synchronization is. In particular, in
the linearly stable regime and in the limit of fast concentration
relaxation (also called the fast switching regime), � can be
reduced by enhancing (positive) γ , the active damping of phase
fluctuations, with either LRO (finite �) or NLO (� varying as
ln ln L) in the system. For negative γ , linear instability ensues,
implying SRO or desynchronization. Additionally, in some
cases the formation of patterns is predicted. Our work reveals
complex dependences of phase fluctuations of a collection of
moving oscillators on active effects.

The rest of the article is organized as follows. In Sec. II
we construct our model and describe the origin of the active
terms. In Sec. III we discuss our results for both the linear and
nonlinear theories. In Sec. IV we summarize. The Appendixes
contain calculational details to aid the reader.

II. CONSTRUCTION OF THE MODEL EQUATIONS

We consider small fluctuations about a uniform phase-
coherent reference state with a constant concentration c0

and a uniform phase of the oscillators. We now construct
the generic coupled hydrodynamic equations for the two
slow variables: local fluctuations φ(x,t) in the phase and
concentration fluctuations δc(x,t) = c(x,t) − c0. We allow for
advection of φ and c by an incompressible velocity v. The
field φ, being the phase fluctuations in a phase-coherent state,
is a nonconserved broken-symmetry variable, whereas δc

is a conserved density. These considerations, together with
symmetry arguments (invariance under translation, rotation,

1This was originally introduced to describe the depression of the
order parameter from its zero-temperature maximum due to the
thermal fluctuations in the ordered phases; see, e.g., Ref. [50].

and a spatially constant shift φ → φ + const), dictate the
general forms of the equations of φ and δc. The most
general coupled dynamical equations for φ and δc, where they
mutually affect each other, are of the form

∂φ

∂t
+ λ

2
(∇φ)2 + λ1v · ∇φ = �̃(c) + κ∇2φ + θ, (1)

∂δc

∂t
+ λ1v · ∇δc = Dc∇2δc + λ2∇2φ + ∇ · f (2)

in the hydrodynamic limit. The terms λ(∇φ)2 and �̃(c) in
(1) and λ2∇2φ in (2) are active terms, i.e., of nonequilibrium
origin. These are forbidden in equilibrium due to the invariance
of an underlying free-energy functional F under φ → φ +
const. In the present model, this invariance must be demanded
at the level of the equations of motion and hence the above
active terms are permitted in (1) and (2) [52]. In Eq. (1) we have
neglected a subleading cross-coupling term of the form ∼∇2δc

in the hydrodynamic limit. Equations (1) and (2) generalize
the nonconserved relaxational dynamics of the local phase of
the nearly-phase-coherent classical XY model; the parameter
κ > 0 is the analog of the spin stiffness of the classical XY

model [50]. The λ1 terms in (1) and (2) above represent
advection by v and the λ term in (1) is a nonequilibrium
term related to the well-known complex Ginzburg-Landau
model [53,54] or the dissipative Gross-Pitaevskii equation for
a polariton condensate [55]. Expanding about c = c0, we write

�̃(c) = �̃0 + �̃1δc + �̃2(δc)2 + �̃3(δc)3, (3)

neglecting other higher-order terms. The parameters �̃1, �̃2,
and �̃3 can be positive or negative; without any loss of
generality we set �̃1 > 0. The parameters λ, λ1, and κ , in
general, functions of c, upon expanding about c = c0, yield
additional nonlinear terms that are subleading in a scaling
sense (i.e., leave the scaling properties unaffected). Hence,
we ignore their c dependences. In the limit of spatially
constant c, �̃(c) may be absorbed by a frequency shift that
yields, for v = 0, the Kardar-Parisi-Zhang equation for φ

[56]. Additionally, if λ = 0, Eq. (1) reduces to the standard
relaxational equation of motion for the phase in the classical
XY model [50]. For λ2 = 0, δc follows a diffusion-advection
equation, independent of φ; with λ2 �= 0, the particle mobility
is deemed active. Equation (2) implies a concentration current

Jc = −[Dc∇δc − λ1vδc + λ2∇φ + f]. (4)

Noises2 θ and f are zero-mean Gaussian distributed with vari-
ances 〈θ (x,t)θ (0,0)〉 = 2Dδ(x)δ(t) and 〈fα(x,t)fβ(0,0)〉 =
2D1δαβδ(x)δ(t), respectively; in a nonequilibrium situation,
D and D1 have dimensions of temperature T and are in
general unequal. We have ignored cross-coupling terms of
purely equilibrium origin in Eqs. (1) and (2) above as they are
irrelevant (in a scaling sense) to the active terms in (1) and (2)
in the long-wavelength limit. Equations (1) and (2) generalize

2The form of the additive noise in Eq. (2) ensures that concentration
c follows a conserved dynamics. Alternatively, one may keep only the
deterministic terms in the current Jc and then θ ′ = ∇ · f is the noise
in Eq. (2); θ ′ has the correlation 〈θ ′(x,t)θ ′(0,0)〉 = −2D1∇2δ(x)δ(t).
This leaves our results on correlations or � unchanged.
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the relaxational dynamics of the classical XY model to any
active system having XY symmetry with mobility.

For a frictional flow, v follows the generalized Darcy’s
law [57], which here includes the leading-order symmetry-
permitted feedback of φ on v [51,58],

−ζvα = α0Pαβ

∂

∂xγ

(
∂φ

∂xγ

∂φ

∂xβ

)
+ Pαβgβ. (5)

Here Pαβ = δαβ − ∇α∇β

∇2 is the transverse projection operator
and ζ is a friction coefficient.3 For a nonequilibrium model,
coupling α0 has no restrictions on its sign [51]. Noise
gα is a zero-mean Gaussian white noise with a variance
〈gα(x,t)gβ(0,0)〉 = 2D3ζ δαβδ(x)δ(t). Again D3 has the di-
mension of temperature.

Active terms

We now discuss the origin and physics of the active terms
in more detail. In Eq. (1), if we ignore the time dependence
of δc, the function �̃(c) becomes the natural frequency of
the oscillator. This, in a discrete lattice-gas representation,
implies that the natural frequency of a particular oscillator is
nonuniform and a local property, i.e., it depends on the number
of oscillators in its neighborhood. This is a generalization of
the well-known Kuramoto model for identical phase oscillators
(i.e., with the same natural frequency) [59,60]. Depending
on the function �̃(c), an oscillator rotates either faster or
slower as the number of oscillators in its neighborhood
changes. Consider now the other active term λ2∇2φ in (2).
This corresponds to a current contribution −λ2∇φ in Jc.
Thus, neighboring oscillators will move towards or away
from each other if there is a phase difference between them,
constituting an active φ-dependent current with a magnitude
set by λ2. Depending on the sign of λ2, this active current either
reinforces or goes against the usual diffusive current Dc∇δc.

In the equilibrium limit, the system may be described by a
free energy F given by

F =
∫

d2x

[
κ

2
(∇φ)2 + Aδc∇2φ + B

2
(δc)2

]
. (6)

Here A and B are thermodynamic coefficients. The sign of
A is arbitrary, while B is always positive. Free energy (6)
yields (assuming simple relaxational dynamics, ignoring any
advection for simplicity)

∂φ

∂t
= −δF

∂φ
+ θ = −[−κ∇2φ + A∇2δc] + θ (7)

and

∂δc

∂t
= ∇2 δF

δ(δc)
+ ∇ · f = B∇2δc + A∇4φ + ∇ · f. (8)

The linear cross terms are clearly subleading to the active terms
�̃1(c) and λ2∇2φ in Eqs. (1) and (2) above. In fact, if we insist
on generating these active terms from F , we may consider
adding terms, e.g., of the form �̃1(c)φ in F , that generate a

3We ignore a similar symmetry-allowed δc-dependent feedback
term in (5) for simplicity.

term �̃(c) in Eq. (1), but manifestly break the invariance under
φ → φ + const, which is not acceptable. This establishes the
active origin of the term �̃1(c) and similarly of λ2∇2φ in
Eqs. (1) and (2), respectively.

Equations (1) and (2) serve as good representations for
different real systems. Consider a two-dimensional array of
identical water droplets, which contain the reactants of an
oscillatory chemical (e.g., Belousov-Zhabotinsky) reaction,
separated by oil gaps; see, e.g., Ref. [15], with φ and
c, respectively, being the phase of the oscillatory reaction
and catalyst concentration. Alternatively, consider a layer of
oriented chiral live cytoskeletal actomyosin extract resting on
a solid substrate. For fully oriented actin filaments (in the limit
of large Frank’s constant [61] or for length scales smaller than
the threshold of spontaneous flow instabilities [62]), polarity
fluctuations may be neglected and φ, which describes chirality
of actin, and c, the concentration of actin filaments, are the
slow variables. In yet another general biological motivation
of our theory, the vertebrate segmentation clocks φ and δc

represent, respectively, the local phases of genetic oscillations
and the concentration of the migrating cells or the signaling
molecules [11]. In all these examples, active terms �̃(c) in (1)
and λ2∇φ in current Jc model generic active interplay between
phase and concentration fluctuations.

In general, all the active coefficients λ, �̃0, �̃1, �̃2, �̃3, and
λ2 should depend on c0, the mean concentration of the diffusing
active particles. Diffusivity Dc should contain both thermal
(equilibrium) and active contributions; see, e.g., Ref. [63].

We now compare our model equations with those that
describe active fluid with orientational degrees of freedom,
viz., the equations of the local polar order parameter or
orientation field p and the concentration of the active particles
[42,64]. While both systems are concerned with the question
of order in 2D, there are notable differences between the two.
Our model equation (1) that generalizes the Kuramoto model
equation necessarily applies to phases of oscillators or rotors,
i.e., to microscopic oscillatory degrees of freedom. Such a
collection of oscillators has no notion of local orientation or
polarity in the physical space. This is quite different from
the active fluids [42,64], where the local polarity describes
local orientation of the underlying polar or nematic degrees
of freedom (i.e., actin filaments, birds, or fish). Furthermore,
polar ordered active fluids are generically characterized by
systematic macroscopic motion along the direction of order,
whereas the oscillators considered here are diffusively moving,
devoid of any systematic large-scale movement. The one
particular case of active fluid models where our model should
be relevant is chiral active fluids, where the actin filaments have
chirality given by a phase variable [24]. A fully orientationally
ordered chiral active fluid with very large Frank constants
(which suppress any orientational fluctuations) without any
large-scale motion should be described only by the phase
and the local concentration of the active particles. For such
a system our model equations should form a valid description.
Finally, the ordered state of an active fluid is necessarily
anisotropic due to the macroscopic preferred orientation across
the system. In contrast, a globally synchronized state of phase
oscillators like ours is perfectly isotropic in the physical
space.
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III. RESULTS

A. Fast switching regime

1. Linear theory

We now analyze Eqs. (1) and (2) to ascertain the degree of
global synchronization in the model. It is illuminating to first
consider the linearized version of Eqs. (1) and (2). We linearize
Eq. (1) about c = c0 and define time scales τφ(q) = 1/κq2

and τc(q) = 1/Dcq
2, where q is a Fourier wave vector; thus

τφ is the time scale of isolated phase fluctuations (i.e., in the
absence of any coupling with c), whereas τc is the time scale in
which isolated particles diffuse or the network evolves. Now
eliminate δc in (1) to obtain (in the Fourier space)

−iωφ = −κq2φ − λ2�̃1q
2

−iω + Dcq2
φ + i�̃1q · f

−iω + Dcq2
+ θ.

(9)

Here ω is the Fourier frequency. The two time scales τφ and
τc can compete with each other with two asymptotic limits
τφ 	 τc (the fast switching regime in network language [34])
and τφ 
 τc (the slow switching regime). We note that recent
studies on synchronization in 1D using agent-based models
[38] indicate that large oscillator diffusivities tend to enhance
the degree of global synchronization. A large Dc implies a
small τc(q) for fixed q. Taking a cue from this and in order to
extract the activity dependence of synchronization in the most
dramatic way, we consider the limit Dc → ∞ or, equivalently,
τc → 0; clearly τc 
 τφ for a finite κ . In this limit, Eq. (9)
simplifies to (in the time domain)

∂φ

∂t
= −κq2φ − �̃1λ2

Dc

φ + θ + iq · f�̃1

q2Dc

= −κq2φ − γφ + θ + iq · f�̃1

q2Dc

, (10)

where γ = �̃1λ2/Dc is an active coefficient. Equation (10)
allows us to extract yet another time scale τ× = Dc

�̃1λ2
= 1

γ

(γ has the dimension of inverse time); τ× is in fact the time
scale of phase fluctuations due to the active coupling of φ

with concentration fluctuation δc. We assume γ ∼ O(1), i.e.,
τc/τ× → 0. (Note that for γ to dominate the long-wavelength
dynamics of φ, |γ | > 4π2κ

L2 . We present most of our results in
this limit. This is realizable for large enough L with sufficiently
large �̃1λ2.) Since active coefficients �̃1 and λ2 are formally
independent of Dc, this can be realized by letting �̃1λ2 become
large with a large Dc. Notice that in this fast switching regime,
the dynamics of δc is effectively slaved to φ. We now set out
to calculate � in the limit of fast dynamics of δc.

Evidently, for a positive �̃1, Eq. (10) is linearly unstable if
active damping γ < 0 (|γ | is the growth rate), i.e., if λ2 < 0;
otherwise it is linearly stable (γ is the decay rate). For a positive
�̃1, thus λ2 > 0 (λ2 < 0) implies that any local excess of
diffusive species reduces (enhances) any local nonuniformity
in φ.4

4The sign of λ2, in conjunction with the signs of other model
parameters, controls whether the active contribution to Jc favors or

L

Δ
L

∼Δ ln L

independent of L

L=Lc

c

FIG. 1. Behavior of � in the Lc-L plane in the linear theory
(with γ > 0) in the fast switching regime. The straight line refers to
L = Lc.

Now consider

� =
∫ �

1/L

d2q

(2π )2
〈|φ(q,t)|2〉 =

∫ �

1/L

d2q

(2π )2

d�

2π

〈|θ |2 + |f ′|2〉
�2 + γ 2

(11)

for γ > 0 in the linearized theory together with τc → 0 and
τ× ∼ O(1), where τc/τ× → 0. Here f ′ = �̃1iqαfα

q2Dc
and φ(q,t)

is the Fourier transform of φ(x,t). We define a length scale Lc

given by the relation

D1�̃
2
1

D2
cD

= 1/L2
c . (12)

Since Lc depends explicitly on the active coefficient �̃1, it
can be tuned by the active processes. In particular, Lc can be
made very large for small �̃1. The nature of order depends
sensitively on the dimensionless ratio L/Lc, as we establish
below. For L

Lc

 1, this yields

� =
∫ �

1/L

d2q

(2π )2

dω

2π

〈|θ |2〉
ω2 + γ 2

≈ D�2

2πγ
(13)

for L 	 1/�. Notice that this L independence of � holds
even in 1D. In contrast, for large L

Lc
	 1,

� =
∫ �

1/L

d2q

(2π )2

dω

2π

〈|f ′|2〉
ω2 + γ 2

≈ D

2πL2
cγ

ln L (14)

for L 	 1/�. Here � is an upper wave-vector cutoff and ω is
a frequency.5 See Fig. 1 for a schematic phase diagram (with
γ > 0) in the Lc-L plane, showing regions corresponding to
LRO and QLRO, respectively.

opposes the diffusive current Dc∇c. For instance, with the choice
�̃1 > 0 (as made throughout this text), λ2 > 0 (λ2 < 0) implies that
the local nonuniformity in the phase of the oscillators decreases
(increases) as the local nonuniformity in the concentration of the
moving oscillators increases (decreases). For example, in a live
cell cytoskeletal extract, λ2 < 0 would imply that an increasing
concentration of the moving oscillators can destabilize the phase
coherence.

5We assume a finite γ . For small �̃1 and large λ2, Lc → ∞ with a
finite γ .
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Linearly Stable

Ω

Linearly Unstable

1

2λO

FIG. 2. Schematic phase diagram in the λ2-�̃1 plane showing
linearly stable and unstable regions in the linear theory in the fast
switching regime. The symbol O marks the origin (0,0).

The nature of order can be established from the equal-time
oscillator correlator [51]

Cs(r) = 〈cos[φ(x,t) − φ(0,t)]〉 = exp[−g(r)] (15)

for large r = |x| with g(r) = 〈[φ(x,t) − φ(0,t)]2〉/2. This
yields

g(r) = D�2/2πγ (16)

for large r (with r � L < Lc), demonstrating LRO. Thus, for a
system of size L 
 Lc and γ > 0, the system can show LRO in
the fast switching regime, such that L 
 Lc; see Refs. [33,38],
which show numerically how increasing mobility can lead to
global synchronization. Notice that in our model Lc may be
made arbitrarily large even with a large Dc by adjusting the
other model parameters; see Eq. (12) above. In contrast, for
large r with Lc < r < L,

g(r) = D

2πL2
cγ

ln r, (17)

hence, showing QLRO in the system [51]. For γ < 0, only for
a finite system size with L2 < 4π2κ/|γ |, � is finite, implying
SRO [38]. This allows us to define a persistence length ξ1,
given by

ξ1 = 2π (κ/|γ |)1/2 (18)

such that for L > ξ1, instability ensues. Thus, given the
activity dependences of γ and Lc, the role of active effects
in facilitating or destroying order is clearly established.
Evidently, the larger |γ | is, the stronger the linear instability
(γ < 0) or the suppression of phase fluctuations (more stable,
γ > 0) is; see Fig. 2 for a schematic phase diagram in the
λ2-�̃1 plane. Since all of Dc, �̃1, and λ2 are expected to
scale with C0, the mean concentration γ should scale with
C0. Thus any activity-induced synchronization or instability
should be enhanced in a denser system, a broad feature testable
in experiments on relevant systems.

2. Nonlinear effects

We now consider the dominant nonlinear effects on the
results from the linear theory. For two-dimensional equilib-
rium systems with continuous symmetries in their ordered
phases, this is most conveniently done in terms of a low-T
expansion in 2D, where a dimensionless reduced T (assumed
small in the putative ordered phases) plays the role of a
small parameter [50]. This has subsequently been extended

to analogous nonequilibrium systems; see, e.g., Ref. [51].
Following Ref. [51], we identify D�2/γ and D/L2

cγ as the
dimensionless small parameters and restrict ourselves to their
linear order expansions for (assumed) small fluctuations of φ

and vα with τc/τ× → 0. We replace �̃3(δc)3 in Eq. (3) by a
linear term 3�̃3〈(δc)2〉δc in a Hartree-like approximation [50]
and substitute it in Eq. (1). This then produces a correction γ

to γ . With γ > 0, following our analysis at the linear order
above, we define an effective active damping coefficient

γe = γ + γ , (19)

where γ = 3�̃3〈(δc)2〉λ2

Dc
.

Now, in the linear theory with τc → 0 and τc/τ× → 0 such
that the dynamics of δc is slaved to that of φ,

δc = − λ2

Dc

φ + iq · f�̃1

Dcq2
. (20)

Equation (20) may now be used to calculate 〈|δc(q,t)|2〉 sep-
arately for L < Lc and L > Lc, since the form of 〈|φ(q,t)|2〉
depends on whether L < Lc or L > Lc.

(i) For L < Lc,

〈δc2〉 = λ2
2

D2
c

∫ �

1/L

d2q d�

(2π )3

D

γ
≈ λ2

2D�2

4πγD2
c

. (21)

Using this value of 〈δc2〉, we arrive at the correction, γ to γ .
This takes the following form

γ = 3�̃3λ
2
2D�2/4πD2

c �̃1, (22)

which is finite. For �̃3 > 0, we have γ > 0, thus leaving
the results from the linear theory qualitatively unchanged.
On the other hand, for �̃3 < 0, this correction is negative and
has the potential to introduce instability provided |γ | > γ .
This yields a finite instability threshold for |�̃3|, given by

�̃c
3 = 4πγ �̃D2

c

3�2λ2
2D

.
(ii) For L 	 Lc, γ ≈ � ln L, diverging logarithmically

with L,

� = 3�̃3λ
2
2�̃1D1/2πD4

c (23)

(see the Appendix B). Thus, γ necessarily dominates over
γ for sufficiently large L; thence, for �̃3 < 0 and γ > 0
the instability necessarily sets in for a sufficiently large L,
without any finite threshold for �̃3. This nonlinearity-induced
instability allows us to introduce a modified persistence length

ξ̃1 = 2π (κ/|γe|)1/2, (24)

now controlled by �̃3 for a fixed γ > 0. Similar to the
calculations for the linear theory, now with γe > 0, we find
for large r � L < Lc that g(r) = D�2/2πγe. This confirms
LRO as in the linear theory (discussed above). On the other
hand, for large r > Lc, g(r) = A ln ln r , showing that Cs(r)
decreases as 1/(ln r)A, where A = D1�̃

2
1/�D2

c . Thus, in this
case, QLRO in the linear theory gets modified to NLO by
the nonlinear effects with a spatial decay slower than the
algebraic decay in QLRO [51]. For γ < 0 (λ2 < 0), linear
instability ensues. However, nonlinear effects can stabilize and
suppress this linear instability, provided �̃3 > 0 and γ > |γ |.
Therefore, depending on the signs of λ2 and �̃3, four distinct
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γ

Ω3

Unstable Unstable

Stable Stable

O

γe=0

γe=0

Linearly stable
Nonlinearly unstable

Linearly unstable
Nonlinearly stable

~

FIG. 3. Schematic phase diagram in �̃3-γ plane (ζ > 0). The
symbol O refers to the origin (0,0). The following regions
are marked: (i) linearly and nonlinearly stable (both γ,γe > 0),
(ii) linearly stable and nonlinearly unstable (γ > 0 and γe < 0),
(iii) linearly unstable and nonlinearly stable (γ < 0 and γe > 0), and
(iv) linearly and nonlinearly unstable (both γ,γe < 0). The inclined
lines, drawn schematically, are to be obtained from the conditions
γe = 0.

possibilities emerge, as shown in Fig. 3 schematically in the
�̃3-γ plane.

The advective nonlinearities in Eqs. (1) and (2) generate
additional corrections to the model parameters in Eqs. (1) and
(2). This is achieved by eliminating v in Eq. (1) with the
help of Eq. (5), which generates finite corrections to κ and γ

for both L < Lc and L > Lc. See the Appendix C for some
calculational details regarding advective nonlinearities.

For λ1α0 sufficiently negative, γe and κe, which now
include additional corrections from λ1, may become negative
and thus lead to long-wavelength instabilities and pattern
formations. For instance, for γe > 0 and κe < 0, finite-wave-
vector instabilities are produced in the system at O(q2), while
remaining stable at O(q0). The instability at O(q2) for κe < 0
should be suppressed at very high q by a stabilizing generic
fourth-order spatial derivative term −κ4∇4φ(κ4 > 0) on the
right-hand side of Eq. (1) (here neglected; see Ref. [35]). For
λ1α0 > 0, these corrections do not affect the scaling of �. The
regions in phase space where κe is negative should display
patterns in the steady state. Our hydrodynamic theory, based
on retaining only the lowest-order gradients and low-order
nonlinear terms, cannot determine the steady-state patterns.
The detailed nature of the patterns should depend on the
higher-order terms neglected here; see, e.g., Refs. [35,65]
for a related recent study. How the steady-state patterns
depend on the feedback of the phase fluctuations on mobility
remains an important question to be studied in the future. The
four possible macroscopic behaviors in the γe-κe plane are
shown schematically in Fig. 4: (i) long-wavelength stability
and homogeneous (green) with γe > 0 and κe > 0, (ii) long-
wavelength instability but homogeneous (red) with γe < 0 and
κe > 0, (iii) long-wavelength instability with patterns (white)
with γe < 0 and κe < 0, and (iv) long-wavelength stability
with patterns (yellow) with γe > 0 and κe < 0.

κ e

γe

Stable,

Homogeneous

Long wavelength stability,

Pattern

Long wavelength instability,

Homogeneous

Long wavelength instability,

Pattern

O

FIG. 4. Schematic phase diagram in the γe-κe plane. The symbol
O marks the origin (0,0). Four distinct macroscopic behaviors
are possible: (i) γe,κe > 0 (stable and homogeneous), (ii) γe >

0 and κe < 0 (long-wavelength stability with patterns at O(q2),
(iii) γe < 0 and κe > 0 (long-wavelength instability with no pattern),
and (iv) γe,κe < 0 [long-wavelength instability with patterns at
O(q2)].

B. Slow switching regime

We now briefly discuss the limit of the slow switching
regime τc 	 τφ . In order to extract the physics in this regime
most effectively, we consider the limiting case and set Dc = 0
in Eq. (2) so that τc → ∞ and τ× → 0. Notice that in our
model, even with Dc = 0, the concentration dynamics does not
freeze; this is essentially due to its coupling with the gradient of
φ via the λ2 term in Eq. (2). Then, assuming time dependences
for φ and δc ∼ exp(�̃t), we find

�̃ ≈ 1
2 [−q2κ ± 2q

√
−�̃1λ2]. (25)

Hence, depending on the sign of λ2 (with �̃1 > 0), the
system may exhibit either damping along with underdamped
waves (λ2 > 0) with speed v0 =

√
�̃1λ2 or long-wavelength

instability (λ2 < 0) [38].6 In the linearly stable region, we find
in the linearized theory � ∼ (�̃2

1D1 + Dv2
0)(ln L)/κ , yielding

QLRO. This corresponds to Cs(r) decreasing as 1/rψ , ψ =
(�̃2

1D1 + D�̃1λ2)/κ . This is unaffected by the leading-order
nonlinearities. For λ2 < 0, similar to the discussion above,
a persistence length ξ2 may be defined as ξ2 = κ/

√
�̃1|λ2|

such that for system size L > ξ2, � diverges, implying SRO.
Finally, coupling λ remains irrelevant throughout (in a scaling
sense) in all the cases discussed above. A phase diagram in the
�̃1-λ2 plane is given in Fig. 5, showing the linearly stable and
unstable regions.

C. System behavior with autonomous mobility

Our results for both the fast and slow switching regimes
crucially depend on the coupling λ2; indeed, γ = 0 if λ2 = 0.
In the agent-based models of Refs. [33,34,38], agent mobility

6Since we are interested in the long-wavelength limit, O(q4) terms
have been neglected in comparison to O(q) and (q2).
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λ 2

Ω1

Propagating waves

Instability

~

Instability

Propagating waves

O

FIG. 5. Schematic phase diagram in the �̃1-λ2 plane in the
linearized theory with Dc → 0. The symbol O marks the origin (0,0).
Two distinct macroscopic behaviors are possible: (i) �̃1,λ2 > 0 and
�̃1,λ2 < 0 for propagating waves and (ii) �̃1 > 0 and λ2 < 0 or
�̃1 < 0 and λ2 > 0 for instability in the system. For the convenience
of the reader, negative values of �̃1 are also shown.

is fully autonomous, unaffected by the local phase, and hence
these models imply λ2 = 0 in the continuum. Nevertheless,
even for those models it has been observed that for a
sufficiently large Dc, oscillators tend to synchronize in systems
of finite size. We now discuss this effect heuristically in a
coarse-grained description. In these agent-based models, while
mobility is autonomous, phase fluctuations are still affected by
diffusion. This happens essentially due to the particle diffusion
enabling a test particle to have a larger number of contacts in
its locality than without diffusion. This should renormalize the
elastic modulus κ that should now become a local quantity κ(c)
depending on the local concentration fluctuation δc. Thus, in
the coarse-grained hydrodynamic limit, expanding for small
δc, we can phenomenologically replace κ in Eq. (1) by

κ(c) = κ0 + g̃δc + g(δc)2, (26)

where g̃ and g are coupling constants. Averaging over δc

fluctuations yields an effecting spin stiffness κe given by

κe = κ0 + g〈(δc)2〉. (27)

For a given short-range interaction, in a coarse-grained picture
coupling g should scale with the number of interactions n0 in
a unit time. Since n0 should increase with Dc, g should also
increase with Dc. Thus, for a large enough Dc, κe 	 κ0 (κe 

κ0) for g > 0 (g < 0). Clearly, with g > 0, φ fluctuations are
significantly suppressed for a large enough Dc such that in a
finite system the oscillators appear synchronized.

IV. SUMMARY AND OUTLOOK

To summarize, we have constructed dynamical equations
for active hydrodynamics of a collection of nearly-phase-
coherent diffusively moving oscillators. Depending on the
details of the active processes, the system can display a
wide-ranging nature of order, e.g., LRO, NLO, and SRO. In
particular, a large mobility can facilitate LRO for appropriate
choices of the other model parameters. These are robust
features, unaffected by an advecting velocity field. Our theory

is generic and is applicable to any nearly-phase-ordered system
of diffusively moving oscillators. We generally predict that
the degree of synchronization and the nature of order in
a two-dimensional collection of mobile oscillators can be
controlled by the underlying microscopic active processes.
In the equilibrium limit, a collection of oscillators can only
display QLRO at low T [50] and hence can be only partially
synchronized. Thus LRO, NLO, and SRO in this model are
entirely of active origin. For an isolated free-standing system,
−ζvα in Eq. (5) should be replaced by η∇2vα , η being the
fluid viscosity. The system does not show any new qualitative
form of order in this limit. Oscillatory chemical reactions,
oriented chiral live cytoskeletal extracts, and in vivo vertebrate
segmentation clocks can thus be in a phase coherent or
decoherent state, depending on the details of the underlying
active processes; the feedback of phase fluctuations on the
mobility is expected to play an important role in the ensuing
large-scale behavior. Independent of the precise numerical
values of model parameters, the general structure of the
phase diagrams are robustly testable in related chemical and
biologically inspired systems [15,16,26]. In experiments on in
vitro chiral cytoskeletal suspensions, Dc may be controlled by
changing the viscosity of the solvent; active parameters �̃1,
λ2, �̃3, and λ1 may be controlled by changing c0; the sign
of γ may be controlled by appropriate choices of contractile
or extensile activities [42]. Numerical simulations of models
for vertebrate segmentation clocks can be used to verify our
results [39].

Our theory may be extended to account for superdiffusion
[44] with Lévy noises [66]. Additional features, e.g., coupling
delays and phase shifts [36], may be easily incorporated
in our model. Large-scale numerical studies will ultimately
be needed to go beyond the perturbative analysis presented
here and to study the role of topological defects that are
neglected above. Our work should inspire new studies on
agent-based models of synchronization in dynamical networks
that would generalize the existing studies with autonomous
particle mobility [32–34,38,43]. We look forward to future
attempts to verify our results in controlled experimental setups.
It would also be of interest to include large-scale systematic
motion of the oscillators, controlled by an external drive, in
our model and investigate how that may affect the nature of
ordering elucidated here. We have effectively considered point
particles without interparticle interactions or any excluded-
volume interactions. Generalization of our model to groups of
oscillators with distinct chiralities remains an interesting issue.
Our model may be extended to include the above features in
straightforward ways. The insight gathered in this work should
help design specific synchronization strategies in in vivo
systems with artificial microscopic agents. We expect our work
to be a significant stepping stone in developing a general theory
for active hydrodynamics of synchronization phenomena.
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APPENDIX A: CONNECTION WITH THE CGLE

The complex Ginzburg-Landau equation (CGLE) describes
the coupled dynamics of the amplitude and phase of a complex
field Z = Z0(x,t) exp[iφ(x,t)], where the amplitude Z0 and
phase φ are real functions of x and t ,

∂tZ = − δF
δZ∗ − i�I

δF
δZ∗ + �, (A1)

where �I is real,

F =
∫

ddx

[
r̃

2
|Z|2 + g

2
|∇Z|2 + u|Z|4

]
, (A2)

and r̃ = 0 gives the mean-field second-order transition tem-
perature u > 0. Here � is a complex Gaussian noise with zero
mean and a variance

〈�(x,t)�∗(0,0)〉 = 2Dξδ(x)δ(t), 〈�(x,t)�(0,0)〉 = 0.

(A3)

If we now set Z0 = 1, i.e., have a fixed amplitude for the
complex field, φ then follows the real equation

∂φ

∂t
= g∇2φ + �I [−r̃ − 2u + g(∇φ)2] + θ̃ . (A4)

Thus, Eq. (1) may be obtained by considering �I as a function
of c and with the identification κ = g, �̃0 = −�I (r + 2u),
λ = −2�Ig, and θ̃ = −Re� sin φ + Im� cos φ. Here Re and
Im are, respectively, the real and imaginary parts of a complex
number. This yields 〈θ̃ (x,t)θ̃(0,0)〉 = 2Dξδ(x)δ(t). We further
equate Dξ with D to recover the noise in Eq. (1); advection
by a velocity v may be included straightforwardly in Eq. (A1),
yielding the advective nonlinearity in Eq. (1). A similar
density-dependent CGLE was derived recently in different
contexts [54].

APPENDIX B: CORRECTIONS TO γ FOR L � Lc

(WITHOUT ADVECTION NONLINEARITIES)

As shown in the main text,

γe = γ + γ = γ + 3�̃3〈(δc)2〉λ2

Dc

. (B1)

In the regime τc/τ× → 0, for L 	 Lc,

〈δc2〉 ≈ λ2
2D1�̃

2
1

2πD4
c γ

ln L. (B2)

Hence,

γ = 3
λ2�̃3

Dc

〈(δc)2〉 ≈ � ln L, (B3)

which diverges logarithmically with L.

APPENDIX C: ADDITIONAL CORRECTIONS TO γ > 0
AND κ FROM THE ADVECTIVE NONLINEARITIES (ζ > 0)

We work in the regime τc/τ× → 0. Using Eq. (5), we
substitute for vα in Eq. (1) to obtain a term on the right-hand
side of the latter,

λ1α0

ζ

[
Pαβ

∂

∂xγ

(
∂φ

∂xγ

∂φ

∂xβ

)]
∂φ

∂xα

. (C1)

This yields a correction to κ , given by

κ ′ = λ1α0

ζ

∫
d2q

(2π )2

d�

2π
q2〈|φ(q,�|2〉. (C2)

The correction term is clearly finite for both L < Lc and L >

Lc. For λ1α0 > 0, the correction to κ (as well as κe) is positive
and no qualitative change is introduced by advection at O(q2).
On the other hand, for sufficiently large negative λ1α0, the
effective κ = κe + κ ′ < 0 and the system becomes unstable
at O(q2), leading to the formation of patterns in the eventual
steady states.

We now substitute for vα in Eq. (2) and then substitute for
δc in Eq. (1). We thus obtain a contribution on the right-hand
side of Eq. (1):

�̃1λ1α0λ2

ζD2
c∇2

[
Pαβ

∂

∂xγ

(
∂φ

∂xγ

∂φ

∂xβ

)]
∂φ

∂xα

. (C3)

This then yields another correction to γ , given by

γ ′ = −λ1λ2�̃1α0

ζD2
c

∫
d2q

(2π )2

d�

2π
q2〈|φ(q,�)|2〉. (C4)

The correction to γ is clearly finite for both L > Lc and
L < Lc. Thus, for λ1λ2�̃1α0 < 0, there are no qualitative
changes introduced by advection at O(q0). On the other
hand, for sufficiently large λ1λ2�̃1α0 > 0, the effective active
damping can become negative, yielding instabilities at O(q0).
So far we have assumed γ > 0 (linear stability). In the linearly
unstable case (γ < 0), it is possible to suppress the linear
instability for sufficiently large negative λ1λ2�̃1α0 < 0 such
that effective active damping can become positive.
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