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Universal temporal characteristics and vanishing of multifractality in Barkhausen avalanches
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Barkhausen effect in ferromagnetic materials provides an excellent area for investigating scaling phenomena
found in disordered systems exhibiting crackling noise. The critical dynamics is characterized by random pulses
or avalanches with scale-invariant properties, power-law distributions, and universal features. However, the
traditional Barkhausen avalanches statistics may not be sufficient to fully characterize the complex temporal
correlation of the magnetic domain walls dynamics. Here we focus on the multifractal scenario to quantify the
temporal scaling characteristics of Barkhausen avalanches in polycrystalline and amorphous ferromagnetic
films with thicknesses from 50 to 1000 nm. We show that the multifractal properties are dependent on
film thickness, although they seem to be insensitive to the structural character of the materials. Moreover,
we observe for the first time the vanishing of the multifractality in the domain walls dynamics. As the
thickness is reduced, the multifractal behavior gives place to a monofractal one over the entire range of time
scales. This reorganization in the temporal scaling characteristics of Barkhausen avalanches is understood as a
universal restructuring associated to the dimensional crossover, from three- to two-dimensional magnetization

dynamics.
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I. INTRODUCTION

Universal power laws are a central focus of investigations
in statistical mechanics as they relate to underlying criti-
cality in a wide variety of phenomena [1], such as plastic
deformation [2,3] and microfractures [4], shear response of
a granular media [5], seismic activity in earthquakes [6,7],
vortex dynamics in superconductors [8,9], fluctuations in the
stock market [10], and Barkhausen effect in ferromagnetic
materials [11-18]. In ferromagnetic materials under external
magnetic field, the complex microscopic magnetization pro-
cess through the jerky motion of magnetic domain walls (DW5s)
is a classic example of self-organization and nonequilibrium
critical dynamics [19]. The dynamical response to a smooth,
slowly varying external magnetic field is a series of abrupt
and irregular Barkhausen avalanches with a broad range
of sizes and durations, characterized by universal scaling
laws with critical exponents independent of the material
microstructure [11].

Much efforts to understand the criticality in ferromagnetic
materials have been devoted to studies of the traditional
probability distributions of Barkhausen avalanche sizes and
avalanche durations, average avalanche size as a function of its
duration, and average temporal avalanche shape [1,11]. Empir-
ical investigations compared with theoretical predictions and
simulations have uncovered that critical exponents associated
with such Barkhausen avalanches reflect the general features
of the underlying magnetization dynamics [1,11]. Further,
different scaling exponents have been verified according to the
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structural character of the sample, placing polycrystalline and
amorphous materials in distinct universality classes associated
with the range of interactions governing the DW dynamics,
as well as the exponents have been found to be dependent
on the sample thickness, which is directly related to system
dimensionality, thus splitting bulk material/thick films and thin
films in distinct classes [11-18].

However, the quantitative understanding of Barkhausen
avalanches and DW dynamics in ferromagnetic materials
is far from complete. In contrast to this aforementioned
traditional Barkhausen statistics, investigations on the tem-
poral structure of consecutive Barkhausen avalanches are
still at the beginning [20,21]—an analysis widely performed
for several natural complex systems, as heartbeat dynamics
[22,23], earthquakes [24], brain dynamics during sleep [25],
fluctuations in financial markets [26], and complex networks
[27]. As a consequence, there are questions that still remained
elusive, e.g., doubts whether linear and nonlinear features
of the temporal organization of avalanches are characterized
by scaling laws that exhibit universality classes for different
materials and whether temporal characteristics change with the
thickness.

In this article, we report an experimental investigation of
the temporal scaling characteristics of Barkhausen avalanches
in ferromagnetic films. Specifically, we ask whether the
avalanches caused by the irregular and irreversible motion
of domain walls exhibit correlation properties characterized
by monofractal and/or multifractal scaling features. Further,
we address the question of if these features change with the
universality class, i.e., whether they are influenced by the film
dimensionality and range of interactions governing the DW
dynamics.
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II. EXPERIMENT AND ANALYSIS
A. Ferromagnetic films and experiment

We perform Barkhausen experiments in polycrystalline
Nig;Fej9 (NiFe) and amorphous Fe75Si;5B g (FeSiB) ferro-
magnetic films with the thicknesses of 50, 100, 150, 200, 500,
and 1000 nm. The films are deposited by magnetron sputtering
onto glass substrates, with dimensions 10 x 4 mm, covered
with a 2-nm-thick Ta buffer layer. The deposition process is
carried out with the following parameters: base vacuum of
10~7 Torr, deposition pressure of 5.2 mTorr with a 99.99% pure
Ar at 20 sccm constant flow, and DC source with current of
50 mA and 65 W set in the RF power supply for the deposition
of the Ta and ferromagnetic layers, respectively. During the
deposition, the substrate moves at constant speed through the
plasma to improve the film uniformity, and a constant magnetic
field of 1 kOe is applied along the main axis of the substrate to
induce magnetic anisotropy. X-ray diffraction is employed to
calibrate the sample thickness and also to verify the structural
character of all films. Quasistatic magnetization curves are
obtained along and perpendicular to the main axis of the
films, to verify the magnetic properties. Detailed information
on the structural and magnetic characterizations is found in
Refs. [15-17].

We record Barkhausen noise using the traditional inductive
technique in an open magnetic circuit, in which one detects
time series of voltage pulses with a pickup coil wound around a
ferromagnetic material submitted to a slow-varying magnetic
field. In our setup, sample and pick up coils are inserted in
a long solenoid with compensation for the borders, to ensure
an homogeneous magnetic field on the sample. The sample is
driven by a triangular magnetic field, applied along the main
axis of the sample, with an amplitude high enough to saturate
it magnetically. Here we perform experiments with driving
field frequency in the range 0.05-0.4 Hz. Barkhausen noise is
detected by a pickup coil (400 turns, 3.5 mm long and 4.5 mm
wide) wound around the central part of the sample. A second
pickup coil, with the same cross section and number of turns,
is adapted to compensate the signal induced by the varying
magnetic field. The Barkhausen signal is then amplified and
filtered using a 100-kHz low-pass preamplifier filter, and
finally digitized by an analog-to-digital converter board with
sampling rate of 4 x 10% samples per second. Barkhausen
noise measurements for all driving field frequencies are
performed under similar experimental conditions. The time
series are acquired just around the central part of the hysteresis
loop, near the coercive field, where the domain walls motion
is the main magnetization mechanism and the noise achieves
the condition of stationarity [11]. At a preanalysis stage, we
employ a Wiener deconvolution [15], which optimally filters
the background noise and removes distortions introduced
by the response functions of the measurement apparatus in
the original voltage pulses, thus providing reliable statistics
despite the reduced intensity of the signal. In particular, for
each ferromagnetic film, the following analyses are obtained
from 200 time series.

The universality class of the Barkhausen noise in a sample
is commonly identified by measuring the distributions of
Barkhausen avalanche sizes and avalanche durations, the
average avalanche size as a function of its duration, and
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the average temporal avalanche shape [11]. The first three
statistical functions typically display scaling in a quite large
range and are, respectively, described by the critical exponents
7, o, and 1/ovz [28]. The average shape evolves with
the universality class, and corroborates the exponent 1/o0vz
[11,29].

Several theoretical models have been proposed to explain
the DW dynamics and the traditional Barkhausen noise sta-
tistical properties. Taking into account theoretical predictions
found in literature [30-32], we interpret our experimental data
in terms of different universality classes, according to the
system dimensionality and range of interactions governing the
DW dynamics. Our experiments allow us to infer that the ex-
ponents measured for the polycrystalline NiFe and amorphous
FeSiB films with distinct thicknesses assume values consistent
with three well-defined universality classes. Thus, we analyze
the temporal characteristics of Barkhausen avalanches in the
following classes of materials: (i) polycrystalline NiFe films
with thicknesses above 100 nm, characterized by exponents
T~ 1.5, ~2.0,and 1/ovz ~ 2.0, obtained for the smallest
magnetic field rate, presenting universal three-dimensional
magnetization dynamics governed by long-range dipolar in-
teractions [15,16,18]; (ii) amorphous FeSiB films thicker than
100 nm, with exponents t ~ 1.27, &’ ~ 1.5, and 1/ovz ~
1.77, having a three-dimensional dynamics governed by short-
range elastic interactions of the DWs [17,18]; (iii) polycrys-
talline NiFe and amorphous FeSiB films with thicknesses
below 100 nm, with t ~ 1.33, &’ ~ 1.5, and 1/ovz ~ O ~
1.55, indicating a two-dimensional magnetization dynamics
dominated by strong long-range dipolar interactions, arisen
due to the appearance of DWs with zigzag morphology
[13,14,31] as the thickness is reduced, irrespectively on the
structural character of the films.

B. Data analysis

We employ the detrended fluctuation analysis (DFA) [33]
and the generalized multifractal detrended fluctuation analysis
(MF-DFA) [20,34,35] to investigate the temporal nonlinear
characteristics of Barkhausen avalanches in ferromagnetic
films.

The detrended fluctuation analysis [33] has been developed
initially to quantify dynamic characteristics of physiological
fluctuations embedded in nonstationary physiological sig-
nals. Compared with traditional correlation analyses, such
as autocorrelation, power spectrum, and Hurst analysis, the
advantage of the DFA resides in the accurate quantification
of the correlation property of signals masked by polynomial
trends [36]. The DFA quantifies the detrended fluctuation
function F(s) of a signal at different time scales s. A
power-law functional form F(s) ~ s® indicates the presence
of self-similar fractal organization in the fluctuations. The
parameter o, here also called scaling exponent, quantifies
the correlation properties of the signal. Furthermore, & = 0.5
indicates absence of correlations, similar to a white noise; if
o = 1.5, the signal behaves as a random walk and indicates
a Brownian motionlike dynamics; if 0.5 < o < 1.5, there are
positive correlations, i.e., large avalanches are more likely to
be followed by large avalanches (and vice versa for small
avalanches); and if o < 0.5, the signal is anticorrelated, i.e.,
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large avalanches are likely to be followed by small ones (vice
versa for small avalanches), with stronger anticorrelations
when « is closer to 0. A striking advantage of the DFA
resides in the fact that it allows the quantification of signals
with o > 1.0, which cannot be done using the traditional
autocorrelation and Hurst analysis, as well as of signals with
strong anticorrelations [36]. In contrast to the conventional
methods, DFA avoids spurious detection of apparent long-
range correlations that are artifacts of nonstationarity [37].
Thus, DFA is able to detect subtle temporal structures in highly
heterogeneous time series. However, its inherent limitation is
the maximum time scale sy, for which the fluctuation function
F(s) can be reliably calculated. To overcome this issue and
ensure sufficient statistics at large scales, syax shall be chosen
Smax < N /4, where N is the length of the signal [36].

While DFA quantifies linear fractal characteristics related
to two-point correlation, MF-DFA probes long-term nonlinear
properties of the time series. In particular, it has been already
verified that signals with identical self-similar temporal orga-
nization, quantified by the DFA scaling exponent «, can exhibit
very different nonlinear properties captured by the MF-DFA
[38]. The generalized multifractal DFA consists of a sequence
of five steps, in which the first ones are essentially identical to
that of the conventional DFA procedure. In this sense, MF-DFA
is an extension of the DFA with a range of ¢, i.e., an average
over all segments to obtain the gth-order fluctuation function
F,(s) where, in general, the index variable g can assume any
real value, except zero.

In our experiment, the Barkhausen noise corresponds to a
time series, of length N, of the voltage signal V(¢). To the
analysis, initially we assume that x; is a voltage time series of
length i, where i can be varied between 1 and N. Thus, in the
first step, the accumulated profile Y of the time series V (¢) is
determined by the following equation [35]:

Y(i)=) [x— (x)].i=1..N, (1)
k=1

where (x) denotes the mean of the time series xy.

In step two, for a given time scale s, the accumulated profile
from Eq. (1) is divided into Ny = int(N/s) integer disjoint
segments of equal length s. In step three, for each one of the
N, segments, the local trend is determined by a polynomial
fitting of the data, and then the variance for each segment
v = 1,...,N; is estimated through

2 _l - _ o 12
Fru9) =) (Y =Ds+il=n®F, @

i=1

where y, (i) is the polynomial fitting for the segment v.

In step four, the average of the variances over all segments
is computed to obtain the gth-order fluctuation function F(s).
In this case, for g # 0, the fluctuation function is given by

B

1 N,

1/q
Fy(s) = {ﬁ Z[Fz(v,an/z} : 3)

S v=1
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while for g = 0,

1 &
Fo(s) = exp {ﬁ Zln[Fz(v,s)]}. (4)
S v=1

In particular, for ¢ = 2, the standard DFA is retrieved.
However, here, we are concerned with how the generalized
g dependent fluctuation function F,(s) depends on the time
scale s, for some values of ¢. For this purpose, steps two to
four must be repeated for different values of time scale s.
According to Ref. [34], for very large scales s > N /4, the
employed procedure becomes statistically unreliable, due to
the number of segments N, averaging in Egs. (3) and (4) be
very small. Thus, we take for our Barkhausen signal analysis
the maximum scale value of N /4.

Finally, in the last step, the scaling behavior of the
fluctuation functions F,(s) is estimated by the slope of the
plot of log,o[F,(s)] versus logy[s], for a range of g values.
In particular, we use g between —4 to 4. If the experimental
Barkhausen noise time series present power-law correlation,
then F,(s) increases for sufficiently large values of s according
to the relation

Fy(s) ~ 5", (5)

where h(q) is the so-called generalized Hurst exponent.

To estimate h(q) for several g values, we regress h(q)
on Fy(s), Eq. (5). Thereby, strengthening this idea, for
monofractal time series, h(qg) is independent of ¢, since the
variance scale behavior F2(v,s) is identical for all segments
v, resulting in h(q) = H. On the other hand, when small and
large fluctuations differ, it is observed a dependence of h(q)
with g which characterizes the multifractal behavior.

From this point, the multifractal scaling exponent 7(g) can
be determined from /(q) by the relation

t(q) = qh(q) — 1. 6)

In this case, if there is a linear dependence of the spectrum 7(g)
with ¢, the time series is considered monofractal, otherwise it
is multifractal.

Futhermore, it is possible to characterize the multifractality
of time series by considering the multifractal spectrum f(«),
where « is the Holder exponent. The multifractal spectrum
f (@) is related to t(g) via Legendre transform [39] through

a=1(q), )

and

fl@) =qga —(q). ®)

The magnitude of multifractality in a time series can be
determined by the width of the spectrum A« = &max — Omin-
Intuitively, the wider is the multifractal spectrum, the stronger
is the multifractality.

III. RESULTS AND DISCUSSION

A. Temporal correlations characteristics in the
dynamics of Barkhausen avalanches

We systematically analyze the temporal characteristics,
over a wide range of time scales, of Barkhausen avalanches
in polycrystalline NiFe and amorphous FeSiB ferromagnetic
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FIG. 1. Representative Barkhausen noise in ferromagnetic films and its dependence with thickness. In the left side, schematic representation
of the dimensionality of the films with thickness. It is important to point out that films thicker than 100 nm present three-dimensional magnetic
behavior, while films thinner than 100 nm are in the two-dimensional regime. In the right, experimental Barkhausen time series, measured for
the smallest driving magnetic field frequency, 50 mHz, obtained for amorphous FeSiB films with selected thicknesses. Similar behavior with
thickness is verified for the polycrystalline NiFe films. Barkhausen noise in different time windows of observation (insets in the top panel)
reveals statistical self-similarity of avalanches at smaller scales, indicating an underlying scale-invariant temporal organization.

films with thicknesses from 50 to 1000 nm. As mentioned,
the films split into three well-established classes of materials:
(i) polycrystalline NiFe films thicker than 100 nm, with uni-
versal three-dimensional magnetization dynamics governed
by long-range dipolar interactions [15,16,18]; (ii) amorphous
FeSiB films thicker than 100 nm, with three-dimensional
dynamics governed by short-range elastic interactions of the
DWs [17,18]; (iii) both polycrystalline NiFe and amorphous
FeSiB films with thicknesses below 100 nm, presenting two-
dimensional magnetization dynamics dominated by strong
long-range dipolar interactions [13,14,31]. Thus, the influence
on the temporal characteristics of Barkhausen avalanches of
the system dimensionality and range of interactions governing
the DW dynamics can be investigated in an experimentally
controlled manner.

Figure 1 shows representative experimental Barkhausen
time series measured in ferromagnetic films with different
thicknesses. Barkhausen noise is composed by a series of
intermittent voltage pulses, i.e., avalanches, combined with
background instrumental noise. The discrete and irregular
avalanches are caused by the complex, jerky motion of the
DWs during the magnetization process, and is related to sudden
and irreversible changes in the magnetization.

Remarkably, empirical observations of Barkhausen noise
at different time scales reveal seemingly self-similar cascades
formed by large, intermediate, and small avalanches at each
time window, suggesting the presence of scale-invariant
structure embedded in its temporal organization (see insets in
the top panel in Fig. 1). This is a first idea of the fractal behavior
in the Barkhausen avalanches. Actually, previous reports have
indicated self-similarity properties in the Barkhausen noise, at
sufficiently low domain wall velocity, as well as have suggested
the critical exponent obtained for the distribution of avalanche
sizes as an indirect measurement of the fractal dimension of
the pinning field [40].

Further, the profile of Barkhausen noise significantly
changes with the film thickness, i.e., system dimensionality,
although it seems to be insensitive to the range of interactions
governing the DW dynamics, since similar behavior with
thickness is verified for amorphous FeSiB and polycrystalline
NiFe films (the latter not shown here). The Barkhausen
noise for three-dimensional films thicker than 100 nm is
inhomogeneous, with high amplitude and frequent avalanches
associated with changes in the magnetization through DW
motion. In contrast, the noise for two-dimensional ones, with
thickness below 100 nm, is more homogeneous, with reduced
occurrence of large avalanches. Such characteristics of the
Barkhausen noise for films with different thicknesses rise the
hypothesis that the system dimensionality may be associated
with distinct correlations and scaling temporal organization
of Barkhausen noise, suggesting dissimilar underlying DW
dynamics.

B. Scale-invariant organization and crossover phenomenon

To probe for scale-invariant structure in the temporal
organization of Barkhausen avalanches, and whether this
structure changes with the system dimensionality and range
of interactions governing the DW dynamics, we apply the
detrended fluctuation analysis.

Figure 2 shows the dependence of the general behavior of
the fluctuation function with the film thickness. Amorphous
FeSiB and polycrystalline NiFe films share similar behavior
(the latter not shown here). For all thicknesses, the Barkhausen
noise exhibits correlations of a power-law type, indicating a
robust scale-invariant organization of the avalanches over a
broad range of time scales. However, the scaling exponent
associated with this scale-invariant behavior significantly
changes with the thickness. For the 1000-nm-thick film [top
panel in Fig. 2(a)], we clearly see a pronounced crossover
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FIG. 2. Dimensionality and transition in the temporal scaling characteristics of Barkhausen avalanches. Barkhausen avalanches have
different temporal characteristics in three- and two-dimensional films. A peculiar behavior of the temporal scaling characteristics is observed
at thickness of 100 nm, i.e., « = 1.0, characterizing an imminent transition. (a) Log-log plot of the fluctuation function F(s) as a function of
the time scale s, obtained from the DFA applied to experimental Barkhausen noise time series measured with driving magnetic field frequency
of 50 mHz in amorphous FeSiB films with the selected thicknesses of 1000, 100, and 50 nm. Each panel in (a) shows ten F(s) curves, from
different time series, indicating consistent scaling behavior. To guide the eyes, the black solid lines are power laws with the slope «. (b)
Dependence of the crossover time scale 7, with thickness for amorphous FeSiB (blue triangles) and polycrystalline NiFe (blue circles) films.
In the inset, ¢, as a function of the film thickness in the log-log scale, indicating a power-law scaling behavior. (c) Dependence of the scaling
exponents o and o r with thickness for the amorphous FeSiB and polycrystalline NiFe films. Here, « (blue filled symbols) represents the
correlation behavior at scales shorter than #,, while o g (red open symbols) is obtained over long-range scales [for instance, above 3 ms, as
marked by the fitting line in the top panel of (a)]. In particular, for each film, the analyses are obtained from 200 experimental Barkhausen time

series. The error bars are estimated using the standard deviation.

at the time scale ¢, &~ 0.25 ms, from a regime with robust
power-law correlations spanning over one decade at short time
scales, characterized by a scaling exponent « = 1.20 £ 0.02,
to a regime close to random behavior, i.e., with absence of
correlation, characterized an exponent ar g = 0.54 4 0.05 for
long time scales.

We note that this crossover to random behavior at large
time scale is not an artifact of electronic white noise present in
the experimental recordings. It is worthwhile to mention that
we also analyze background instrumental noise time series,
measuring the instrumental response without the sample. The
observed temporal characteristics infer that the background
instrumental noise has fingerprints of white-noise-like time
series, Hurst exponent @ ~ 0.5, and do not reveal any evidence
of multifractal behavior [17]. The amplitude of electronic
noise is one order of magnitude smaller than the Barkhausen
avalanches, therefore the contribution of electronic noise to
the fluctuation function F'(s) is negligible. Moreover, external
white noise does affect the scaling of long-range positively
correlated fractal signals, but only at very short time scales
and when the standard deviation of the white noise exceeds

by a decade the amplitude of fluctuations in the correlated
signal [36]. In this way, for three-dimensional films, our results
indicate a genuine crossover in the Barkhausen avalanches
temporal characteristics, from strongly correlated (at short
time scales) to random (at long time scales).

With decreasing thickness, we observe that the crossover
time scale #, gradually shifts to longer time scales. For the
50-nm-thick film, with two-dimensional magnetic behavior,
we find that the temporal dynamics of Barkhausen avalanches
exhibits scale-invariant behavior with long-range power-law
correlations and exponent o = 0.80 &£ 0.04 over the entire
range of time scales, spanning more than three decades
[bottom panel in Fig. 2(a)]. Thus, we verify that Barkhausen
avalanches have markedly different temporal characteristics
in films with different dimensionality, i.e., a typical crossover
from correlated to uncorrelated behavior for films with three-
dimensional magnetic behavior, and in contrast, absence of
crossover and a single scaling behavior in two-dimensional
films. Remarkably, we find that for the 100-nm-thick film
[middle panel in Fig. 2(a)], practically over the entire range
of time scales, a scaling behavior with a critical exponent
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o = 1.00 + 0.03 emerges, indicating an imminent transition
in the temporal scaling characteristics of the avalanches at the
border between three- and two-dimensional behaviors.

Further, we investigate the dependence of the crossover time
scale t, and the scaling exponents « and o g with the thickness.
Our analyses show that #, remains relatively stable over a
broad range of thicknesses, from 1000 to 200 nm, abruptly
increases with the approach of the thickness to 100 nm, and
becomes infinite (i.e., reaches the finite size of the recorded
time series) for films with thickness below 100 nm [Fig. 2(b)].
In particular, we verify that the thickness dependence of t,
follows a power-law scaling behavior with slope u = 1.0 [see
inset of Fig. 2(b)].

We observe a simultaneous evolution for the scaling
exponents ¢ and o r. The o value, which characterize the DW
dynamics at short time scales, remains ~1.2 for thicknesses in
the broad interval from 1000 to 200 nm, indicating strong
avalanche correlations for time scales below ¢, abruptly
decreases to a critical value of @ ~ 1.0 at 100 nm, and drops to
o ~ 0.8 over the entire range of the time scales for films thinner
than 100 nm [Fig. 2(c)]. In contrast to «, the scaling exponent
oLR, characterizing DW dynamics at large time scales, is 20.54
for thicknesses in the interval between 1000 and 200 nm,
indicating an uncorrelated behavior, abruptly increases con-
verging to arr = « ~ 1.0 at 100 nm, and coincides with o
for thickness below 100 nm. It is important to notice that in
the border line at thickness ~100 nm, the peculiar behavior
of the scaling characteristics ., «, and o g occurs simultane-
ously to the dimensional transition in the magnetic behavior,
from three to two-dimensional magnetization dynamics. No-
tably, the scaling behaviors are consistent for all Barkhausen
noise time series recorded for each film, as evidenced by the
small error bars for the scaling exponents [Fig. 2(c)]. Remark-
ably, we also find that both amorphous FeSiB and polycrys-
talline NiFe films exhibit the very same scaling behavior with
the same exponent and the same dependence with thickness.

C. Multifractal complexity and vanishing of the multifractality

In the sequence, we find not only that the autocorrelations of
Barkhausen avalanches exhibit scaling laws, but that all other
moments also follow power laws forming an entire multifractal
spectrum, i.e., fractals within fractals, one of the highest forms
of complexity in nature. We perform the scaling analysis of the
fluctuation function F,(s) for a range of ¢ moments applying
the multifractal detrended fluctuation analysis, a procedure
that requires a spectrum of exponents to fully characterize the
temporal structure.

Figure 3 shows the dependence of the behavior of the
generalized g-dependent fluctuation function with the film
thickness. Remarkably, amorphous FeSiB and polycrystalline
NiFe films share similar behavior (the latter not shown here).
For the 1000-nm-thick film we find that the dynamics at short
time scales Asg exhibits the same scaling behavior shown in
Fig. 2, with exponent o =~ 1.2 for all ¢ moments, indicating
a monofractal behavior. In addition, at intermediate time
scales Asyr the fluctuation function F,(s) is characterized by
distinct scaling exponents for different ¢ moments, suggesting
a multifractal behavior [top panel in Fig. 3(a)].
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A crossover from monofractal to multifractal behavior
is consistently verified for the films with three-dimensional
magnetic behavior, irrespective on the thickness. However,
with decreasing thickness, the crossover time scale ¢, shifts,
and the range of time scales Asg, corresponding to monofractal
scales, expands from short to intermediate and long time
scales. At the same time, the range of scales Asyg, where
the multifractality is observed, abruptly shrinks [bottom panel
in Fig. 3(a)]. This can be clearly visualized in Fig. 3(b), which
shows the evolution of the estimation of the multifractal time
scales Asyg with thickness. For the 100-nm-thick film, the
Barkhausen avalanches exhibit a monofractal behavior with
exponent « &~ 1.0 roughly spanning the entire time scales
range, and the dynamics exhibits multifractality only in a very
short range Asyr < 0.5 decades [bottom panel in Fig. 3(a)].
For the thinner film with 50 nm the multifractality vanishes
(the time scales multifractal range Asyg disappears) and
Barkhausen avalanches exhibit monofractal behavior over the
entire range of time scales, characterized by exponent o & 0.8
for all ¢ moments.

The results indicate that the three-dimensional films exhibit
DW dynamics with high degree of multifractality. Figure 3(c)
shows that the robust multifractal spectrum with magnitude
Aa ~ 1.0 remains stable for the thickness range 1000 to
100 nm, although Asyr significantly changes with the prox-
imity to 100 nm. Despite the A« stability, the exponents error
bar increases as the thickness approaches 100 nm, a fingerprint
associated to the imminent vanishing of range of time scales
Asyr. Thus, the multifractality gives place to a monofractal
behavior in the two-dimensional regime, films with thick-
ness of 50 nm, with the transition occurring just below
100 nm.

D. Evolution of temporal characteristics with film thickness

The temporal characteristics of Barkhausen avalanches are
strongly dependent on the film thickness. First of all, it should
be mentioned that we kept our focus on the results obtained for
the smallest frequency of driving magnetic field (see Figs. 1, 2,
and 3), although Barkhausen noise time series acquired using
different field frequencies, from 0.05 up to 0.4 Hz, have been
also investigated. Here, well-known rate effects are observed,
including the frequency dependence of the critical exponents
for each universality class [12,15-17,30-32,41-44], and the
modifications of the time series with field frequency. At low
field frequencies, Barkhausen noise comes out as a sequence
of distinguishable and separated avalanches. With increasing
frequency, larger avalanches become more frequent, the quiet
time between avalanches is progressively reduced, and the
noise resembles a continuous sequence of peaks, in which
the avalanches may even superpose [1,11]. Irrespectively on
the film thickness, multifractal analysis and quantities as F,(s),
te, &, drR, Asyr, f(a), and A are not affected by the field
rate employed in the experiment, suggesting the multifractal
analysis is a robust method to study Barkhausen avalanches.
The behavior of these quantities is in agreement with results
previously reported by our group [20]. As a consequence, it is
clear that the temporal scaling characteristics are intrinsic to
the underlying DW dynamics.
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FIG. 3. Multifractal behavior and vanishing of the multifractality in Barkhausen avalanches. Multifractal behavior of Barkhausen avalanches

is strongly dependent on the dimensionality. As the thickness is reduced from 100 to 50 nm, the multifractality of the DW dynamics vanishes,
and the multifractal behavior gives place to a monofractal one over the entire range of time scales. (a) Log-log plot of the fluctuation function
F,(s) as a function of the time scale s for several moments ¢, ranging from ¢ = —4.0 to g = +4.0, obtained from the MF-DFA applied to
experimental Barkhausen noise time series measured with driving magnetic field frequency of 50 mHz in the amorphous FeSiB films with the
selected thicknesses of 1000 and 100 nm. In particular, these scaling curves represent the analysis of a single Barkhausen noise time series, and
the scaling curve for g = 2, corresponding to the DFA fluctuation function F(s), and ., the crossover time scale, are the very same previously
presented in Fig. 2. To guide the eyes, the black solid lines are power laws with slope «. The temporal dynamics of Barkhausen avalanches
is characterized by two temporal scaling regimes: fractal range Asg and multifractal range Asyg, which are separated at the crossover time
scale #,.. (b) Range of time scales Asy, in units of decades, in which the Barkhausen avalanches exhibit multifractal behavior, as a function of
the thickness. (c) The width A« of the multifractal spectrum f(«) as a function of film thickness. The insets show the multifractal spectrum
f () of five representative Barkhausen noise time series for the amorphous FeSiB films with thicknesses of 100 and 1000 nm. In particular,
for the 50-nm-thick film, Asyr and A« are not shown in (b) and (c), since the multifractality vanishes for thickness just below 100 nm. In
particular, for each film, the analyses are obtained from 200 experimental Barkhausen time series. The error bars are estimated using the standard

deviation.

Our findings raise an interesting issue on the temporal
scaling characteristics in the DW dynamics in ferromagnetic
films. The analyses of Barkhausen avalanches show similar
statistical results for the temporal scaling correlations of
both amorphous and polycrystalline ferromagnetic materials,
placing them in a single universality class. On the other
hand, although the temporal scaling characteristics seem to be
insensitive to the range of the interactions governing the DW
dynamics, our results provide experimental evidence which
reveals that they are influenced by the film dimensionality.
Two-dimensional films present Barkhausen noise times series
with monofractal behavior, while three-dimensional films
exhibit DW dynamics with high degree of multifractality.

Despite the Acq stability found for films thicker than
100 nm, an interesting feature in the fluctuation function
resides in the systematic variation of the crossover time scale ¢,
[Fig. 2(b)], and consequently Asyr [Fig. 3(b)], with thickness.
Even these films share the same dimensionality, #, shifts toward

intermediate and long time scales, while Asyg shrinks, as
the thickness is reduced. Because the crossover time scale is
dependent on the film thickness, we believe that this evolution
originates from finite size effects [45—47] or demagnetization
effects [1,11,12,41].

The demagnetizing field has a fundamental effect on the
DW motion, since it is responsible by keeping the wall
constantly at criticality, close to the depinning transition,
without any tuning of the driving field [1]. Moreover, it
is known that the demagnetizing field affects the cutoff
values of the traditional Barkhausen avalanche distributions,
as it reduces the net field applied to the domain wall and,
consequently, the maximum size and duration of an avalanche
[1,11,12,41,48,49]. Earlier experiments and simulations have
uncovered the dependence of the cutoff values with the
demagnetizing field by varying the sample geometry, i.e., the
system length [12,41,48,49]. However, though it may seem
puzzling, finite transverse dimensions can also influence the
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characteristics of DW motion [49]. Thus, for ferromagnetic
films, finite-size effects and demagnetizing effects may be also
controlled by the thickness. Characteristic scales of the DW dy-
namics, such as the correlation length and correlation time, are
controlled by the demagnetizing factor (i.e., its components)
and the size of the system, as the disorder is assumed to be an
uncorrelated random field [11,48]. Therefore, deviation from
the behavior observed for the thicker films may be ascribed to
the the smaller geometrical dimension of the system, i.e., the
thickness approaching to the correlation length.

The typical durations of the Barkhausen avalanches in films
are from 10 ps up to 1 ms [15-18]. The MF-DFA reveals for
all films a regime with robust power-law correlations at short
time scales (below 250 us), suggesting that near avalanches
with short durations are highly correlated, irrespectively on
the film thickness. For the three-dimensional films, a regime
close to random behavior is also found, reveling the absence
of correlations at long time scales (above 2.5 ms), indicating
that well-separated avalanches and avalanches with very long
durations are in principle not correlated. However, the most
striking finding here resides at intermediate time scales, where
the multifractal behavior is found, owed to the fact that the
Barkhausen noise involves the collective motion of many DWs.
A direct consequence in experiments is that the measured
Barkhausen cannot distinguish between single avalanches,
each one with its own fractality, and a superposition, in space
and/or time, of them [11], resulting in the multifractal behavior.

As the thickness decreases, the correlation of the avalanches
spreads over an increasing range of time scales, causing the
shift of 7, to longer time scales. For the films thinner than
100 nm, the thickness is of the same order of magnitude
of the DW width, and the correlation length is therefore
limited to the smallest geometrical dimension of the system.
At this thickness range, f, becomes infinite, i.e., it reaches
the finite size of the recorded time series, and the avalanches
become strongly correlated over the entire range of time
scales, a feature evidenced by the scale-invariant behavior with
long-range power-law correlations. In this sense, the fact that
the multifractality gives place to a monofractal behavior in the
two-dimensional regime becomes reasonable.

Thus, we interpret the reorganization in temporal scaling
characteristics of Barkhausen avalanches as an indicator of an
universal restructuring associated to the dimensional transition
of the magnetic behavior occurring as the thickness is reduced,
from a three-dimensional DW dynamics observed in thick
films [15—18] to a two-dimensional regime, commonly verified
for films thinner than 100 nm [13,14].
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IV. CONCLUSION

Much of the critical behavior observed in nature can be
explained by the range of interactions and system dimension-
ality. On the other hand, the understanding of the influence that
these general properties have on the monofractal/multifractal
behavior is far from complete. Our experiments provide
evidences that the multifractal properties are dependent on
the film thickness, although they seem to be insensitive
to the structural character of the materials. In fact, we
understand that the strong multifractal behavior is due to the
mixing of several correlated processes with distinct temporal
correlations lengths, the hypothesis of overlapping of several
noncorrelated avalanches. As the thickness is reduced from
100 to 50 nm regardless the structural character of the films,
the multifractality of the DW dynamics vanishes, and the
multifractal behavior gives place to a monofractal one over
the entire range of time scales (i.e., from highly nonlinear to
linear behavior).

The reorganization in the temporal scaling characteristics of
Barkhausen avalanches is understood as an universal restruc-
turing associated to a dimensional transition of the magnetic
behavior, from a three- to a two-dimensional magnetization
dynamics, occurring within this thickness range. In this sense,
we believe that this evolution originates from finite-size effects
or demagnetization effects on the DW dynamics and on
the temporal characteristics. In the limit of the dimensional
transition, film thickness has a fundamental role on the
magnetic structure, due to the increase of the stray field
along the direction normal to the plane of the film. Thus,
the correlation of the time series reflects the stronger magnetic
coupling in two-dimensional films. Increasing the correlation,
the fractal regime becomes unique and robust and, as a
consequence, the multifractality vanishes.

Finally, our work also demonstrates that the multifractal
analysis is a powerful tool to investigate systems exhibiting
crackling noise and appears as a sharper test going beyond
power laws. Our results trigger interesting challenges to
theorists and further experimental investigations in diverse
systems exhibiting crackling noise.
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